{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# 2A.data - Matplotlib\n", "\n", "Tutoriel sur [matplotlib](https://matplotlib.org/)."]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [{"data": {"text/html": ["
\n", ""], "text/plain": [""]}, "execution_count": 2, "metadata": {}, "output_type": "execute_result"}], "source": ["from jyquickhelper import add_notebook_menu\n", "add_notebook_menu()"]}, {"cell_type": "markdown", "metadata": {}, "source": ["*Apart\u00e9*\n", "\n", "Les librairies de visualisation en python se sont beaucoup d\u00e9velopp\u00e9es ([10 plotting librairies](http://www.xavierdupre.fr/app/jupytalk/helpsphinx/2016/pydata2016.html)). \n", "\n", "La r\u00e9f\u00e9rence reste [matplotlib](http://matplotlib.org/), et la plupart sont pens\u00e9es pour \u00eatre int\u00e9gr\u00e9es \u00e0 ses objets (c'est par exemple le cas de [seaborn](https://stanford.edu/~mwaskom/software/seaborn/introduction.html), [mpld3](http://mpld3.github.io/), [plotly](https://plot.ly/) et [bokeh](http://bokeh.pydata.org/en/latest/)). Il est donc utile de commencer par se familiariser avec matplotlib."]}, {"cell_type": "markdown", "metadata": {}, "source": ["Pour reprendre les termes de ses d\u00e9veloppeurs : *\"matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. matplotlib can be used in python scripts, the python and ipython shell (ala MatLab or mathematica), web application servers, and six graphical user interface toolkits.\"*\n", "\n", "\n", "La structure sous-jacente de matplotlib est tr\u00e8s g\u00e9n\u00e9rale et personnalisable (gestion de l'interface utilisateur, possibilit\u00e9 d'int\u00e9gration dans des applications web, etc.). Heureusement, il n'est pas n\u00e9cessaire de ma\u00eetriser l'ensemble de ces m\u00e9thodes pour produire un graphe (il existe pas moins de 2840 pages de [documentation](http://matplotlib.org/Matplotlib.pdf)). Pour g\u00e9n\u00e9rer des graphes et les modifier, il suffit de passer par l'interface [pyplot](). \n", "\n", "L'interface pyplot est inspir\u00e9e de celle de MATLAB. Ceux qui la connaissent s'y retrouveront rapidement. \n", "\n", "Pour r\u00e9sumer : \n", "- matplotlib - acc\u00e8s \"low level\" \u00e0 la librairie de visualisation. Utile si vous souhaitez cr\u00e9er votre propre librairie de visualisation python ou faire des choses tr\u00e8s custom.\n", "- matplotlib.pyplot - interface proche de celle de Matplab pour produire vos graphes\n", "- pylab - matplotlib.pyplot + numpy"]}, {"cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": ["#Pour int\u00e9grer les graphes \u00e0 votre notebook, il suffit de faire\n", "%matplotlib inline"]}, {"cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Populating the interactive namespace from numpy and matplotlib\n"]}], "source": ["#ou alors\n", "%pylab inline\n", "#pylab charge \u00e9galement numpy. C'est la commande du calcul scientifique python."]}, {"cell_type": "markdown", "metadata": {}, "source": ["La structure des objets d\u00e9crits par l'API est tr\u00e8s hi\u00e9rarchique, comme illustr\u00e9 par ce sch\u00e9ma :\n", "- \"Figure\" contient l'ensemble de la repr\u00e9sentation visuelle. C'est par exemple gr\u00e2ce \u00e0 cette m\u00e9ta-structure que l'on peut facilement ajouter un titre \u00e0 une repr\u00e9sentation qui contiendrait plusieurs graphes ;\n", "- \"Axes\" (ou \"Subplots\") d\u00e9crit l'ensemble contenant un ou pusieurs graphes (correspond \u00e0 l'objet subplot et aux m\u00e9thodes add_subplot)\n", "- \"Axis\" correspond aux axes d'un graphique (ou instance de subplot) donn\u00e9. "]}, {"cell_type": "markdown", "metadata": {}, "source": ["
"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Une derni\u00e8re remarque d'ordre g\u00e9n\u00e9ral : [pyplot est une machine \u00e0 \u00e9tat](https://en.wikipedia.org/wiki/Matplotlib).\n", "Cela implique que les m\u00e9thodes pour tracer un graphe ou \u00e9diter un label s'appliquent par d\u00e9faut au dernier \u00e9tat en cours (derni\u00e8re instance de subplot ou derni\u00e8re instance d'axe par exemple). \n", "\n", "Cons\u00e9quence : il faut concevoir ses codes comme une s\u00e9quence d'instructions (par exemple, il ne faut pas s\u00e9parer les instructions qui se rapportent au m\u00eame graphique dans deux cellules diff\u00e9rentes du Notebook)."]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Figures et Subplots "]}, {"cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [{"data": {"text/plain": [""]}, "execution_count": 5, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAHWCAYAAABAA0zqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAErFJREFUeJzt3V+I5fdZx/HP08RYaGsFs4Jkd03A\nrW0MQuoQK71oS6MkudjcVEmg1JbQvTEVbSlELK3EKysiCGnriiUq2Bh7URdZiaCRijQlW6rBpASW\nWJslhaRtmpvQxujjxYxlnMzu/HZzntk9yesFC/M75ztnHvgyk3d+v/OnujsAAMx4zcUeAADglUxs\nAQAMElsAAIPEFgDAILEFADBIbAEADNoztqrqs1X1dFX9+1nur6r6o6o6XVWPVNVbVz8mAMB6WnJm\n694kN53j/puTHNn6dyzJp1/+WAAArwx7xlZ3fzHJd86x5NYkf96bHkryo1X1E6saEABgna3iOVtX\nJXly2/GZrdsAAF71Ll/BY9Qut+36GUBVdSyblxrzute97ufe/OY3r+DHAwDM+spXvvKt7j5wId+7\nitg6k+TQtuODSZ7abWF3H09yPEk2Njb61KlTK/jxAACzquo/L/R7V3EZ8USS9229KvFtSZ7r7m+u\n4HEBANbenme2qupzSd6Z5MqqOpPkE0l+KEm6+zNJTia5JcnpJM8n+cDUsAAA62bP2Oru2/e4v5P8\n2somAgB4BfEO8gAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAoEWxVVU3VdXjVXW6qu7a5f7DVfVg\nVX21qh6pqltWPyoAwPrZM7aq6rIk9yS5Ocm1SW6vqmt3LPtYkvu7+/oktyX51KoHBQBYR0vObN2Q\n5HR3P9HdLyS5L8mtO9Z0kh/Z+vqNSZ5a3YgAAOvr8gVrrkry5LbjM0l+fsea30ny91X1oSSvS3Lj\nSqYDAFhzS85s1S639Y7j25Pc290Hk9yS5C+q6iWPXVXHqupUVZ165plnzn9aAIA1syS2ziQ5tO34\nYF56mfCOJPcnSXd/Kclrk1y584G6+3h3b3T3xoEDBy5sYgCANbIkth5OcqSqrqmqK7L5BPgTO9Z8\nI8m7k6Sq3pLN2HLqCgB41dsztrr7xSR3Jnkgydey+arDR6vq7qo6urXsI0k+WFX/luRzSd7f3Tsv\nNQIAvOoseYJ8uvtkkpM7bvv4tq8fS/L21Y4GALD+vIM8AMAgsQUAMEhsAQAMElsAAIPEFgDAILEF\nADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEF\nADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEF\nADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEF\nADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEF\nADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEF\nADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEF\nADBoUWxV1U1V9XhVna6qu86y5leq6rGqerSq/nK1YwIArKfL91pQVZcluSfJLyY5k+ThqjrR3Y9t\nW3MkyW8leXt3P1tVPz41MADAOllyZuuGJKe7+4nufiHJfUlu3bHmg0nu6e5nk6S7n17tmAAA62lJ\nbF2V5Mltx2e2btvuTUneVFX/UlUPVdVNqxoQAGCd7XkZMUntclvv8jhHkrwzycEk/1xV13X3d//f\nA1UdS3IsSQ4fPnzewwIArJslZ7bOJDm07fhgkqd2WfM33f1f3f0fSR7PZnz9P919vLs3unvjwIED\nFzozAMDaWBJbDyc5UlXXVNUVSW5LcmLHmi8keVeSVNWV2bys+MQqBwUAWEd7xlZ3v5jkziQPJPla\nkvu7+9Gquruqjm4teyDJt6vqsSQPJvlod397amgAgHVR3TuffrU/NjY2+tSpUxflZwMAnI+q+kp3\nb1zI93oHeQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAY\nJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAY\nJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAY\nJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAY\nJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAY\nJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAY\nJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBg0KLYqqqbqurxqjpdVXedY917qqqramN1\nIwIArK89Y6uqLktyT5Kbk1yb5PaqunaXdW9I8utJvrzqIQEA1tWSM1s3JDnd3U909wtJ7kty6y7r\nfjfJJ5N8b4XzAQCstSWxdVWSJ7cdn9m67Qeq6vokh7r7b1c4GwDA2lsSW7XLbf2DO6tek+QPk3xk\nzweqOlZVp6rq1DPPPLN8SgCANbUkts4kObTt+GCSp7