{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# 2A.ml - Analyse de sentiments\n", "\n", "C'est d\u00e9sormais un probl\u00e8me classique de machine learning. D'un c\u00f4t\u00e9, du texte, de l'autre une appr\u00e9ciation, le plus souvent binaire, positive ou n\u00e9gative mais qui pourrait \u00eatre graduelle."]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": ["%matplotlib inline"]}, {"cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [{"data": {"text/html": ["
\n", ""], "text/plain": ["\n", " | sentance | \n", "sentiment | \n", "source | \n", "
---|---|---|---|
0 | \n", "So there is no way for me to plug it in here i... | \n", "0 | \n", "amazon_cells_labelled | \n", "
1 | \n", "Good case, Excellent value. | \n", "1 | \n", "amazon_cells_labelled | \n", "
2 | \n", "Great for the jawbone. | \n", "1 | \n", "amazon_cells_labelled | \n", "
3 | \n", "Tied to charger for conversations lasting more... | \n", "0 | \n", "amazon_cells_labelled | \n", "
4 | \n", "The mic is great. | \n", "1 | \n", "amazon_cells_labelled | \n", "