YdvyHJdUn+qaq+nuRtSU7s9iT57j7e3Rvd\nvXHgwIELnxoAYE0sia2Hkxypqmuq6ooktyU58X93dvdz3X1ld1/d3VcneSjJ0e4+NTIxAMAa2TO2\nuvvFJHcmeSDJ15Lc392PVtXdVXV0ekAAgHV2+ZJF3X0yyckdt338LGvf+fLHAgB4ZfAO8gAAg8QW\nAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QW\nAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QW\nAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QW\nAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QW\nAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QW\nAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QW\nAMAgsQUAMEhsAQAMElsAAIPEFgDAoEWxVVU3VdXjVXW6qu7a5f4PV9VjVfVIVf1DVf3k6kcFAFg/\ne8ZWVV2W5J4kNye5NsntVXXtjmVfTbLR3T+b5PNJPrnqQQEA1tGSM1s3JDnd3U909wtJ7kty6/YF\n3f1gdz+/dfhQkoOrHRMAYD0tia2rkjy57fjM1m1nc0eSv3s5QwEAvFJcvmBN7XJb77qw6r1JNpK8\n4yz3H0tyLEkOHz68cEQAgPW15MzWmSSHth0fTPLUzkVVdWOS305ytLu/v9sDdffx7t7o7o0DBw5c\nyLwAAGtlSWw9nORIVV1TVVckuS3Jie0Lqur6JH+czdB6evVjAgCspz1jq7tfTHJnkgeSfC3J/d39\naFXdXVVHt5b9fpLXJ/nrqvrXqjpxlocDAHhVWfKcrXT3ySQnd9z28W1f37jiuQAAXhG8gzwAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCx\nBQAwSGwBAAwSWwAAg8QWAMAgsQUAMGhRbFXVTVX1eFWdrqq7drn/h6vqr7bu/3JVXb3qQQEA1tGe\nsVVVlyW5J8nNSa5NcntVXbtj2R1Jnu3un0ryh0l+b9WDAgCsoyVntm5Icrq7n+juF5Lcl+TWHWtu\nTfJnW19/Psm7q6pWNyYAwHpaEltXJXly2/GZrdt2XdPdLyZ5LsmPrWJAAIB1dvmCNbudoeoLWJOq\nOpbk2Nbh96vq3xf8fC5NVyb51sUeggti79ab/Vtf9m69/fSFfuOS2DqT5NC244NJnjrLmjNVdXmS\nNyb5zs4H6u7jSY4nSVWd6u6NCxmai8/+rS97t97s3/qyd+utqk5d6PcuuYz4cJIjVXVNVV2R5LYk\nJ3asOZHkV7e+fk+Sf+zul5zZAgB4tdnzzFZ3v1hVdyZ5IMllST7b3Y9W1d1JTnX3iSR/muQvqup0\nNs9o3TY5NADAulhyGTHdfTLJyR23fXzb199L8svn+bOPn+d6Li32b33Zu/Vm/9aXvVtvF7x/5Wof\nAMAcH9cDADBoPLZ81M/6WrB3H66qx6rqkar6h6r6yYsxJ7vba/+2rXtPVXVVeZXUJWTJ/lXVr2z9\nDj5aVX+53zOyuwV/Ow9X1YNV9dWtv5+3XIw5eamq+mxVPX22t6aqTX+0tbePVNVblzzuaGz5qJ/1\ntXDvvppko7t/NpufHPDJ/Z2Ss1m4f6mqNyT59SRf3t8JOZcl+1dVR5L8VpK3d/fPJPmNfR+Ul1j4\nu/exJPd39/XZfEHZp/Z3Ss7h3iQ3neP+m5Mc2fp3LMmnlzzo9JktH/Wzvvbcu+5+sLuf3zp8KJvv\nwcalYcnvXpL8bjYj+Xv7ORx7WrJ/H0xyT3c/myTd/fQ+z8juluxdJ/mRra/fmJe+dyUXSXd/Mbu8\nT+g2tyb58970UJIfraqf2Otxp2PLR/2sryV7t90dSf5udCLOx577V1XXJznU3X+7n4OxyJLfvzcl\neVNV/UtVPVRV5/q/cfbPkr37nSTvraoz2Xyl/4f2ZzRW4Hz/25hk4Vs/vAwr+6gf9t3ifamq9ybZ\nSPKO0Yk4H+fcv6p6TTYv279/vwbivCz5/bs8m5cy3pnNs8r/XFXXdfd3h2fj3Jbs3e1J7u3uP6iq\nX8jm+1Re193/Mz8eL9MFNcv0ma3z+aifnOujfth3S/YuVXVjkt9OcrS7v79Ps7G3vfbvDUmuS/JP\nVfX1JG9LcsKT5C8ZS/92/k13/1d3/0eSx7MZX1xcS/bujiT3J0l3fynJa7P5uYlc+hb9t3Gn6djy\nUT/ra8+927oM9cfZDC3PF7m0nHP/uvu57r6yu6/u7quz+Zy7o919wZ/9xUot+dv5hSTvSpKqujKb\nlxWf2Ncp2c2SvftGkncnSVW9JZux9cy+TsmFOpHkfVuvSnxbkue6+5t7fdPoZUQf9bO+Fu7d7yd5\nfZK/3npNwze6++hFG5ofWLh/XKIW7t8DSX6pqh5L8t9JPtrd3754U5Ms3ruPJPmTqvrNbF6Cer+T\nDJeGqvpcNi/NX7n1nLpPJPmhJOnuz2TzOXa3JDmd5PkkH1j0uPYXAGCOd5AHABgktgAABoktAIBB\nYgsAYJDYAgAYJLYAAAaJLQCAQWILAGDQ/wJuDbtmI9XykwAAAABJRU5ErkJggg==\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["from matplotlib import pyplot as plt\n", "plt.figure(figsize=(10,8))\n", "plt.subplot(111) # M\u00e9thode subplot : pour d\u00e9finir les graphiques appartenant \u00e0 l'objet figure, ici 1 X 1, indice 1\n", "#plt.subplot(1,1,1) fonctionne aussi\n", "#attention, il est n\u00e9cessaire de conserver toutes les instructions d'un m\u00eame graphique dans le m\u00eame bloc \n", "#pas besoin de plt.show() dans un notebook, sinon c'est n\u00e9cessaire"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Un graphique (tr\u00e8s) simple avec l'instruction plot."]}, {"cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [{"data": {"text/plain": ["[]"]}, "execution_count": 6, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHVCAYAAAAzabX0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XlcVXX+x/HXuayyCgIqiKCAKwol\n7qlY5r7iru1NZdqUzlhTMy1Wtkw5Y7utTssvFHdzSc291HDFJVdABARcUASR7cL5/XFqpsUF8ML3\ncu/n+Xj0mB56veftpPC553y+n4+m6zpCCCGEEOLmmVQHEEIIIYSwFVJYCSGEEEJYiBRWQgghhBAW\nIoWVEEIIIYSFSGElhBBCCGEhUlgJIYQQQliIFFZCCCGEEBYihZUQQgghhIVIYSWEEEIIYSGOqi7s\n5+enh4aGqrq8EEIIIUSl7dmz57yu6/43ep2ywio0NJTdu3erurwQQgghRKVpmnaqMq+TR4FCCCGE\nEBYihZUQQgghhIVIYSWEEEIIYSFSWAkhhBBCWIgUVkIIIYQQFiKFlRBCCCGEhUhhJYQQQghhIVJY\nCSGEEEJYiBRWQgghhBAWIoWVEEIIIYSFSGElhBBCCGEhUlgJIYQQQliIFFZCCCGEEBYihZUQQggh\nhIVIYSWEEEIIYSFSWAkhhBBCWIhNF1YZF66ojiCEEEIIO2KzhdXypNP0fHMTP2VdUh1FCCGEEHbC\nZgur2BYBuDs78sHmFNVRhBBCCGEnbLaw8nZz4q4uIaw+mE3qucuq4wghhBDCDthsYQXw4G3NcHYw\n8eEWuWslhBBCiJpn04WVv6cL4zoGs2TvaU7nFamOI4QQQggbZ9OFFcDDvcIA+GRrquIkQgghhLB1\nNl9YBdWvx4hbgpi3M51zBSWq4wghhBDChtl8YQUwKTaM0vIK5m47qTqKEEIIIWyYXRRWYf4eDGzX\nmK92nOJSUZnqOEIIIYSwUXZRWAFMjg3jcomZL7enqY4ihBBCCBtlN4VV20Bverf0Z+62k1wpNauO\nI4SoCedPwNmjqlMIIeyY3RRWAI/dHs7FK2XEJ6arjiKEsKTTe2D+RHgvBj65HbIPqE4khLBTdlVY\ndQjxpXMzXz75PpUSc7nqOEKIm6HrkLoFvhxmFFNp30OPv0I9H4gfC/nZqhMKIeyQXRVWYNy1OpNf\nwpK9p1VHEUJUR0UFHF0Fn/aBL4fC2SNw58sw7Se443mYMB9K8mHeWCgtVJ1WCGFn7K6wui3cj/ZN\nvJmzOQVzeYXqOEKIyio3w4EFMKcbzJ8Ahedg8Gx44gB0fxxcPI3XNWoHo+ZCzkFY8rBRiAkhRC2x\nu8JK0zSm9A4n/cIVVh2URwVCWL2yYtj1Gbx7Kyx5CDQN4j6FP++FmAfAyfWPv6ZFP+j3KhxdCetf\nqP3MQgi75ag6gAp3tm5IRIAH729KZkj7QEwmTXUkIcTvlRTA7rmw4324fAaCYqD/69CiP5gq8Zmw\n8yTITYbt70CDcOhwb81nFkLYPbssrEwmjcm9w5iWsJ/1R87Qt20j1ZGEEL8ozIXED2HnR1B8CZr3\nhpGfQmgP425VZWka9P8nXEyDVX8BnxBoHltDoYUQwmB3jwJ/MaR9IMG+9Xh/cwq6rquOI4S4dBrW\nPANvRcLWN4xC6qGNcM8yaNazakXVLxwcjX6rBhGw4B44d9zyuYUQ4lfstrBydDAxqVcY+zPy2Jac\nqzqOEPYrNwWWPwZvR0HiR9BmGExOhHFfQ1CHm39/V2+YkAAOzhA/2rgjJoQQNcRuCyuAUR2aEODp\nwvubklVHEcL+ZB+AhfcZQz0PLoQO98Hj+2DEhxDQyrLX8gmBcfOM2VYJE8FcYtn3F0KIn9l1YeXi\n6MDDPZuzIzWXPacuqo4jhH04tQP+bxR81ANOrIfuT8DUgzBollEA1ZTgjjBiDqTvgG/+bAwYFTYj\n70oppWYZrSHUs+vCCmB8p6bUd3PiA7lrJUTN0XU48R3MHQD/6Q9Ze+H252DaIegzAzwCaidH5Ejo\n/SwcSICtb9bONUWNM5dXMOS9Hxj38Q6ZTyiUs93CqrwM8rNu+DJ3F0ce6N6MDUfPcjgrvxaCCWFH\nKsrh0BLj7tTXoyAvHQa8AVMPQc/pUK9+7WfqOR3aj4NNr8DBRbV/fWFxG4+eJeNCEXvT85izOUV1\nHGHnbLewStkIs9vCVyPgwEIovXLNl97bNRQPF0c+2Cx3rYSwCHMp7P0S3usIi+43hnwOe9/ooer8\nCDi7qcumaTD0HWjaDZZNhoyd6rIIi4jfmU4jL1cGt2/M2xtOcCAzT3UkYcdst7AKaAM9psP5ZFjy\nJ5jVApZPgbRtf1hx4e3mxF1dQlh1MJvUc5cVBRbCBpQWwo9z4J1oo4/JxQNGfwFTEuGWu8DRWXVC\ng6MLjP0/8AqEeeONWVeiTsq4cIUtx88xpmMwrwxvh7+nC9MSkigqLVcdTdgp2y2s6gfD7f+AJ/bD\nfauMI9w/LYPPBxpf9De9BhdS//vyB29rhrODiQ+3yG1kIaqs6CJseRNmR8Kap8EnFO5aDA9vgbbD\nweSgOuEfuTeAiQuhogzixxrDSEWdk7ArAw0Y1zEYbzcnZo2OIuVcIf9cc1R1NGGnbLew+oXJBKG3\nwfD3YfpxGPEx+DaDLf+Ed26Buf1hzxf4OxUztmMwS/ae5nRekerUQtQNBWfgu+dhdjvYNBOadIQH\n1sL9qyG8T/WGetYmvwjjzlVusjH6odysOpGogrLyChJ2Z9C7ZQCB9esB0D3cjwe6N+Pz7WlsPX5O\ncUJhj2y/sPo1Z3eIGgv3LIdpP8EdL8CVXFjxOMxqwdOFb9JTS+LTLSdUJxXCul1Mg5V/gbfawfZ3\noUVfmPQDTFwATbuoTlc1zXrC4NlGX+a3T8oYhjpkw5EznCsoYULnpr/58af6tyQiwIMnF+0n70qp\nonTCXmmq1rnExMTou3fvVnLt39B1OL0X9s+DQ4ug6CJndR88Ok3ALeYuaNhGdUIhrMfZI/DDbOM0\nnWaC6AnGHKoGYaqT3bzvnodtb0O/16DrZNVpRCXc/VkiKWcv8/3fbsfB9Nu7o4dOX2LEB9vo27YR\n742/Bc3a754Kq6dp2h5d12Nu9Dq7XML8G5oGTToY//R7hZzdyzm46kNu3/0h7HofGkdB1ARoNwrc\n/VSnFUKNzD3ww7/h6EpwcoMuj0LXKUbzt624Y4bRd7n270a7QMsBqhOJ60jPvcL3J84zrU+LPxRV\nAJFB3kzt04I31x7jztYNGX5LkIKUwh7Z16PAG3F0oVGXMSxrNYveFR9RdMerxo+v+Rv8q6Vxeujw\nN7IOQ9gHXYfUzfDFEPj0dkj7AXo9bTxG7/eKbRVVYPRjjvgYAqNh0YPGyh1htebtSsfBpDG2Y/A1\nXzOpVxgdQnx4bvkh6Z0VtUYKq6uY3DuM9BI3PivrC49shUd3GJ/QT++BBXcbRdaq6caneOnHELam\nogKOrIRPbocvh8G549B3pjElvfcz4OarOmHNcXaD8fONwaXxY43dgsLqlJorWLg7g9tbBdDI2/Wa\nr3MwacweE01Fhc70BfupqJCv16LmSWF1FW0Dvend0p/PfjjJlVKz0WfVdyZMOwwTF0PY7bDvK+NT\n/Pud4Pt/w6XTqmMLcXPKy2D/fJjT1VhUXHQBBr9ljCzp9mdw8VSdsHZ4NoIJCVCSD/PGGbO5hFVZ\nf+QM5y+XMqFT0xu+tmkDN54f0oYdqbnM3XayFtIJeyeF1TVM6R3OxStlzNuZ8b8fdHCEiD4waq4x\numHIO+DWADa8aEx5/3IY7E+QL8Sibikrgp2fwLu3wtJHjKb0kZ/BY3sg5n5wuvYdAZvVqJ3x/0HO\nAVjy8B+GCgu14hPTCapfj54t/Cv1+jExwfRp3ZA31h7jWE5BDacT9k4Kq2uICfWlczNfPtmaSon5\nKhN8Xb2hw73wwBpjTUevp4zG16UPG1Pel02Bk9/LF2RhvYrz4Ye34K32sHo6eDQ0HoNN2mYc1nCw\n87MtLftDv1eNhv0NM1SnET9LO1/ID8nnGdcx+KpN61ejaRqvj2yHl6sjUxOSrv41XQgLkcLqOqb0\nDicnv5gle2/wmM+3OfT+Ozy+H+5bbUyaPrwcvhgM70TBxlcgVya6CytReB42zoS3ImH9C9AoEu5d\nCQ9+Z5yEM8mXhf/qPAliHjTGMOz5QnUawf+a1sdcp2n9avw8XHg9rj1HsvN5a73MKhQ1x84/kl5f\njwg/2jfx5sMtKYzu0ARHhxt8wzGZILS78c+AN+HoKtgfD1vfhK1vQHBniBoPbUcYzbFC1KZLmbD9\nPdjzOZiLofVguO0vEHSr6mTWS9NgwBtw8SSs+gv4hEDzWNWp7FapuYJFuzPp0zqAhl5Vf0Tdp01D\nxncK5sMtKdzeKoCOoTZ8EEMoIx9Nr0PTNCbHhnMq9wqrDlbxdJCzG7QfDXcvhb8chj4zoCgPVk41\nHhUuvB9OfCcrNETNO59sLCB/Oxp2fWIU9lMSjVUuUlTdmIMjjP4cGkTAgnuMU5JCibU/5ZBbWMqE\nziHVfo9nB7Uh2MeNaQlJFBSXWTCdEAaZvH4DFRU6/d7aiknT+PaJHpgq+Uz/qnQdsvYZU94PLjJO\nXXk0hHajjQnWDdtaLrgQ2fuNE6uHl4OjC9x6j3G6r/6NT1KJq7h4Cj69w1iN9aeNxhJnUavGf/wj\nmXlX2DK99019Ld5z6gKjP9zBqA5NeGNUlAUTCltW2cnrcsfqBkwmjcm9wzh2poANR8/e3JtpmnGH\nYOCb8Ndjxh2DJh0h8UOY0w0+vA12fACXZXGouAmntsP/jYSPehr7726bBlMPGn/upKiqPp8QGDfP\nmG2VMFEGBdey1HOX2ZGay7iOTW/uAy7QIcSXybHhLNidydqfciyUUAiDFFaVMKR9IMG+9XhvUzIW\nu8Pn6Ayth8C4r+Gvx40+Ds0B1j4D/24F8eOMOw3yxVtUhq7D8XUwtz/8ZwBkJcEdzxtDPfu8AB4B\nqhPahuCOMGIOpO+Ab/4sA4Jr0byd6TiaNEbHNLHI+z1+RwSRQV48s+QgZwuKLfKeQoAUVpXi6GBi\nUq8w9mfksT0l1/IXcG8AnR+BR7bA5B+NHWzZSUY/x6wWsPIvkLlbvoiLP6ooh0OL4cMeED8a8jKM\ngxNTD0KPvxpjQYRlRY6E3s/CgQTYOkt1GrtQXFbOoj2Z9G3bkABPy8xVc3Y0MXtMNIUlZp5efNBy\nH5qF3ZPCqpJG3tqEAE8X3tuYXLMXCmgNd75k7GO7azGE94Gkr43ejvc6wvf/Mk53CftmLoW9Xxp/\nJhY9YJzyG/aBMVOt88PG4QlRc3pOh/bjYNNMo19S1Ki1P+Vw8UoZ4ysxab0qIhp68vSAVmw8eva3\nw6CFuAkybqGSXJ0ceKhHc15ZfYQ9py7SIcSnZi9ocjCKqvA+xiDHw8sgaR5seAk2vAzNehoN762H\nGM20wj6UFhrzlLa/CwVZ0DgaxnwJrQYbf2ZE7dA0GPoO5J2CZZON3rXgTqpT2ayvE9Np6utG9zA/\ni7/3vV1D2XDkLC+vPEy3sAaE+snXU3Fz5I5VFUzo3JT6bk7M2VzDd61+z9XLONH1wLfweBLEPm18\nQV/6CLwZAUsfhZNbZcq7LSu6CFvegNmRRh+eb3O4awk8vBnaDJOiSgVHFxj7NXgFwrzxcDFNdSKb\nlHz2MjtPXmB8p5tvWr8ak0njzdHtcXLQmLYgCXO5fB0VN0cKqypwd3Hk/m7NWH/kLEey89WE8G1m\nFFaPJ8H930JkHBxZAV8MgbejjInaMuXddhTkwLrnjIJq0yvGXZEH1sH9qyD8DuPOiVDHvQFMXAgV\nZRA/FoovqU5kc+btTMfJwXJN61fT2LseM0e0Y196HnM2y9dPcXOksKqi+7qF4u7swAeq//JpGoR0\ng2HvGQuhR34GfhFGD9a7t8Knd8LuucZQUlH3XDgJK6cZe/x2vAct+hs7/CYkQNPOqtOJX/OLgDFf\nQW4yLLxPhv5aUHFZOYv3ZtK3bSP8PFxq9FpDowIZFh3I2xtOcCBTvm6K6pPCqoq83Zy4q2sIqw5k\ncfJ8oeo4Bmc3Y2nu3Utg2mGj+b2kwPjGPKsFLLgXjq+VL/h1wZnDsPgheLcD7Ps/iB4Pj+2GUZ8Z\nO/2EdWreCwbPNuaGffuknOC1kG8PZZN3pYyJFm5av5aXhkbi7+nCtIQkikplUbOoHimsquFPtzXH\nycHEh6rvWl2NV2Po/gRM3mH033S4z+i/ih8D/24Na/8BOYcUhxR/kLHL6NOZ09XYMdnlUXjiAAx5\nGxqEqU5XZ+SX5nO+6Lyai996j/F3b/dc+HGOmgw2Jj4xnWZ+7nQNq50p995uTswaHUXKuUL+ueZo\nrVxT2B45FVgN/p4ujO0YzLyd6TzRJ4LA+vVUR/ojTYPAW4x/+s6E5O8gKR4SPzIeLTVsZ9wNaTda\nhkeqouuQutl4fJv2PbjWh9hnoNPD4CbLYavKXGHmoXUPUVBawMoRKzFpCj433jHD6HFc+3ejH7Ll\ngNrPYCOOnylgV9pF/j6wFVot9hJ2D/fjge7NmLvtJLe3CqBnC/9au7awDXLHqpoe7tkcXYePt6aq\njnJjjs7QapAx5X36cRg4CxycjC/+/2plNN3+tBTKZPpwraioMA4cfNIbvhoO508Yxe+0Q8bBBCmq\nquXrI19zOPcwGQUZ/Jj9o5oQJhPEfQyNo2DRg5B9QE0OGxCfmI6zg4lRHYJr/dpP9W9JRIAHTy7a\nT96V0lq/vqjbpLCqpiY+bgy/JYj5u9I5f7kOrZ1x84VOD8HDm2ByorGUN/uA0XT7rxZGX1bGLukR\nqQnlZcYssg+6QMJdxgiFwW/B1APGfwcXT9UJ66zMgkzeT3qf24Juw9vFmyUnlqgL4+wO4+dDvfow\nb5yxW1BUSXFZOUv2ZtI/shG+7s61fn1XJwdmj43mQmEp/1h2SKayiyqpVGGlaVp/TdOOaZqWrGna\n01f5+aaapm3SNG2fpmkHNE0baPmo1ufR2DBKzBXM/eGk6ijVE9AK7nzRuFNy91KI6Gd84/+sD7wX\nA1vfNFakiJtTVgQ7P4F3boVlk8DkaJzifGwPxNxvzEMS1abrOi//+DIaGi90fYEhzYewIX0DF4sv\nqgvl1dg4wVmUZxRXpVZy0KWOWHkgm/xiMxM6q1saHhnkzdQ+LVh1IJvlSVnKcoi654aFlaZpDsD7\nwACgDTBe07Q2v3vZs8ACXddvAcYBH1g6qDUK8/dgYGRjvtpxiktFZarjVJ/JAcJuh5GfGI8Kh74H\nHo2MmVhvtTNmZCXFQ8ll1UnrluJ8+GG28f/h6ung2QjGJ8Cj24xTnA7S4mgJK1NXsj1rO0/c+gSN\n3BsRFxGHucLMipQVaoM1agej5kLOAVjysAzwrYL4xFM093enczO1j8Un9QqjQ4gPzy0/xOm8IqVZ\nRN1RmTtWnYBkXddTdV0vBeYDw373Gh3w+vnfvQG7Ke8fjQ2joMTMVzvSVEexDFcvuPVuYwDlE/uN\nZuq8DFj2qDG6YekkSN0i3ySup/C8sXZodiSsn2F8g71vFTy4Dlr2l6GeFnSx+CJv7nqT9v7tGdty\nLAARPhG092/P4hOL1T/Cadkf+r4CR1fChhlqs9QRR3Py2Zuex4ROTWu1af1qHEwas8dEU1GhM33B\nfioq5JGguLHKFFZBwK+fB2X+/GO/NgO4S9O0TGA18OervZGmaQ9rmrZb07Td586dq0Zc6xMZ5E1s\nS3/mbkvjSqmNzYnyCYXYvxmLfR9Ya9xlOboKvhxq3IXZ8BKcr+X1PtbsUiZ8+zejoPr+X8Zso4c3\nG49ZQ2+TgqoGzNo9i4LSAmZ0nYHDr9b6jIwYSeqlVPaf268w3c+6PAoxD8K2t409j+K65iWm4+xo\nYuStNTdpvSqaNnDj+SFt2JGay9xtdbTtQ9SqyhRWV/tu8PuyfTzwua7rTYCBwFea9sezzrquf6zr\neoyu6zH+/rZzhPWx3uFcKCxlvq1uR9c0aNrFWDr7y5T3gNbGY673OsCnfWDXZ0Yztj06fwKWTTFW\nCu361FgzNGUnjP3KGHchasT2rO18k/IN90feT4RPxG9+rn9of9wc3Vh8YrGidL+iaTDgDeNx+6q/\nGHd8xVUVlZazZN9pBkY2wkdB0/q1jIkJpk/rhryx9hjHcgpUxxFWrjKFVSbw6/OuTfjjo74HgQUA\nuq7vAFwBy68ht1Ixob50aubLx1tTKTHb+LRep3rGnau7FsFfjsCdLxuNuav+8vOU93vg2BrjBJyt\ny0oyfr/vdYRDi4y7Eo8nwfAPwL+F6nQ2rchcxMs7XibUK5RHoh75w8+7ObkxoNkA1qat5XKpFfQG\nOjjC6M+hQTgsuBvOHVedyCqtOJBFQbGZCZ1DVEf5DU3TeH1kO7xcHZmakGT7X+fFTalMYbULiNA0\nrZmmac4Yzenf/O416cAdAJqmtcYorGzjWV8lPdY7nJz8YpbuPa06Su3xbATdH4dHt8MjW43CIm0b\nzBtrTHlf84ztzfHRdeP3+FUcfNwLUjZBj7/A1EMw8A2oX/szd+zRnKQ5ZF7O5Pmuz+PicPVTlSMj\nRlJkLmL1ydW1nO4aXL1hwgJwcDY2IRTmqk5kdeIT0wkP8KBjqI/qKH/g5+HC63HtOZKdz1vrT6iO\nI6zYDQsrXdfNwGPAWuAIxum/nzRNe0nTtKE/v+yvwEOapu0H5gH36cq7RmtXjwg/2gV5M2dLCuZy\nO2vs1jRjIOKA1+GvR2HcPOPR4c5P4KMeMKc7bH8PCs6oTlp9um7sW5zbDz4fCNn74Y4XjFEVdzwP\nHrbzaNvaHck9wpeHv2RkxEg6Nup4zddF+kUS4ROhdqbV7/mEwLh4yM+ChIlgrkMz8GrY4ax8kjKs\no2n9Wvq0acj4TsF8uCWFXWkXVMcRVkpTVf/ExMTou3fvVnLtmrLmUDaT/m8vb4+LZlj07/v77dCV\nC3BoMeyfB6f3gOYA4XdA1HhoORCcXFUnvLGKcmMq/Q+z4cwh8A6Gbo/DLXcZy69FrTJXmJm4eiJn\nCs+wfPhyvF28r/v6r498zes7X2fhkIW08m1VSykr4dBiWPQAtB8LIz6Sgw3As8sOsnB3Jjv/3gdv\nNyfVca6psMTMgLe/p0LX+faJHni6Wm9WYVmapu3RdT3mRq+TyesW1LdNI8IDPPhgU4ocy4X/TXl/\naCNM2WUsqD3zEyy63+jHWvEEpCda55R3cwns+Rze7QCLH4TyUhg+xzgh2flhKaoU+WVtzdOdn75h\nUQUwuPlgnE3O1nXXCiByJPT+BxxIgK2zVKdRrrDEzLJ9WQxq39iqiyoAdxdHZo+NIiuviJdXHlYd\nR1ghKawsyGTSmBwbxrEzBWw4elZ1HOvi3wL6vABTD8Ldy4z5PgcWwNy+RvGy5U3IS1ed0hiCuv09\n44TfiieMvpgxXxnrf6InGDsWhRK/rK3p1aQX/UL6VerXeLt40yekDytTV1JstrJdmD2fNO5YbZpp\n3MGyYyv2Z3G5xMxEhZPWq6JDiC+TY8NZsDuTtT/lqI4jrIwUVhY2NCqQJj71eG9TsvrhhNbI5ABh\nvY1FtdOPw7APwCvQ+ObyVjv4fDDs+xpKavlI85ULsPl1eCsS1v3DOL1191JjDlWbocZyXaGMruvM\nTJyJhsazXZ6tUg/OyIiRFJQW8N2p72owYTVoGgx9F5p2haWPQsZO1YmUid+ZTsuGntza1Pqa1q/l\n8TsiiAzy4pklBzlbYGVFu1BKvltYmKODiUm9wtifkcf2FDn1c10unnDLRLhvJTxxAHo/C/mnYflk\n41HhkoeNU3cVNXi0uSAH1j1rFHWbX4PgLvDgd0amsNul98VKrD65mm2nt/H4rY/TyL1RlX5tTKMY\ngj2Dre9xIBh7Isd+bXy4mDceLp5SnajWHTp9iQOZlxjfKdhqm9avxtnRxOwx0RSWmHl68UH5IC3+\nSwqrGjCqQxMCPF14f5NMJa80nxDo9ST8eS88sA7ajzHmYX013Ch61r9oDOK0lAsnYcVU4713vA8t\nBxhjIybMh+BOlruOuGl5xXm8sesN2vu1Z1zLcVX+9SbNRFxEHLvP7CbtUprlA94s9wbGGIaKMogf\nC8WXVCeqVV8npuPqZGKElUxar4qIhp48PaAVG4+eZZ6tDogWVSaFVQ1wdXLgoR7N2Z6Sy950O51G\nXl2aBk07w5C3jUeFo/4DDdsa60Dei4FPbjfGOFyp5lHnMz/B4j/Bu7dC0tcQPRH+vAdGfmpcR1id\nN3e/SX5JPi90e+E3a2uqYljYMBw0B5YmL7VwOgvxb2H08uWegIX3QbmNrce6hsslZr5JOs3g9oF4\n16ub/Yv3dg3ltnA/Xl55mLTzharjCCsghVUNmdC5KfXdnPhA7lpVn5OrsR5m4kJjynvfV4zTequn\nw79aQsLdcHR15aa8Z+yC+HEwp5vxa7pOMR4/DnkLfJvX/O9FVMuP2T/+d21NC5/qT7P3d/OnZ5Oe\nLE9eTlmFlW4FaN4LBv0bUjbCt09Z52lZC/smKYvC0nIm1JGm9asxmTTeHN0eJweNaQuS7G+OofgD\nKaxqiLuLI/d3a8b6I2c5kp2vOk7d59kQuj0Gj26DR76Hjn+CU9th/nj4Vyv49mljaOevvxnpuvFN\n6vPB8FkfyPgRYp8xhnr2nQlejdX9fsQNFZuLeWnHS4R4hVx1bU1VjYwYSW5xLlsztlogXQ3pcK8x\nJ233Z5D4oeo0NS5+5ylaNfLkluD6qqPclMbe9XhlRDv2pecxZ3OK6jhCMSmsatC93UJwd3bgA/mL\nZlmN20P/14wp7+MTILS78Y3oo57GHalt7xjH1z/pDV+NgNxk427X1EMQ+7QxX0tYvTn755BRkMHz\nXa69tqYqugd1J6BegHUsZr6ePi9Cq8HGSqhja1SnqTEHMvM4dDqfiZ2td9J6VQyJCmRYdCBvbzjB\ngcw81XGEQlJY1aD6bs7c1TWEVQeyOCnP3i3PwcmYhzXmS/jrMRj0L3B2h++eM6ZaF+UZvVpP7Dfu\ndrl4qE4sKunohaN88dMXjAgfQafGljlM4GhyZFj4MLZlbSOn0IpnD5lMxjiSxlHGn+Ocg6oT1Yj4\nxHTqOTkw7Bbb2VLx0tBI/D1RZ8UnAAAgAElEQVRdmJaQRFGpLGq2V1JY1bAHb2uGo4OJj7bIXasa\n5eZrPB7803p4bDfctcT43w73GUfaRZ1RXlHOjO0z8Hbx5q8xf7Xoe8dFxFGhV7AseZlF39finN1h\n/HyoV984KZifrTqRRRUUl/HN/iyGRgXiZUMrYbzdnJg1OoqUc4X8c81R1XGEIlJY1bAAT1fGxgSz\neG8mWXlFquPYB78IYyehg6PqJKIa4o/G81PuTzzT6ZlKra2piiaeTejSuAtLTyylQrfyJmOvxkZx\nVZQH88ZBqe3c9V6WlMWVOt60fi3dw/14oHszPt+extbj51THEQpIYVULHunVHF2HT75PVR1FCKuW\ndTmLd/e9S4+gHvQLrdzamqoaGTGSrMIsfsz6sUbe36Iat4dRnxkHM5Y8DBVWXgxWgq7rxCem0zbQ\ni/ZNLFs4W4un+rckIsCDJxftJ+9Kqeo4opZJYVULmvi4MSw6iHk70zl/uUR1HCGskq7rvPzjywA8\n1+W5Gmtovr3p7Xi7eFt/E/svWg6Afq/C0ZWwYYbqNDctKSOPI9n5TLCRpvWrcXVyYPbYaC4UlvKP\npYdkKrudkcKqljwaG0aJuYL/bDupOooQVmlN2hp+OP0Dj9/yOI09am4UhrODM0OaD2FjxkYuFFdz\n0Gxt6/IoxDxgDMrd+6XqNDclPjEdN2cHhkYFqo5SoyKDvJnapwWrDmazPClLdRxRi6SwqiXhAR4M\niGzEl9tPkV9spQMKhVDkUsklXt/5OpENIhnfanyNX29kxEjMFWZWpKyo8WtZhKbBgDeM/ZUrp0Hq\nFtWJquVSURkrDmQxLDoQTxtqWr+WSb3C6BDiw3PLD3FaemzthhRWtWhybDgFJWa+2mF/i1aFuJ5Z\nu2dxqeQSM7rNqPbamqoI9wknyj+KxScW153HNA5OMPpzaBAOC+6Gc8dVJ6qy5UmnKS6rYEKnENVR\naoWDSWP2mGgqKnSmL9hPRUUd+bMmbooUVrUoMsib2Jb+fPbDSZlxIsTPErMTWZa8jPva3kdL35a1\ndt2RESM5eekkSeeSau2aN83VGyYkgMkJ4sdAYa7qRJX2S9N6uyBv2tlo0/rVNG3gxvND2rAjNZe5\n0gpiF6SwqmVTeodzobCUeTvTVUcRQrlf1tY09WzKpKhJtXrtfqH9cHN0Y/HxOtLE/gufUBg/D/Kz\nIGGisT+zDtibnsfRnAKbHLFwI2NigrmzTUPeWHuMYzkFquOIGiaFVS3rGOpLp2a+fLw1lVJz3T86\nLcTN+OjAR6QXpPN81+dxdXSt1Wu7ObkxsPlA1p1aR0FpHftmF9wJhn8A6Tvgm8frxMLm+MR0PFwc\nbb5p/Wo0TeO1uHZ4uToyNSGJErM8sbBlUlgpMKV3ODn5xSzZm6k6ihDKHLtwjM8Pfc6wsGF0btxZ\nSYaRESMpMhfx7clvlVz/prQbBb3/AQfmw9ZZqtNc16UrZaz8uWnd3cU+B/f6ebjwelx7jmTn89b6\nE6rjiBokhZUCPSP8aBfkzZwtKZjL5a6VsD+/rK3xcvFiesx0ZTnaNmhLC58WdWem1e/1fBLaj4VN\nM43F41Zqyb5MSswVdvkY8Nf6tGnI+E7BfLglhV1pdWTUh6gyKawU0DSNKb3DOJV7hdWHrHgZrBA1\nZP6x+RzKPcTfOv6N+q71leXQNI24iDgO5x7mSO4RZTmqTdNg6LvQtCssfRQydqpO9Ae/NK1HBden\nbaD9NK1fy7OD2hDs48a0hCQKZPSOTZLCSpG+bRoRHuDBB5uS5QiusCvZl7N5e+/b3BZ0GwOaDVAd\nh8HNB+NscmbJiSWqo1SPowuM/drYLThvPFy0rnEuu09d5MTZy0zsZN93q37h7uLI7LFRZOUV8dKK\nw6rjiBoghZUiJpPG5NgwjuYUsPHoWdVxhKgVuq4zM3EmAM92edYqVpp4u3hzZ+idrEpdRbG5WHWc\n6nFvABMWQkUZxI+F4kuqE/1XfGI6ni6ODI6quWn6dU2HEF8mx4azcE8ma+Sphc2RwkqhIVGBNPGp\nx3ubkuvOkEIhbsLatLVszdzKY9GPEeQRpDrOf42MGElBWQHfnfpOdZTq828BY76E3BOw8D4oN6tO\nxMXCUlYdzGb4LUG4Odtn0/q1PH5HBJFBXvx96UHOFtTRgl5clRRWCjk5mJjUK4ykjDx2pNSdQX9C\nVMelkku8tvM12jZoy8TWE1XH+Y2YhjE09Wxad5vYf9E8Fgb9G1I2wrdPKR/DsHhvJqXStH5Vzo4m\nZo+JprDEzNOLD8qHaxsihZViozo0wd/Thfc3J6uOIkSN+veef9fq2pqq0DSNEREj2HNmD2mX0lTH\nuTkd7oVuj8PuzyDxQ2UxdF1n3s50bmlan9aNvZTlsGYRDT15ekArNh49y7ydGarjCAuRwkoxVycH\nHurRjG3JuexLv6g6jhA1YlfOLpacWMI9be+hlW8r1XGuanj4cBw0B5Yk19Em9l/r8yK0GgxrnoFj\na5RE2HnyAinnCpkgTevXdW/XUG4L9+PllYdJO1+oOo6wACmsrMDEziF413Pi/U0pqqMIYXHF5mJe\n3PEiTTya8GjUo6rjXJNfPT96NenF8uTllJXX8WPwJhPEfQyN28OiByDnYK1HiN+ZjqerI4Pb29+k\n9aowmTRmjY7C2dHEtAVJMtvQBkhhZQXcXRy5v3so64+c4WhOvuo4QljUxwc+5lT+KZ7v+jz1HOup\njnNdI1uM5ELxBbZkblEd5eY5u8P4BGNxc/xYKKi902cXCkv59mAOI29tQj1n63rsa40aebsyc3gk\n+9LzmLNZPmDXdVJYWYn7uoXi7uzAB3LXStiQ4xeP859D/2Fo2FC6BnZVHeeGugV2I8AtoO43sf/C\nqzFMSICiPKO4Kq2dR02L92RSWi5N61UxJCqQYdGBvL3hBAcy81THETdBCisrUd/Nmbu6hLDyQJY8\nZxc2obyinBe3v4ins6fStTVV4WhyZHj4cLad3kZOoY3MF2rcHkZ9Btn7YekjUFGzj5p+aVqPCfGh\nRUPPGr2WrXlpaCT+ni5MS0iiqFQWNddVUlhZkQdva4ajg4kPt8hdK1H3zT82nwPnD/BUp6fwcfVR\nHafS4iLiAFiavFRxEgtqOQD6vQJHVsCGF2v0UjtSc0k9Xyh3q6rB282JWaOjSDlXyD/XHFUdR1ST\nFFZWJMDLlbExwSzem0n2pSLVcYSotpzCHN7Z+w7dA7szqNkg1XGqJMgjiC6Nu7D0xFLKK2zorkGX\nyRDzAGx7C/Z+WWOXiU9Mx7ueEwPbyaT16uge7scD3Zvx+fY0th4/pzqOqAYprKzMwz2bU6HDx1tT\nVUcRolp0XWfmjzPR0a1mbU1VxbWII7swmx+zf1QdxXI0DQa8Ac17w8ppkGr5Bv3zl0tY+1MOcbcG\n4eokTevV9VT/lkQEePDkov3kXSlVHUdUkRRWVibY143h0UHM25lO7uUS1XGEqLJ1p9axJXMLU6Kn\n0MSzieo41XJ78O3Ud6lvO03sv3BwgtGfQ4NwWHA3nD9h0bdftCeTsnKdifIY8Ka4Ojkwe2w0FwpL\n+cfSQzKVvY6RwsoKPRobRom5gv9sS1MdRYgquVRyidcSX6NNgzZWt7amKpwdnBkaNpRNGZvILbKx\ndVP16hsnBU1O8PVoKLTM76+iwmha7xTqS3iANK3frMggb6b2acGqg9ksT8pSHUdUgRRWVig8wIMB\nkY34Ykca+cV1fFChsCuz98wmrySPGV1n4Giq20t34yLiMFeYWZGyQnUUy/MJhfHzID8LEu4C883f\nHd+Rmsup3CvStG5Bk3qF0SHEh+eWH+J0nvTd1hVSWFmpybHhFBSb+WrHKdVRhKiUXTm7WHxiMfe0\nuYfWDVqrjnPTwuqHEe0fzeITi23zUUxwJxj+AaRvh28ev+mFzfGJ6fi4OdE/spGFAgoHk8bsMdFU\nVOhMX7Cfigob/HNog6SwslKRQd70auHP3B9OyjwTYfVKykt4acdLBHkE8Wi09a6tqaq4iDjS8tPY\nd3af6ig1o90oiP07HJgPW2dV+23OFRhN6yNvbSJN6xbWtIEbLwxpy47UXOZuO6k6jqgEKays2GO3\nh5NbWMr8XemqowhxXR8f+Ji0/LQ6sbamKvqF9sPdyd32mth/rddT0H4sbJoJh6r3+1y4JwNzhc54\neQxYI0bHNOHONg15Y+0xjuUUqI4jbkAKKyvWMdSXTqG+fLw1lVKzLOYU1unExRPMPTiXIc2H0C2w\nm+o4FuXm5MbAZgNZl7aOglIb/YamaTD0XQjuAksfhYxdVfrlFRU683dm0KW5L2H+HjUU0r5pmsZr\nce3wcnVkakISJWZ5imHNpLCyclNuDyf7UjFL92WqjiLEH1ToFczYMQMPZw+e7Pik6jg1YmTESIrL\ni1mdulp1lJrj6ALjvjZ2C84fDxcr39v5Q/J50i9cYULnkBoMKPw8XHg9rj1HsvN5a71lx2QIy5LC\nysr1jPAjMsiLOZtTKJfGRWFlEo4lcODcAZ7qWLfW1lRFmwZtaOnT0rYfBwK4+8GEhWAuNRY2F1+q\n1C+LT0zH192Zfm0b1nBA0adNQ8Z3CubDLSnsSrugOo64BimsrJymaUyJDSct9wqrDmarjiPEf+UU\n5vD23rfp2rgrg5sPVh2nxmiaRlxEHEcuHOFw7mHVcWqWfwsY+yXknoCF90O5+bovP5tfzHdHzjC6\nQxNcHKVpvTY8O6gNwT5uTEtIokDG8VglKazqgH5tGxHm784Hm5Jt89i3qHN0XeeVxFcoryjnua7P\n1cm1NVUxqPkgXBxcWHJiieooNa95LAz6F6RsgG+fuu4YhgW7Myiv0BnXSZrWa4u7iyOzx0aRlVfE\nSytsvNCvo6SwqgNMJo3JseEczSlgw5GzquMIwfr09WzO2MyU6CkEewarjlPjvF28uTPkTlanrqbI\nbAeDGjvcB93+DLs/g8QPr/qS8gqdeTsz6BbWgGZ+7rWbz851CPFlcmw4C/dksuZQjuo44neksKoj\nhkYH0sSnHu/JXSuhWH5pPq8mvkpr39bc1eYu1XFqTVxEHAVlBXx36jvVUWpHnxeh1WBY+3c4tuYP\nP731xDlO5xXJpHVFHr8jgsggL/6+9CBnC4pVxxG/IoVVHeHkYOKRXmEkZeSxI9XGdpeJOmX2ntlc\nKL7AC91eqPNra6oipmEMTT2bsvi4jTex/8LkAHEfQ6N2sOgByDn4m5+el5iOn4czfdvIpHUVnB1N\nzB4TTWGJmacXH5QP3FZECqs6ZHSHJvh7uvD+pmTVUYSd2p2zm0XHF3F367tp26Ct6ji16pcm9r1n\n93Lykp1MwHZ2h/HzwdXbOClYYDx2OpNfzIajZxnVIRhnR/k2okpEQ0+eHtCKjUfPMm9nhuo44mfy\nN6IOcXVy4KEezdiWnMu+9Iuq4wg7U1peyos7XiTII4jJ0ZNVx1FiWPgwHDVHlp5YqjpK7fEKhAnz\noSjPKK5KC0nYZTStj+9k+/111u7erqHcFu7HyysPk3a+UHUcgRRWdc6EziF413Pi/U0pqqMIO/PJ\nwU9Iy0/juS7P4ebkpjqOEn71/OgV3IvlKcspK7ejo+6No2DUZ5C9H33JIyQkptEjwo+QBtK0rprJ\npDFrdBTOjiamLUjCXC5bOlSTwqqO8XBx5P7uoaw/coajOfmq4wg7kXwxmU8Pfsqg5oPoHtRddRyl\n4iLiuFB8gc2Zm1VHqV0tB0C/V9COruCuK18wQUYsWI1G3q7MHB7JvvQ85myWD92qSWFVB93XLRR3\nZwf5CyRqRYVewYs7XsTDyYOnOj6lOo5y3QO7E+AWYPuT2K+my2Q2ew7mUccV3FmyTnUa8StDogIZ\nFh3I2xtOcCAzT3UcuyaFVR1U382Zu7qEsGJ/ljxTFzVu4bGFJJ1L4smOT+Lr6qs6jnIOJgdGhI9g\n++ntZF+2r20IWZeKefj8GNK8O+G4+i9wcqvqSOJXXhoaib+nC9MSkigqlUXNqkhhVUc9eFszHB1M\nfLRV7lqJmnOm8Ayz986mS+MuDGk+RHUcqzEiYgQAy5KXKU5SuxJ2ZVCGI47jvgTfMEi4C87LQmBr\n4e3mxKzRUaScK+Sfa46qjmO3pLCqowK8XBkT04RFezLJvmQHk6CFEq8mvkp5RTnPd3ne5tfWVEWQ\nRxBdA7uyJHkJ5RX2cWfAXF5Bwq4MekT406RxY5i4AExO8PVoKJTZetaie7gfD3Rvxufb09h6/Jzq\nOHZJCqs67JGeYVTo8MlWO5mpI2rV+lPr2ZixkUejHyXYS47V/15cRBw5hTnsyN6hOkqt2HTsHDn5\nxf9rWvcJhXHxkJ9l3LkylyjNJ/7nqf4tiQjwYPrC/VwsLFUdx+5IYVWHBfu6MSw6kHk708m9LF/U\nhOUUlBbwauKrtPJtxT1t7lEdxyr1Du6Nj4uPfSxmBuITTxHg6cIdrQP+94NNO8PwDyB9O3zz+HUX\nNova4+rkwOyx0Vy8Usqzyw7JVPZaJoVVHTc5Noxiczn/2ZamOoqwIW/teYvc4lxmdJ1hV2trqsLZ\nwZmhYUPZlL6J3CLbfhR2Oq+IzcfPMbZjME4Ov/u20W4UxP4dDsyH72epCSj+IDLIm6l9WrDqYDbL\nk7JUx7ErUljVceEBnvRv24gvdqSRX2xHAwtFjdl7Zi8Lji9gYuuJtPWzr7U1VRUXEYdZN/NNyjeq\no9SohJ3pAIzteI1Hwr2egnZjYONMOGQfd/Dqgkm9wugQ4sNzyw9xOk96cWuLFFY2YHJsOAXFZr7a\ncUp1FFHHlZaXMmPHDALdA3ks+jHVcaxe8/rNuSXgFpacWGKzj1vM5RUk7M4gtoU/TXyuMXFf02Do\nuxDcBZZOgoxdtRtSXJWDSWP2mGgqKnSmL9hPRYVt/hm1NlJY2YB2Tbzp1cKfuT+clNkl4qZ8evBT\nTl46ybNdnrXbtTVVFRcRR1p+GnvP7lUdpUZsOHqWM/klTOgccv0XOrnCuK/BqzHMHw8X5YOeNWja\nwI0XhrRlR2ouc7fJQafaIIWVjZjSO5zcwlISdqWrjiLqqNS8VD45+AkDmg2gR5MequPUGX1D+uLh\n5GGzTezxiek08nKld0v/G7/Y3Q8mLABzqbGwufhSzQcUNzQ6pgl3tmnIG2uPcSynQHUcmyeFlY3o\n1MyXTqG+fLQ1lVKzLOEUVVOhVzBjxwzcndz5W8e/qY5Tp7g5uTGw2UDWpa0jv9S29ndmXLjC1hNG\n07rj75vWr8W/JYz9EnJPwML7odxcsyHFDWmaxmtx7fBydWRqQhIlZnmyUZOksLIhk3uHkX2pmGX7\nTquOIuqYRccXse/sPqbHTKdBvQaq49Q5cS3iKC4vZnXqatVRLGr+rnQ0YFynKs4xax4Lg/4FKRtg\nzd9kDIMV8PNw4fW49hzJzuet9TItvyZJYWVDerXwJzLIizlbUiiXJkVRSWcKzzB7z2w6N+rMsLBh\nquPUSW1829DKt5VNPQ4sK69gwe5Mbm8VQGPvelV/gw73Qbc/w65PIfEji+cTVdenTUPGdwrmwy0p\n7Eq7oDqOzZLCyoZomsaU2HBOni9k9UH7Wg4rqu/1na9TVlHG811lbU11aZpGXEQcRy4c4XDuYdVx\nLGL94TOcKyhh/C+T1qujz4vQchCsfQaOr7VcOFFtzw5qQ7CPG9MSkiiQET01QgorG9OvbSPC/N15\nf1OyzR7/FpazIX0D69PXMylqEk29buIbqGBQ80G4OLjYzF2r+J3pBHq7Etsy4MYvvhaTA4z8BBpG\nwqIHIOeg5QKKanF3cWT22Ciy8op4aYVtfAiwNlJY2RiTSWNybDhHcwrYePSs6jjCihWUFvDqj6/S\n0qcl97a9V3WcOs/L2Yu+IX1ZlbqKInPdHsZ4KreQ70+cZ2zHpjiYbvIuprM7TEgAF0/jpGBBjmVC\nimrrEOLL5NhwFu7JZM0h+e9haVJY2aCh0YE08anHe3LXSlzH23vf5lzROWZ0m4GTyUl1HJsQFxHH\n5bLLrEtbpzrKTZm/KwMHk3btSetV5RVoFFdFF2HeOCi9Ypn3FdX2+B0RRAZ58felBzlbUKw6jk2R\nwsoGOTmYeKRXGPvS89iRats7zET17Du7j4RjCUxsPZFIv0jVcWxGh4YdCPEKqdOPA0vNFSzcncHt\nrQJo5O1quTduHAUjP4OsJFj6MFTIWBiVnB1NzB4TTWGJmacXH5QP4RYkhZWNGt2hCX4eLnywKUV1\nFGFlSstLeXH7izR2b8yfb/mz6jg25Zcm9r1n95J6KVV1nGr57vAZzl8uZULnGui5azUQ+s6EIytg\nw4uWf39RJRENPXl6QCs2Hj3LvJ0ZquPYDCmsbJSrkwMP9WjGD8nnScrIUx1HWJHPDn1GyqUUWVtT\nQ4aGDcVRc2TpiaWqo1RL/M5TBNWvR8+ISkxar46uU6DD/bDtLdj7Vc1cQ1TavV1D6RHhx8srD5N2\nvlB1HJsghZUNm9glBO96Try/KVl1FGElUvNS+eTAJwwIHUDPJj1Vx7FJfvX8iA2O5ZuUbygrr1vH\n2dPOF7ItOZfxnYJvvmn9WjQNBr4JzXvDyqlwcmvNXEdUismk8eaoKJwdTUxbkIS5XB7R3iwprGyY\nh4sj93UL5bvDZ2Q/lKBCr+DFHS9Sz7EeT3V6SnUcmxYXEceF4gtsytikOkqVzNuZjqNJY0yMhZrW\nr8XBCUZ/Dr5hkHAXnJdJ4Co18nZl5vBI9qXnMWeztI/crEoVVpqm9dc07Zimacmapj19jdeM0TTt\nsKZpP2maFm/ZmKK67u8eipuzAx9slrtW9m7xicXsPbuX6THT8avnpzqOTesW2I2Gbg3rVBN7ibmc\nhXsy6dO6IQFeFmxav5Z69WHiAjA5wdejoVAO2qg0JCqQYdGBvL3hBAcypX3kZtywsNI0zQF4HxgA\ntAHGa5rW5neviQCeAbrrut4WmFoDWUU11Hdz5q4uIazYn8WpXHl+bq/OXTnH7N2z6dSoE8PDh6uO\nY/McTA6MiBjB9qztZF3OUh2nUtb+dIYLhTXUtH4tPqEwLh7ys4w7V+aS2ru2+IOXhkbi7+nCtIQk\nikplUXN1VeaOVScgWdf1VF3XS4H5wO8Xij0EvK/r+kUAXddlMqUV+dNtzXB0MPHhFrnFa69e2/ka\nJeUlsramFo0IHwHAsuRlipNUTnziKYJ963FbeC3fzWzaGYZ/AOnbYcUTsrBZIW83J2aNjiLlXCH/\nXHNUdZw6qzKFVRDw63OYmT//2K+1AFpomrZN07QfNU3rb6mA4uYFeLkyJqYJi/ZkknNJBsHZm43p\nG/nu1HdMippEiFeI6jh2I9AjkG6B3ViavJTyCuv+9J9y7jI/pl5gXMemmGqqaf162o2C2Gdg/zz4\nflbtX1/8V/dwPx7o3ozPt6ex9fg51XHqpMoUVlf7W/b7jxSOQAQQC4wHPtU0rf4f3kjTHtY0bbem\nabvPnZP/YLXpkZ5hVOjwyfd1c7aOqJ7LpZd5JfEVInwiuC/yPtVx7E5cRBw5hTlsz9quOsp1zUs0\nmtZHxzRRF6LX36DdaNg4Ew7Vnd40W/RU/5ZEBHgwfeF+LhaWqo5T51SmsMoEfn1EpAnw+6aBTGC5\nrutluq6fBI5hFFq/oev6x7qux+i6HuPvX0MzUsRVBfu6MSw6kPjEdC7IXxS78fbetzl35Rwzusra\nGhV6B/fG19XXqpvYi8vKWbw3k75tGxLgWQtN69eiaTD0PQjuDEsnQcYudVnsnKuTA7PHRnPxSinP\nLjskU9mrqDKF1S4gQtO0ZpqmOQPjgG9+95plQG8ATdP8MB4Nyq0RKzM5Noxiczn/2XZSdRRRC5LO\nJpFwLIEJrSfQ3r+96jh2ycnBiaFhQ9mcsZnzRedVx7mqtT/lcPFKGRM6WcFjYidXo5ndsxHMHw8X\nT6lOZLcig7yZ2qcFqw5mszypbhzAsBY3LKx0XTcDjwFrgSPAAl3Xf9I07SVN04b+/LK1QK6maYeB\nTcCTuq7L2VkrEx7gSb82jfh8exr5xXVrcKGomrLyMl7c8SIN3RvK2hrFRkSMwKyb+Sbl959HrcPX\niemENHCjW1gD1VEM7n4wcSGYSyF+LBRfUp3Ibk3qFUZMiA/PLT/E6bwi1XHqjErNsdJ1fbWu6y10\nXQ/Tdf2Vn3/seV3Xv/n533Vd1/+i63obXdfb6bo+vyZDi+qb0jucgmIz//ejfBK0ZXMPzSU5L5ln\nOz+Lu5O76jh2rbl3c24NuJUlJ5ZY3SOV5LMF7Dx5gfGdFDWtX4t/SxjzBZw/Dgvvh3Kz6kR2ycGk\n8e8x0VRU6ExfsJ+KCuv682utZPK6nWnXxJueLfz57PuTMqfERp28dJKPDnxEv9B+9ArupTqOwGhi\nP5V/ij1n9qiO8hvxiRk4OWiM6qCwaf1awnrD4H9DygZY8zcZw6BI0wZuvDCkLTtSc5krbSSVIoWV\nHXqsdzi5haUk7EpXHUVY2C9ra1wdXXm601WXJAgF7gy5Ew8nD6tqYv+lab1f20b4ebiojnN1He6D\nro/Brk8h8SPVaezW6Jgm3NmmIW+sPSbr0SpBCis71KmZLx1Dffh4ayqlZlm4aUuWnljKnjN7ZG2N\nlXFzcmNQ80GsO7WO/NJ81XEAWH0wm0tFZbU7ab067nwJWg6Ctc/A8bWq09glTdN4La4dXq6OTE1I\nosQsTzuuRworOzW5dzhZl4pZtu+06ijCQs4Xnedfe/5FTMOY/079FtYjLiKOkvISVqWuUh0FgPjE\ndJr5udO1uZU0rV+LyQFGfgINI2HRA5BzUHUiu+Tn4cLrce05kp3PW+tlafb1SGFlp2Jb+NM20Is5\nW1Iol4ZEm/Ba4muUmEt4oesLsrbGCrVp0IbWvq1ZfHyx8ib242cK2H3qIuM7BdeNPyvO7jAhAVw8\njZOCBTmqE9mlPm0aMr5TMB9uSWFX2gXVcayWFFZ2StM0pvQO5+T5Qr49lK06jrhJmzM2s+7UOh6J\neoRQ71DVccQ1xEXEcTKvK84AACAASURBVOziMQ5fOKw0R3xiOs4OJkZ1CL7xi62FV6BRXBVdhHnj\noPSK6kR26dlBbQj2cWNaQhIFMrbnqqSwsmP92zYizN+d9zelKP8ELaqvsKyQmT/OJLx+OPe3vV91\nHHEdA5sPxNXBlSXH1TWxF5UaTev9Ixvh6+6sLEe1NI6CkZ9BVhIsfRgqpEe0trm7ODJ7bBRZeUW8\ntELtBwRrJYWVHTOZNB6NDedIdj6bjp1VHUdU0zt73+HslbPM6DYDJwdZW2PNvJy96Bval1UnV3Gl\nTM0dl1UHsykoNlt/0/q1tBoIfWfCkRWw4UXVaexShxBfJseGs3BPJmsOyWPZ35PCys4Niw4kqH49\n3tuYLHet6qD95/Yz7+g8xrUaR5R/lOo4ohLiIuIoLCtk3al1Sq4fn3iKMH93OjfzVXJ9i+g6xRjF\nsO0t2PuV6jR26fE7IogM8uLvSw9ytqBYdRyrIoWVnXNyMDGpV3P2pufxY6o0I9YlZeVlzNg+gwC3\nAJ649QnVcUQl3RpwK6FeoUpmWh3NyWdveh7jOzWtG03r16JpMHAWNI+FlVPh5FbVieyOs6OJt8ZG\nU1hi5unFB+WD+a9IYSUYHROMn4cLH2xOVh1FVMF/fvqPsbami6ytqUs0TSMuIo59Z/eRmle7u+rj\nE9NxdjRZ56T1qnJwgtFfgG8YJNwN52UEQG0LD/DkmQGt2Hj0LPN2ZqiOYzWksBK4OjnwUI9mfH/i\nPPsz8lTHEZWQdimNj/Z/xJ0hdxIbHKs6jqiioWFDcdQca/Wu1ZVSM0v3nmZQu8bUd6tjTevXUq++\ncVLQ5ABfj4aLabJXsJbd0zWUHhF+vLzyMGnnC1XHsQqaqtt3MTEx+u7du5VcW/zR5RIz3V/fSOdm\nvnx8T4zqOOI6dF3nwXUPcjT3KP/P3n3HVVn2fwD/3Gew90b2OJCKgIrgCATR1HJCZmm/58mn4cCd\n7VKzZWrlxnraJaXmNkeBIrgYKm6RIR6m7L3OuH9/UD1GDtRzuM74vl8vXgln3J9K4HPu+3uua/eE\n3bA3sWcdiTyAhckLkVmWicRJiTAQqr/obM0oxKvbz2PbjEEY4KnF81W3I00DvhsLKNoAcICxNWBq\nD5jadXyY/PFPU3vAxPaW2+w77isQsv430Gplda0YuToF3vam2DZ9EERC3Txnw3HcaZ7n7/kLUtQd\nYYjmMzMU4bnBnliTlIPssgb4O5mzjkTuYGfuTmSUZWDJoCVUqrRYjCQGv9/4HUcKj2Ck50i1H29z\nuhQSBzOEeFir/Vjdzj0MeOH3joLVVAE0VwJNf3yUX+n4WkvNHR7M/VG2bi1gdyhhJnZ/FDHdLA4P\nysnSCO9PCMCcn84iPjkPc6IlrCMxRcWK/OW5wZ74b2o+4pNzsfrpvqzjkNuobKnEqsxV6O/YHzGS\nGNZxyEMY5DwIzqbO2JGzQ+3F6lJJHc4V1mLxmF7aPbR+N85BHR93opADzVV/lK6KjtLVXPW/PzdV\ndHx+82LH5613GIvgBB2F6x8lzK7TGbI/CpmRlV4UsbFBPZB45SbWJOVgqL89Al2tWEdihooV+Yu1\nqQGmhrnjq2PXsXCEP9xtTVhHIp18nP4xWuWtWDxoMQSc7v+w1mVCgRATfSci/lw8ihuL4WLmorZj\nJaRJYSgSILafDgytPyihCDB37PjoCoXsj+J1S+nqXMKaKoHS8x1lrbXu9s/DCW8582V79xL2ZxHT\n0vK7bFwA0q9XY8GWLOybEw5jA/28xErFivzNi+He+O7EDcQfzcNHMX1YxyG3SClKwcGCg4gLjoO3\npTfrOEQFJvhOQPy5eOzK3YW44Di1HKOpTY7dWSV4ItAZlia0gGyXCcWAuVPHR1fI2/9Xvm69FPnX\nGbI/bis52/H1tvrbP49A9L/i9bdLkZ1L2B+XKo0sNaaIWZqIsWpSEKZ+mYblB67g3fEBrCMxQcWK\n/I2DhREmhbhiW2YR5kVL4GRpxDoSQce2Ne+deg++Vr54PuB51nGIijibOWOwy2DszNmJGYEzIFTD\nEPWecyVobJNjqrautK4tRAaAhXPHR1fI224pXp1L2C2fF2d2lLL2hts/j0B87/mwW28ztFBrERvi\na4f/DPHC18evY1hPRwz10785UCpW5B9mDPXBzxmF+G9qPt4Z04t1HAJg3dl1uNl0EytHr6Rta3RM\nrCQWC5MX4njJcUS4Rqj8+X9Kl8Lf0Rz93HVwaF2biQwBS5eOj66Qtd65hN369er8jjNn7Y23fx6h\nwR3mw269THnLZUsDs/suYq+O8kdqTgVe2XYOh+ZHwFrb9qR8SFSsyD+42ZhgfFAPJKRJERflq30b\nteqYCxUXkHAlAU/5P4Vgh2DWcYiKRbpGwsbIBjtydqi8WF0srsP5ojq8O6637g6t6wuxEWDp2vHR\nFbKWf86Ddb5M2VQBVOV2nBGT3WENKqHh/4pW53mw231uYAojsRCfTQ7GxI3H8faui1g/pa9e/f2j\nYkVua2akD3acLcY3x6/j5cf8WcfRWzKlDEtOdiyrML/ffNZxiBqIhWKM9xmPHy7/gMqWStgZ26ns\nuTenSWEkFmBCX/UNxhMNJTYGrNw6Prqivfmf82C3fv7nnytzOv4pb7n984iMAVM7BJjYItHRFJlX\nBcjd7AuJp+ft1xYz0L1dI6hYkduSOJpjVG8nfHuiAC9FeMPciC4/sfDdpe+QU5ODNVFrYGZgxjoO\nUZOJkon45tI32J27G8/3Uc0MXWObHHuyijE2sAcsjen7l9yDgQlg4A5YdXEWr73pNiXs7++gdEcl\nTMTFMM89BeTKbv88YpOuz4eZ2ncURg1HxYrcUVyULw5eKsOPp6SYGenDOo7euVF/A/FZ8RjhMQLD\n3IexjkPUyMvSC/0c+mFHzg78J+A/KrlssjurGE3tCkyhoXWiDgamHR/Wnne8CwegpaoZkWuOIrSH\nIb6a5AVBy+2Wrfjj88abwM1LHX9WtN3+ScWmt7kUaQv4jQI8BqvlX/V+UbEid9TH1RIRfvb46lg+\npg3xhJFYP9ckYYHneSw7uQyGQkO8Hvo66zikG8T6xeKtY28h82YmBjgNeKjn4nkeCWlS9HS2QLCb\n/i7USNhztzXBkrEBeHX7eXx9mccL4V3YMo3ngbaGf86DNVf+/QxZQwlQdqHjczNHKlZEO8RF+mDy\nF6ewJaMQ/x7syTqO3tiVuwvpZel4Z+A7cDBxYB2HdIMRHiOwPG05duTseOhidb6oDpdK6vHehAC9\nGhommmlSiCt+v3ITKw5lI1xif+8t0zgOMLLo+LDpwpp9PA8oFaoJqwK0dDO5qzBvWwzwtMbnR/PQ\nLleyjqMX/ty2pp9DPzzp9yTrOKSbGIuM8bj34/j9xu+oa7vDKt5dlJAmhbFYiPHBPVSUjpAHx3Ec\nPorpAwsjEeZvyUKbXMUliOM6VtbXEFSsyD3NivJFSV0rdmUVs46iF1akr0CLvAVLBi2hbWv0TKwk\nFm2KNvya/+sDP0d9qwx7zpVgXFAPWNCbToiGsDMzxPKYQFwprcfqxBzWcdSKfmqTe4r0s0fvHhbY\nlJwHhZJnHUenpRSl4EDBAbzY50V4W9G2Nfqmp21P9LTpie0528HzD/a9tvtsMVpkNLRONM/wXo54\nJtQNm47mIf16Nes4akPFitwTx3GIi/JFfmUTDlwsZR1HZzXLmvH+qffhbemtsrfcE+0TK4nFtZpr\nuFx1+b4fy/M8NqdJ0buHBQJdLdWQjpCH8/YTveBmbYKFW7PQ0HqHJRi0HBUr0iUjezvB294UG47k\nPfAraXJ3686uQ2lTKZYOXgoDIa12r68e934cRkIjbM/Zft+PzSqsxdWyBkwJc6ehdaKRTA1F+Gxy\nEEpqW7Bs7/2/eNAGVKxIlwgFHGZF+uJKaT2OZJezjqNzLlZeRMLVBEz2n4y+Dn1ZxyEMmRuY4zHP\nx7D/+n40y5rv67EJaVKYGggxPphWWieaq7+HDWZF+mLb6SIcvFjGOo7KUbEiXTY+uAdcrIyx/nAu\nnbVSIZlShqUnlsLOyA7z+s1jHYdogFhJLJpkTThUcKjLj6lrkWHv+RKMC3aBmaHmvEOKkNuZGy1B\ngIsF3tx5AeUNrazjqBQVK9JlYqEA04d644y0Fmk6PHjY3b6/9D2ya7LxZtibMDe4x/ouRC/0degL\nTwtP7MjZ0eXH7DpbjFaZElNpaJ1oAQORAKsnB6OpTY7Xt1/QqRfrVKzIfXkqxA12ZobYcCSXdRSd\nIK2XIv5cPKLdoxHtEc06DtEQHMchVhKLrIos5NXm3fP+f660HuhqiQAXGlon2sHXwRxvjH4Eh6+W\n46f0QtZxVIaKFbkvRmIhXgj3QmpOJc4V1rKOo9V4nseyU8sgFojxRugbrOMQDTPWZyxEAlGXzlqd\nkdYg+2YDpoTS2SqiXf41yBPhEju8t+8yCiqbWMdRCSpW5L49O9ADFkYiOmv1kPbk7UFaaRrm95sP\nR1NH1nGIhrE1tkWUWxT25O1Bu6L9rvfdnCaFmaEIY4NopXWiXQQCDiufDIKBSIAFW7MgV2j/Dh9U\nrMh9MzMU4bkhXvjt8k1cu9nAOo5WqmqpwsrMlejr0BeT/CexjkM0VKwkFrVttThcePiO96lrluHX\n86UYH9wDpjS0TrSQk6UR3p8QgLPSWsQn3/vSt6ajYkUeyLTBnjAxEOrENwELKzJWoEnWRNvWkLsa\n6DwQzqbO2HHtzpcDt58pQptcSSutE602NqgHxgf3wJqkHJwv0u4xE/qJTh6ItakBpoa5Y8+5Ekir\n7m+tHX2XWpSK/df348U+L8LHyod1HKLBhAIhJkom4mTpSRQ1FP3jdp7nkZAuRZCbFXr3oKF1ot2W\njQuAvbkh5m/JQku7ijdq7kZUrMgDeyHcG0KOw6YUOmvVVX9uW+Nl6YUX+rzAOg7RAhN9J4IDh125\nu/5xW0ZBDXLLGzGVhtaJDrA0EWPVpCDkVzRh+YErrOM8MCpW5IE5WhhhUogrfsksQlmdbi3wpi4b\nsjagpKkESwfRtjWka5xMnTDEZQh25u6EXCn/220/pUthbijCmCBnRukIUa0hvnb4zxAvfHfyBo5e\nq2Ad54FQsSIPZcZQHyh4Hl+m5rOOovEuVV7Cj1d+xCS/Sejn2I91HKJFYiWxKG8ux4mSE399raap\nHb9eKMXEfi4wMaChdaI7Xh3lD4mDGV7Zdg41TXd/R6wmomJFHoqbjQnGB/XA5jSpVn4DdBeZUoal\nJ5fC1sgW8/vPZx2HaJmhrkNhY2SD7df+tzHz9jNFaKehdaKDjMRCfDY5GDXN7Xh710WtW5WdihV5\naDMjfdAiU+Cb49dZR9FYP1z+AVerr+KNsDdgYWDBOg7RMmKhGON9x+No0VFUtlT+NbTez90KjzjR\n3yeiewJcLLFghB9+vVCK3VklrOPcFypW5KFJHM0xsrcjvj1RgIZWGes4GqewvhDxWfGIcovCcPfh\nrOMQLRXjGwMFr8Cu3F1Iu16N/IomTAnzYB2LELWZHuGDEA9rvLP7IoprW1jH6TIqVkQl4qJ8Ud8q\nx4+npKyjaJQ/t60RCoR4K+wtcBzHOhLRUp6Wnujv2B87cnZg86kbsDASYUwgDa0T3SUUcPj0qWAo\nlTwWbT0HpVI7LglSsSIqEehqhXCJHb46lo9WmfauP6Jqe/P34lTpKdq2hqhErCQWhQ2F+C3/BGL6\nucJILGQdiRC1crc1wZKxvXEyvwpfa8m4CRUrojKzo3xR2diOLRm6s0v5w6hurcbKjJUIsg/CU/5P\nsY5DdMAIjxEwEJiAs0ijoXWiNyaFuGJEL0esOJSN7DLN30aNihVRmVAvG4R4WOPzo3lol2v/RpoP\na2XGSjTKGrF00FLatoaohKHQEIKm/jCwuAhHK/oeI/qB4zh8FNMHFkYizN+ShTa5Zl8VoZ/2RGU4\njkNclC9K6lqxO6uYdRymjhcfx778fXg+4Hn4WvuyjkN0xMm8KlSV9gXPybEvfx/rOIR0GzszQyyP\nCcSV0nqsTsxhHeeuqFgRlYr0t0cvZwvEJ+dBoSWDhqrWLGvGe6feg6eFJ14MfJF1HKJDNqdLYS7w\nQE+bXties13r1vch5GEM7+WIZ0LdsOloHtKvV7OOc0dUrIhK/XnWKr+yCQcvlrGOw8TGrI0obizG\nkkFLYCg0ZB2H6IjKxjb8dqkMsf1c8aRfLHJqcnCp6hLrWIR0q7ef6AU3axMs3Jqlscv7ULEiKjcq\nwAne9qZYfyRX715RX666jB+u/IBYSSxCnEJYxyE65JfTRZApeEwJc8PjXo/DWGSM7Tnb7/1AQnSI\nqaEIn00OQkltC5btvcw6zm1RsSIqJxRwmDnUB1dK65GcrZ2baD4IuVKOpSeWwsbIBgtDFrKOQ3SI\nUsnjp3QpQr1s4OtgDjMDMzzm8Rj25+9Hs6yZdTxCulV/DxvMivTFttNFGnllhIoVUYsJfV3gYmWs\nV2etfrz8I65UX8EbobRtDVGtE3lVuFHVjKm3LLEQ6xeLZnkzDhUcYpiMEDbmRksQ4GKBN3deQHlD\nK+s4f0PFiqiFWCjA9KHeOH2jBmkaPGSoKoUNhdiQtQGRrpEY4TGCdRyiYxLSb8DaRIxRAU5/fS3Y\nPhhell50OZDoJQORAKsnB6OpTY7Xt1/QqBfwVKyI2jwV4gY7M0NsOJLLOopa8TyP90+9DwEnwFsD\nadsaolrlDa347dJNPNnfFYai/620znEcYiWxOFdxDrk1uv09Rsjt+DqY443Rj+Dw1XL8lK45C1NT\nsSJqYyQW4oVwL6TmVOJcYS3rOGqzL38fTpScwLx+8+Bk6nTvBxByH7ZlFkGu5PF06D9XWh/rMxYi\ngQg7cncwSEYIe/8a5ImpYe7o3UNzxi+oWBG1mhrmDgsjETYm6+Yr6prWGqzMWIlA+0BM9p/MOg7R\nMUolj58zpBjobQMfe7N/3G5jZINhbsOwN28v2hXtDBISwpZAwOGDiX0Q5GbFOspfqFgRtTI3EuO5\nIV44dOkmcm5q/h5P92tlxko0tDdgyaAlEApoQ1yiWqm5lSisbsGUMI873idWEovatloclh7uxmSE\nkDuhYkXUbtpgT5gYCLExOY91FJU6UXICe/P3YlrANPhZ+7GOQ3RQQtoN2JgaYGRvxzveZ2CPgehh\n2oOG2AnREFSsiNpZmxpgSqg79pwrgbRKN9bcaZG34L2THdvWTA+azjoO0UE361uReKUckzoNrXcm\n4ASYKJmIU6WnUNRQ1I0JCSG3Q8WKdIsXI7wh5DhsStGNs1bxWfEoaizC4kGLadsaohZbMwqhUPJ4\n5jZD651N8J0AASfAztyd3ZCMEHI3VKxIt3C0MMKTIa74JbMIN+s1azG3+3Wl6gq+v/w9YiQxGOA0\ngHUcooMUSh4/ZxRiiK8tPO1M73l/J1MnDOkxBLtydkGulHdDQkLInVCxIt1mRoQPFDyPL1PzWUd5\nYHKlHEtPLoWVoRUW9qdta4h6pORUoLi2BVNC7zy03lmsJBblLeU4XnxcjckIIfdCxYp0G3dbE4wL\n6oHNaVLUNGnnW8M3X9mMy1WX8XrY67A0tGQdh+iohDQp7MwMMKLXnYfWO4twi4CtkS0NsRPCGBUr\n0q1mRvqguV2Bb04UsI5y34oairAhawOGug7FSI+RrOMQHVVW14rDV8sxKcQNBqKu/4gWC8QY7zse\nKUUpqGjWn83PCdE0VKxIt/JzNMfI3o749vh1NLTKWMfpsj+3reHA4a0w2raGqM+WP4fWB9x7aL2z\nGEkMFLwCu/N2qyEZIaQrqFiRbhcX5Yv6Vjk2p0lZR+my/df343jJccztNxfOZs6s4xAdpVDy2JIh\nRbjEDu62Jvf9eA8LD4Q4hmBHzg4oeaUaEhJC7oWKFel2ga5WCJfY4cvU62iVKVjHuafa1lqsyFiB\nQLtAPO3/NOs4RIclZ5ejpK4VU7qwxMKdxEhiUNhQiMyyTBUmI4R0FRUrwkRclC8qG9uwNVNzdiS/\nk5WZK1HfVo/FgxbTtjVErRLSpLA3N8Tw+xha72yExwiYG5jTEDshjFCxIkyEedmgv4c1Pj+aD5lC\ncy9ZnCw5iT15e/BcwHPwt/FnHYfosJLaFhzJLsdTIa4QCx/8R7ORyAhjvMcg8UYi6trqVJiQENIV\nVKwIExzHYXaUL4prW7DrbDHrOLfVIm/BspPL4G7ujumBtG0NUa+fMwrBA3j6AYbWO4uVxKJd2Y59\n+fsePhgh5L5QsSLMRPrbo5ezBeKP5kGh5FnH+YdN5zahqLEISwYtgZHIiHUcosPkCiW2ZEgRIbGH\nm839D6135m/jj962vfHLtV/A85r3vUWILqNiRZjhOA5xUb7Ir2jCwYtlrOP8zdXqq/ju0neY6DsR\noc6hrOMQHXckuwI369swJezhz1b9KUYSg9zaXFysvKiy5ySE3BsVK8LUqAAneNubYsORXI15Za1Q\nKrD0xFJYGlri5ZCXWccheiAh7QYcLQwR/YiDyp7zca/HYSwypiF2QroZFSvClFDAYeZQH1wurUfy\nNc1YLTrhagIuVV3C66G0bQ1Rv6KaZiRfq8DkEDeIHmJovTMzAzOM9ByJA9cPoFnWrLLnJYTcHRUr\nwtyEvi5wsTLGhsPsz1qVNJZg3dl1CHcJxyjPUUyzEP2wJaMQHIDJD7F21Z3ESmLRLG/GwYKDKn9u\nQsjtdalYcRw3iuO4bI7jcjmOe/0u93uS4zie47gQ1UUkuk4sFOClCG9k3qhB+vVqZjl4nsd7p94D\nALwz8B3atoaonUyhxJaMQkT6O8DFyljlzx9kHwRvS2+6HEhIN7pnseI4TghgA4DRAHoBeIbjuF63\nuZ85gLkA0lQdkui+yQPcYGdmgPVHcpllOHD9AI4VH8PcvrRtDekeSVfKUd7QhmfUcLYK6HiDSKwk\nFucrziOnJkctxyCE/F1XzliFAsjleT6f5/l2AD8DGH+b+70HYAWAVhXmI3rCSCzE8496IzWnEueL\narv9+LWttfg442ME2AbgmUee6fbjE/2UkC6Fk4URovzt1XaMsT5jIRKIsCNnh9qOQQj5n64UKxcA\nt+47UvTH1/7CcVxfAG48z991NTqO417iOC6T47jMigrNGFQmmuPZge6wMBJh45G8bj/2J6c/QV1b\nHZYOXkrb1pBuUVjdjNScCkweoNqh9c6sjawR7R6Nvfl70aZoU9txCCEduvLdfLtBk78mjDmOEwD4\nDMA935fO8/wXPM+H8DwfYm+vvldoRDuZG4nx3GBPHLxUhpybDd123LTSNOzK3YXnetO2NaT7/JQu\nBQfg6VA3tR8rRhKDurY6HJYeVvuxCNF3XSlWRQBu/c53BVByy+fmAAIAJHMcVwBgIIA9NMBOHsRz\nQ7xgLBYiPrl7zlq1ylvx7sl34WbuhhlBM7rlmITIFEpszSzCsEcc4Gyp+qH1zgY6D4SLmQsNsROd\nJFPKWEf4m64UqwwAEo7jvDiOMwDwNIA9f97I83wdz/N2PM978jzvCeAUgHE8z2eqJTHRaTamBpga\n5o7d50ogrVL/2jubzm1CYUMhFg9aTNvWkG7z++WbqGxU7UrrdyPgBJjoOxFppWkobCi89wMI0RI1\nrTWYtGcS9ubtZR3lL/csVjzPywHMBnAIwBUAW3mev8Rx3DKO48apOyDRPy9GeEPIcfg8Rb1nrbKr\ns/HtpW8x3mc8BjoPVOuxCLnVT+lSuFgZY6if6lZav5fxvuMh4ATYmbOz245JiDo1y5oxO2k2ihqL\n4GLmcu8HdJMuTUzyPL+f53k/nud9eJ7/4I+vLeZ5fs9t7htJZ6vIw3C0MMKTIa7YllmE8nr1vMn0\n1m1rFoUsUssxCLmdG1VNSM2pxOQBbhAKum+tNCdTJzzq8ih25e6CXCnvtuMSog5ypRyvpryKi1UX\n8XHEx+jn2I91pL/QyutEI82I8IFcqcR/U/PV8vw/Xf0JF6su4rUBr8HKyEotxyDkdn5KL4RQwGHy\nAPUPrXcWI4lBRUsFjhUf6/ZjE6Iqfy7mfLToKN4KewvR7tGsI/0NFSuikdxtTTAuqAc2p0lR09Su\n0ucuaSzB2rNrMcRlCEZ7jVbpcxNyN+1yJX45XYjoRxzgaNH9M30RrhGwNbKlIXai1Tae24gdOTvw\nUuBLeMr/KdZx/oGKFdFYs6J80dyuwDcnClT2nDzP44O0DwDQtjWk+/12uQyVje3dNrTemVggxgTf\nCUgtSkV5czmTDIQ8jK3ZW7Hp3CZM9J2I2cGzWce5LSpWRGP5OZrjsV6O+Pb4dTS2qWYm5FDBIaQU\npWB28GyNGnYk+iEhrWNoPVzCbh2/iZKJUPAK7M7dzSwDIQ8iSZqED9I+QIRrBBYPWqyxL4ypWBGN\nFhfli/pWOTafuvHQz1XXVoeP0j9Cb9vemNpzqgrSEdJ11yubcCKvCs+Edu/QemceFh4Y4DQAO3J2\nQMkrmeUg5H6cLT+L11JeQ4BtAFZGrIRIIGId6Y6oWBGNFuRmhXCJHf6beh2tMsVDPdcnmbRtDWHn\np3QpRAIOT4V0/9B6ZzGSGBQ1FiGjLIN1FELuKa82D7OTZsPZ1Bnro9fDRGzCOtJdUbEiGi8uyheV\njW3YlvngCxuml6ZjZ+5O/Kv3v/CIzSMqTEfIvbXJFfjldBGG93SEA4Oh9c5GeIyAhYEFDbETjXez\n6SZmJM6AgdAA8cPjYW1kzTrSPVGxIhovzMsG/T2sseloPmSK+7900SpvxbJTy+Bq5oqZQTPVkJCQ\nuzt4sQzVTeyG1jszFBpijPcYJN5IRG1rLes4hNxWfXs9ZiTOQEN7AzZGb4SruSvrSF1CxYpoPI7j\nEBflg+LaFuzOKrn3Azr54vwXuFF/A4sHLYaxSP37shHSWUKaFO42JnjU1451lL/ESGIgU8qwL38f\n6yiE/EObog3zDs9DQX0BVketRk/bnqwjdRkVK6IVovwd0NPZAhuTc6FQ8l1+XHZ1Nr65+A3G+YzD\noB6D1JiQkNvLKhakOgAAIABJREFUq2hE2vVqPB3qBgHDofXO/G38EWAbgO0528HzXf+eIkTdFEoF\n3kh9A5k3M/HBkA+0bssxKlZEK/x51iq/ogmHLpV16TEKpQLLTi6DuYE5bVtDmPkprWNofVJ/9kPr\nncX4xSC3NhcXKi+wjkIIgI61BldkrMDvN37HopBFeNz7cdaR7hsVK6I1Rgc4w9vOFBuO5HbpFfbP\n2T/jfOV5vBr6qlYMPBLd0ypT4JczRRjZ2wn25oas4/zD416Pw1hkjB05O1hHIQQA8PXFr5FwNQH/\n6vUv/Lv3v1nHeSBUrIjWEAo4zIj0waWSeiRfq7jrfcuayrD2zFoM6TEET3g90U0JCfm7gxfLUNss\n05ih9c5MxaYY5TkK+6/vR5OsiXUcouf25O3B6jOrMdprNF4OeZl1nAdGxYpolQnBLuhhaYSNR3Lv\neB+e5/H+qffBg8fbA9/W2NV5ie5LSJPCw9YEg7xtWUe5oxhJDFrkLTh4/SDrKESPHSs+hiXHlyDM\nOQwfDPkAAk5764n2Jid6yUAkwPShPsgoqEH69erb3mdf/j4cLTqKuOA4rXl7LtE9OTcbkF5QjWdC\n3TVqaL2zIPsg+Fj60OVAwsylyktYmLwQvta+WB25GmKhmHWkh0LFimidyQPcYGdmgPW3OWt1tvws\nlp5Yin4O/WjbGsJUQroUYiGHJ/trdrnnOA6xfrE4X3ke12qusY5D9Iy0XopZSbNgY2SDjdEbYWZg\nxjrSQ6NiRbSOkViI5x/1Rsq1Clwoqvvr6zfqb2Du4blwNnPG6qjVGr2XFNFtrTIFtp/uGFq3M9O8\nofXOxniPgVggxs6cnayjED1S2VKJGYkzoOSV2DR8E+xN2G1OrkpUrIhWenagO8yNRNjwx1mrmtYa\nzEqcBQDYGL2R3gVImPr1fCnqW+UaO7TembWRNaLdo7E3fy/aFG2s4xA90CxrRlxSHCpbKrEhegM8\nLT1ZR1IZKlZEK5kbifHcYE8cvFSGiyWVmHt4LsqayrBu2Dq4W2jHLzOiuxLSpfC2M9XoofXOYiQx\nqGurQ9KNJNZRiI6TKWVYmLwQ2dXZWDV0FQLtA1lHUikqVkRrTRviBWMxh/lJryGrIgsfhn+IYIdg\n1rGInssua8DpGzV4JtRdq96RGuYcBhczFxpiJ2rF8zyWHF+C4yXHsWTQEkS4RrCOpHJUrIjWsjE1\nQO+A47ipTMfzveZgpOdI1pEIwU/pUhgIBYjV8KH1zgScADGSGKSVpaGwvpB1HKKjVp9Zjb35ezE7\neDYmSiayjqMWVKyI1tqavRXZrXugqB2EiiLt2kuK6KaWdgW2nynC6D5OsDE1YB3nvo33GQ8BJ8CO\nXDprRVRv85XN+Pri13jK7ym8FPgS6zhqQ8WKaKWUohR8kPYBIlwjMNZ1FradLkZ5fSvrWETP7Ttf\ngoZWOaaEauecn6OpI8JdwrErdxfkSjnrOESHHCo4hI/TP8Ywt2F4M+xNrbpMfr+oWBGtc6XqChYd\nXQR/a3+sjFiJuEg/yBVKfHnsOutoRM8lpEvhY2+KUC8b1lEeWIwkBpUtlUgtSmUdheiIjLIMvJH6\nBoIdgvFxxMcQCoSsI6kVFSuiVcqayhCXFAdLQ0usj14PE7EJ3G1NMC6oB348dQM1Te2sIxI9daW0\nHmeltVo3tN5ZhGsE7I3taYidqER2dTbmHp4LN3M3rBu2DkYiI9aR1I6KFdEaDe0NmJk4Ey3yFmyI\n3gAHE4e/bpsZ6YvmdgW+PVHALiDRawlpUhiIBBq/0vq9iAQijPcdj5TiFNxsusk6DtFipY2lmJU4\nCyZiE2wavgmWhpasI3ULKlZEK/y57klBXQE+jfwUftZ+f7vd38kcj/VyxLcnCtDYRrMhpHs1t8ux\n62wxnujjDCsT7Rta72yi70QoeSV25+1mHYVoqbq2OsxInIEWeQs2Dd8EZzNn1pG6DRUrovF4nsd7\nJ9/DqdJTWDxoMQb1GHTb+8VF+aKuRYbNp250c0Ki7/aeK0FDm/astH4v7hbuCHUKxY6cHVDyStZx\niJZplbdidtJsFDYUYs2wNZBYS1hH6lZUrIjG++L8F9iZuxPTA6ffdd2TIDcrhEvs8N/U62iVKbox\nIdF3CWlSSBzMEOKhO1spxUhiUNxYjPSydNZRiBaRK+V4NeVVnKs4h+XhyzHAaQDrSN2OihXRaHvz\n9mJ91nqM8R6DuOC4e95/VqQvKhvbsC2TFjgk3eNicR3OFdVhSph2D613NtxjOCwMLLDjGg2xk67h\neR4fpn2II4VH8Hro63jM8zHWkZigYkU0VkZZBhafWIwBTgOwbPCyLv3SGuhtg37uVlh3OBcn86q6\nISXRdwnpUhiKBIjpq91D650ZCg0x1mcsEqWJqG2tZR2HaIHPz3+Obde24YU+L2BKzyms4zBDxYpo\npPzafMw7Mg9u5m74LPIziIXiLj2O4zgsHdcbYqEAz/z3FKb/kIkbVU1qTkv0VVObHLvPFmNMYA9Y\nmnTt76g2meg7ETKlDHvz97KOQjTc9mvbsSFrA8b5jMPcvnNZx2GKihXROJUtlZiVNAtigRgbozfe\n91t0A12tkPTyUCx6zA+pOZUY8WkKPtx/BfWtMjUlJvpqz7kSNLUrdGZovTN/G3/0seuDHTk7wPM8\n6zhEQyUXJmPZqWUY4jIESwcv1alL4g+CihXRKC3yFsxJmoOqlipsiN4AV/MHu7xiJBZi9jAJkhdF\nYnxwD/w3NR9RK5Px46kbkCvoXU5ENRLSpHjEyRz93K1YR1GbGEkMcmtzcb7yPOsoRAOdqziHV46+\ngp42PfHp0E8hFujemdv7RcWKaAyFUoHXU17HpapL+DjiYwTYBTz0czpYGGHlpCDsnf0ofBzM8Pau\ni3hi7TGk5lSoIDHRZxeK6nChWPeG1jsb7TUaxiJjWomd/MP1uuuYnTQbDiYO2BC9ASZiE9aRNAIV\nK6IxVmWuwuHCw3gt9DUMcx+m0ucOcLHElpcGIn5qPzTL5Pi/r9Lx/LcZyKtoVOlxiP5ISL8BI7EA\n44NdWEdRK1OxKUZ7jcaB6wfQJKN5RdKhvLkcM36fAQEnwKbhm2BrbMs6ksagYkU0wo+Xf8SPV37E\nsz2fxdSeU9VyDI7jMLqPMxIXDsUbox9B2vVqjPwsBe/uvYTaZtpjkHRdQ6sMu7NKMDawByyNdf/S\nR4wkBi3yFhy4foB1FKIBGtobMCtxFmraarBx+Ea4WbixjqRRqFgR5g5LD2NFxgoMcxuGRSGL1H48\nQ5EQ04f64MiiSEwKccN3JwoQuSoZ3x6/DhnNX5Eu2J1VgmYdHlrvLNAuEL5WvnQ5kKBd0Y4FRxYg\nrzYPqyNXo7dtb9aRNA4VK8LUxcqLeC3lNfS27Y3lEcshFAi77dj25ob4KKYPfp0bjt49LLB072WM\nWp2CI1fL6R1Q5I54nkdCmhQ9nS0Q7Ka7Q+u34jgOsZJYXKi8gOzqbNZxCCNKXom3jr2FtLI0LBuy\nDINdBrOOpJGoWBFmihqKEJcUB1tjW6yLXgdjkTGTHD2dLfDj82H48l8hUPLAtG8z8O9vMnDtZgOT\nPESznSuqw+XSep0fWu9sjPcYiAVi7MzdyToKYWRV5iocLDiIBf0XYKzPWNZxNBYVK8JEXVsdZiXN\ngkwpw8bojbAztmOah+M4DO/liEPzI/DOmF7IktZg9JpUvLPrIqqbaP6K/E9C2g2YGAgxIbgH6yjd\nysrICsPdh2Nv3l60KdpYxyHd7LtL3+GHyz9gas+pmNZ7Gus4Go2KFel27Yp2LEhe0LHzedQaeFt5\ns470FwORAM8/6oXkV6LwbJg7EtKlGLryCL5MzUe7nOav9F19qwx7z5ViXFAPmBvp/tB6ZzF+Mahv\nr0fijUTWUUg32pe/D6syV2Gk50i8OuBVvTpT+yCoWJFuxfM8lpxYgoyyDLw35D2N3fncxtQA744P\nwMF54ejvYY33f72Cxz47it8uldH8lR7bfbYYLTL9GVrvLNQpFC5mLjTErkdOlpzEO8ffwQCnAfjw\n0Q8h4Kg23Av9FyLdakPWBuzL34fZwbMxxnsM6zj3JHE0x7fTQvHNtAEQCQV46YfTmPLfNFwuqWcd\njXQznuexOU2KABcLBLrqx9B6ZwJOgFhJLNLL0iGtl7KOQ9TsStUVzD8yH16WXlgTtQYGQgPWkbQC\nFSvSbXbm7MTn5z/HRN+JeCnwJdZx7kuUvwMOzAvHsvG9cbWsHk+sS8Xr28+jooFmTfTF2cJaXC1r\nwJRQD9ZRmBrvOx4CTkBnrXRcYUMhZibOhKWhJeKj42FuYM46ktagYkW6xcmSk1h2chkGOg/EO4Pe\n0cpr9GKhAP8a5InkRVH4zxAv/HK6CFGrkrExORetMgXreETNEtKkMDUQYpyeDa135mDigAiXCOzO\n2w2ZkjY210XVrdWYmTgTMqUMm4ZvgqOpI+tIWoWKFVG7azXXsDB5ITwtPfFppPZv0mlpIsY7Y3rh\ntwURGOhtixUHszH806PYf6GU5q90VF2LDPvOl2BcsAvMDEWs4zAXI4lBZUslUotSWUchKtYsa0Zc\nYhzKmsqwIXqDRr25SFtQsSJqVd5cjrikOBiLjBE/XLdOJ3vbm+HLf4dg8wthMDMUYdbmM5j8+Slc\nKKpjHY2o2M4zRWiVKTFVT4fWOwt3DYe9sT1dDtQxMqUMi44uwuXqy1gZsRLBDsGsI2klKlZEbZpl\nzZidNBt1bXXYEL0BTqZOrCOpxRBfO/w6NxwfTuyDvIpGjF1/DC9vPYeb9a2soxEV4HkeCelSBLpa\nIsDFknUcjSASiDDBdwJSi1Nxs+km6zhEBXiex7KTy5BanIq3B76NKPco1pG0FhUrohZypRyLji5C\ndk02Vg1dhZ62PVlHUiuhgMOUMHcceSUS04d6Y++5EkSuTMbapBy0tNP8lTY7faMG1242Ykoona26\n1UTfiVDySuzK3cU6ClGBdWfXYVfuLswMmolJfpNYx9FqVKyIyvE8j4/SPkJqcSreCnsLEa4RrCN1\nGwsjMd4Y3ROJC4ci0t8en/5+DdGfJGN3VjHNX2mphDQpzAxFGBuk30PrnblZuCHMKQw7c3dCydPi\nudpsy9Ut+O+F/yJWEouZQTNZx9F6VKyIyn136TtsvbYV0wKm4Sn/p1jHYcLd1gTxz/bHlpcGwtrU\nAPN+zkJM/AmckdawjkbuQ21zO/ZdKMWEvj1gSkPr/xAjiUFxYzHSStNYRyEPKPFGIj5I+wCRrpF4\ne+DbWvmObU1DxYqo1KGCQ/jk9Cd4zOMxzO83n3Uc5sK8bbF39qNY+WQgimpaELPxBOb9fBYltS2s\no5Eu2H6mGO1ypd6vXXUn0R7RsDS0pCF2LXX65mm8lvIaAu0DsWLoCogE9OJBFahYEZXJKs/Cm6lv\nItg+GB+G09YHfxIIOEwKcUPyokjMjvLFwYtliFqVjE9/y0ZTm5x1PHIHPM/jp3Qpgt2s0KuHBes4\nGslQaIix3mORJE1CTSudjdUmuTW5mHN4DnqY9cD6YethLDJmHUln0G8+ohLSeinmHJ4DJ1MnrB22\nFoZCQ9aRNI6poQiLRvoj6eWheKy3E9YezkXUqmT8croISiXNX2majIIa5JY36u2+gF01UTIRMqUM\ne/P2so5CuqisqQwzEmfASGiETSM2wcpIP7doUhcqVuSh1bTWYGZix8DjxuEbYW1kzTiRZnO1NsG6\nZ/pi+8xBcLYyxqJt5zB+w3FkFFSzjkZukZB2A+ZGIowNpKH1u/Gz9kOgXSB25OygN2hogbq2OsxM\nnIkmWRPih8fDxcyFdSSdQ8WKPJQ2RRvmHZmHsqYyrB22Fh4WNIvSVf09bLBz5mCsnhyMioY2TNp0\nErM2n0ZhdTPraHqvpqkd+y+WIaavC4wNhKzjaLxYv1jk1eXhXMU51lHIXbQp2jD38FwU1BdgddRq\n+Nv4s46kk6hYkQem5JV469hbOFt+Fh+Gf4i+Dn1ZR9I6AgGHCX1dcGRRJBYM98ORqxWI/uQolh+4\nioZW2oeNle1nitAuV+IZugzYJaM8R8FEZEJD7BpMoVTg9ZTXcab8DD569COEOYexjqSzqFiRB7bm\nzBocKjiEhf0XYqTnSNZxtJqxgRDzhktwZFEkxgQ5Y9PRPEStSsbP6VIoaP6qW/250no/dys84kRD\n611hIjbBaK/ROFhwEI3tjazjkE54nsfy9OVIlCbi1QGvYpTXKNaRdBoVK/JAtmZvxdcXv8ZTfk/h\nud7PsY6jM5wsjfDpU8HYHTcEHrameH3HBYxZdwwncitZR9Mbp/KrkV/RhClhdFn7fsRIYtAib8GB\nggOso5BOvrzwJX7O/hnTek/D//X6P9ZxdB4VK3LfUotS8WHahwh3CccbYW/QgnJqEORmhV9mDML6\nKX1R3yLDlC/T8OL3mbhe2cQ6ms5LSJfCwkiEMYHOrKNolT52feBr5Ysd1+hyoCbZlbsLa8+uxRPe\nT2B+f1pbsDtQsSL35UrVFbx89GX4Wfth1dBVtKCcGnEchzGBPZD08lC8MtIfJ3Ir8dhnR/H+vsuo\na6H5K3WoamzDwYuliOnnCiMxDa3fD47j8KTfk7hYdRHZ1dms4xB0vAheemIpBjkPwnuD36O1BbsJ\n/VcmXVbWVIbZSbNhYWCB9dHrYSI2YR1JLxiJhYiL8sWRVyIR09cVXx2/jqhVyfjhZAHkCtqjTZV+\nOV0EmYLHVBpafyBjvMfAQGBAQ+wa4ELFhb9eBH8W9RnEQjHrSHqDihXpksb2RsxKmoUmeRM2Dt8I\nBxMH1pH0joO5ET5+MhB7Zz8KP0czvLP7EkavScXRaxWso+kEpbJjpfUBntaQOJqzjqOVLA0tEe0R\njb35e9Eqb2UdR2/dqL+BuKQ42BjZYOPwjTAVm7KOpFeoWJF7killWJi8ENdrr+PTyE/hZ+3HOpJe\nC3CxxE8vDsTn/9cf7Qol/v11OqZ9k47ccno31sM4lV+FgqpmWmn9IcVKYtHQ3oBEaSLrKHqpsqUS\n03+fDgD4fMTnsDO2Y5xI/1CxInfF8zzeP/U+TpaexOJBizG4x2DWkQg65llG9nbCbwsi8ObjjyCz\noAYjV6dg6Z5LqGlqZx1PK21Ol8LKRIzRATS0/jAGOA2Aq5krXQ5koEnWhFmJs1DdWo0N0RtowWZG\nqFiRu/rywpfYkbMDLwW+hImSiazjkE4MRUK8FOGDI69E4ukBbvj+ZAEiVyXj62PXIaP5qy6rbGzD\nb5fKEEtD6w9NwAkQ6xeLjLIM3Ki/wTqO3pApZFhwZAGu1VzDJ0M/QR/7Pqwj6S0qVuSOfs3/9a+3\n6c4Ons06DrkLOzNDfDCxDw7Mi0CgqyWW7buMkatTkHTlJu3f1gXbMjuG1p8JdWMdRSeM8xkHISek\ns1bdRMkr8c6Jd3Cy9CSWDl6KcNdw1pH0GhUrclsZZRl45/g7CHEMwbLBy2itKi3h72SO7/8Tiq+f\nCwF44PnvMvGvr9ORXdbAOprG+nNoPdTLBr4ONLSuCg4mDgh3Dcfu3N2QKWlpEHVbfXo1fs3/FXP7\nzsUE3wms4+g9KlbkH/Lr8jH/yHy4mrtiddRqGAgNWEci94HjOAx7xBGHFkRg8ZheOF9Uh9FrUvDW\nzguoamxjHU/jHM+rhLS6mZZYULFYSSyqWquQUpTCOopO++HyD/jm0jeY7D8ZL/R5gXUcAipWpJOq\nlirMSpwFkUCEjdEbYWloyToSeUBioQD/edQLR1+JxL8GeeLnjEJErkzGFyl5aJMrWMfTGAlpUlib\niDEqwIl1FJ3yqMujcDB2oMuBanTw+kGsyFiB4e7D8UYo7YKhKahYkb+0yFsw5/AcVLVUYf2w9XA1\nd2UdiaiAlYkBlo7rjUPzwxHiaY0P91/FY5+l4ODFMr2fvypvaMXvl2/iyf6uMBTR0LoqiQQijPcd\nj2PFx1DWVMY6js5JK03Dm8feRD+HflgesRxCAf391RRUrAgAQKFU4I3UN3Cx8iKWRyynd5ToIF8H\nc3wzLRTf/ScUBkIBZvx4Gk9/cQoXi+tYR2NmW2YR5Eoez4TSZUB1mCiZCCWvxK7cXayj6JTs6mzM\nOzIPHhYeWDtsLQyFhqwjkVtQsSIAgE9Of4IkaRJeHfAqot2jWcchajTUzx4H5oXjvQkBuHazAWPX\nH8Orv5xDeYN+rZT959D6IG9beNubsY6jk9zM3RDmHIadOTuh5Gn5D1UobizGzMSZMBObIX54PI1r\naCAqVgSbr2zGD5d/wNSeU/Fsr2dZxyHdQCQU4P8GeiD5lSi88KgXdp4tRtTKZGw4kotWmX7MX6Xk\nVKCopoVWWlezWEksSppKcKr0FOsoWq+2tRYzfp+BVkUrNg3fBCdTmgvURFSs9Nxh6WF8nP4xotyi\n8ErIK6zjkG5maSzGW0/0wm8LhmKIrx1WHspG9CdHsfdcic7PX/2ULoWtqQFG9qZfTuoU7R4NS0NL\nGmJ/SC3yFsQdjkNJYwnWDVsHX2tf1pHIHVCx0mMXKy/itZTX0Nu2N5aH0/CjPvOyM8UX/wpBwgth\nsDAWY85PZzFp00mcK6xlHU0tbta3IvFKOZ4McYWBiH4MqpOB0ABjvcciSZqE6tZq1nG0klwpx6tH\nX8WFigv4OOJj9HfszzoSuQv6iaKnihuLMTtpNmyNbbEueh1MxCasIxENMNjXDvvmPIrlMX1QUNWE\n8RuOY+GWLJTWtbCOplJbMwqhUPJ4ZgBdBuwOMZIYyJVy7M3byzqK1vlzv9bkomS8FfYWhnsMZx2J\n3EOXihXHcaM4jsvmOC6X47jXb3P7Qo7jLnMcd57juCSO42jnRw1W11aHWYmz0K5sx8bojbT7Ofkb\noYDD06HuOLIoEjMjfbDvfCmiViVjdeI1tLRr//yVQsnj54xCDPG1haedKes4ekFiLUGgfSB25OzQ\n+UvMqhZ/Lh7bc7bjxT4vYvIjk1nHIV1wz2LFcZwQwAYAowH0AvAMx3G9Ot3tLIAQnucDAfwCYIWq\ngxLVkClkWJC8ANIGKdZErYG3lTfrSERDmRuJ8dqoR5D08lBEP+KI1Yk5GPZJMnaeLYJSqb2/HFOu\nVaC4tgVTQun1X3d6UvIk8uvyca7iHOsoWmPbtW2IPxePCb4TMKfvHNZxSBd15YxVKIBcnufzeZ5v\nB/AzgPG33oHn+SM8zzf/8ekpALSypAbieR5LTixBRlkGlg1ehgFOA1hHIlrAzcYEG6b2w9bpg2Bn\nZogFW85hYvwJnL6hnfMym9OksDMzwIhejqyj6JWRniNhIjLB9pztrKNohcPSw3j/1PsIdwnH4kGL\naVV1LdKVYuUCoPCWz4v++NqdPA/gwO1u4DjuJY7jMjmOy6yoqOh6SqISG89txN78vYgLjsNYn7Gs\n4xAtE+plg91xQ7BqUhBKa1sQG38Sc346i6Ka5ns/WEOU1rXg8NWbmBTiRkPr3cxEbILRXqNxqOAQ\nGtsbWcfRaFnlWXg15VX0tu2NVUNXQSwQs45E7kNXfrLcribf9joAx3HPAggBsPJ2t/M8/wXP8yE8\nz4fY29t3PSV5aLtyd2HTuU2Y4DsB0wOns45DtJRAwOHJ/q44sigSc4f54rdLZYj+5ChWHrqKxjY5\n63j3tCWjEEoeNLTOSKwkFi3yFuy/vp91FI2VX5uP2Ydnw8nUCeuj19Mbi7RQV4pVEQC3Wz53BVDS\n+U4cxw0H8BaAcTzPt6kmHlGFU6Wn8O6JdzHQeSCdUiYqYWoowsLH/HF4USRGBThhw5E8RK1KxtbM\nQo2dv5IrlNiSUYhwiR3cbemXFQsBdgGQWEtoTas7KG8ux4zEGRBxIsQPj4eNkQ3rSOQBdKVYZQCQ\ncBznxXGcAYCnAey59Q4cx/UF8Dk6SlW56mOSB5VTk4MFRxbA09ITn0Z+SqeUiUq5WBljzdN9sWPW\nYLhYGePVX85j7PpjOJVfxTraPyRnV6C0rhVTaaV1ZjiOQ6wkFpeqLuFq9VXWcTRKQ3sDZibORF1b\nHeKHx8PN3O3eDyIa6Z7Fiud5OYDZAA4BuAJgK8/zlziOW8Zx3Lg/7rYSgBmAbRzHZXEct+cOT0e6\nUUVzBeKS4mAsMsbG6I0wNzBnHYnoqH7u1tg5azDWPB2MmqZ2PP3FKcz44TRuVDWxjvaXhHQp7M0N\nEd2ThtZZGuM9BgYCAzprdYt2RTvmHZmH/Lp8fBb1GXra9mQdiTwEUVfuxPP8fgD7O31t8S1/phXL\nNEyzrBlxSXGobavFt6O+hbOZM+tIRMdxHIfxwS54rJcTvkzNx8bkPBy+Wo5pQzwRN8wXFkbszpYW\n17YgObscsyJ9IRbS0DpLloaWGO4xHPvy92Fh/4UwEhmxjsSUklfizWNvIqMsA8vDl2Nwj8GsI5GH\nRD9hdJBcKccrKa8guyYbq4auQi/bzsuOEaI+xgZCzImWIPmVSIwN6oHPU/IRtTIZm9NuQMFo/mpL\nRiF4AE+H0uUVTRAriUVDewN+v/E76yhM8TyPFRkrcKjgEF7u/zKe8H6CdSSiAlSsdAzP81ievhwp\nRSl4M/RNRLhGsI5E9JSjhRE+eSoIe2YPgbe9Kd7aeRFPrE3FsZzKbs3RMbQuxVA/e7ha09C6Jhjg\nNADu5u56fznwm0vfYPOVzfi/Xv+Hf/f+N+s4REWoWOmY7y9/jy3ZWzCt9zTa/oBohEBXK2ydPggb\np/ZDY5scz36Vhhe+y0B+RfesZXT4ajlu1rfhmVAaWtcUHMdhomQiMm9moqCugHUcJvbm7cVnpz/D\naM/RWBSyiN6trUOoWOmQ3wp+w6rMVRjhMQLz+89nHYeQv3Ach8f7OCNx4VC8NuoRnMqvxmOfpWDZ\n3suoa5ap9dgJ6VI4Whgi+hEHtR6H3J/xPuMh5ITYkat/Z61OFJ/A4uOLEeoUivcffR8Cjn4V6xL6\nv6kjssqz8OaxNxFkH4QPH/2QvlGJRjISCzEz0gdHFkViUogrvjlxHUNXHcF3JwogUyhVfrzC6mYc\nvVaBySEbYAhsAAAWSElEQVRuENHQukaxN7FHhGsEdufuhkyp3nKtSS5VXcL85PnwsfLB6qjVMBAa\nsI5EVIx+0ugAab0Ucw/PhYOJA9YOW6v377Ihms/e3BAfxQTi1znh6OlkgSV7LmHU6hQcyVbtMnhb\nMgrBAZhMlwE1UqwkFtWt1UgpTGEdpVsU1hdiVuIsWBtaI354PC2Bo6OoWGm52tZazEqaBR48rdRL\ntE6vHhZIeDEMX/xffyiUPKZ9k4F/f52OnJsND/3cMoUSWzILEenvABcrYxWkJao2xGUIHEwc9GJj\n5qqWKkxPnA4lr8SmEZtgb0LbuukqKlZarE3RhnlH5qG0sRRrh62Fh4UH60iE3DeO4/BYbyf8tmAo\n3n6iJ85IazBqTSoW776I6qb2B37epCs3UdHQhil0tkpjiQQiTPCdgOMlx1HWVMY6jtr8ua5gRXMF\n1kevh5elF+tIRI2oWGkpJa/E28fexpnyM/jg0Q/Q16Ev60iEPBQDkQAvhHsjeVEkpoS6Y3OaFENX\nHsGXqflol9///NXmNCmcLY0Q6U9nBjTZRN+JUPJK7MzdyTqKWsiUMiw8uhBXqq9g5dCVCLIPYh2J\nqBkVKy219sxaHCw4iAX9F2CU1yjWcQhRGVszQ7w3IQAH5oUj2M0K7/96BSNXp+D3yzfB811bYFRa\n1YzUnEpMHkBD65rO1dwVA50HYmfOTiiUCtZxVIrneSw9sRTHi49j8cDFiHSLZB2JdAP6iaOFtl3b\nhq8ufoVJfpMwrfc01nEIUQs/R3N8/59QfPPcAAg44MXvMzH1yzRcKa2/52N/zpBCwAGTB9BK69og\nVhKL0qZSpJWmsY6iUmvPrsWevD2YFTwLsX6xrOOQbkLFSsscKz6GD059gCEuQ/Bm2Ju0qBzRaRzH\nIeoRBxycH4GlY3vhcmk9nlibijd2nEdFQ9ttHyNTKLE1swjDHnGEsyUNrWuDYe7DYGVopVND7AlX\nEvDlhS8xyW8SZgTOYB2HdCMqVlrkavVVvJz8MiTWEnwy9BOIBF3aQ5sQrScWCvDcEC8kL4rEvwd7\nYltmEaJWJWPT0Ty0yf9++ej3yzdR2diGqWE0tK4tDIQGGOszFocLD6O6tZp1nIf2W8FvWJ6+HFFu\nUXgr7C16AaxnqFhpibKmMsQlxsHcwBzrh62HqdiUdSRCup2ViQGWjO2NQwsiEOZlg+UHrmL4p0ex\n/0LpX/NXCWlSuFgZI8KPhta1SYxvDORKOfbm7WUd5aFklGXg9dTXEWQfhBURKyAUCFlHIt2MipUW\naGxvRFxSHJrkTdgQvQGOpo6sIxHClI+9Gb56bgB+eD4UJmIRZm0+g8mfn8L+C6U4ltsxtC4U0FkC\nbeJr7Ysg+yBsz9ne5TcpaJprNdcw7/A8uJm7YX30elqsWU9RsdJwMqUMLx99GXm1efh06Kfwt/Fn\nHYkQjREuscevcx/FBxMDkFvRiFmbz0Ao4GhoXUvFSmJxve46siqyWEe5b2VNZZiZOBPGImNsGr4J\nloaWrCMRRqhYaTCe5/HBqQ9wouQEFg9ajMEug1lHIkTjiIQCTA3zQPIrkYiL8sGix/zhaEFnCrTR\nSM+RMBWbYvs17Rpir2urw/Tfp6NZ1oz4EfFwNnNmHYkwRMVKg3118Stsz9mOF/u8iBhJDOs4hGg0\nCyMxXhn5CGZG+rCOQh6QidgEo71G41DBITS0P/y2Rt2hVd6KOYfnoLChEGuHrYWftR/rSIQxKlYa\nan/+fqw5swaPez2OOX3nsI5DCCHdIlYSi1ZFKw5cP8A6yj0plAq8lvIassqz8FH4RxjgNIB1JKIB\nqFhpoMyyTLx9/G30d+yP94a8R2/VJYTojd62veFn7afxa1rxPI8P0z7E4cLDeC30NYz0HMk6EtEQ\nVKw0zPW665h3ZB5czFywJmoNDIQGrCMRQki34TgOsZJYXK66jCtVV1jHuaMvzn+Brde24j8B/8HU\nnlNZxyEahIqVBqlqqcKsxFkQCUTYOHwjvauEEKKXnvB+AgYCA+zI2cE6ym3tzNmJ9VnrMdZ7LOb3\nm886DtEwVKw0RIu8BXMPz0VlSyXWDVsHN3N6uzghRD9ZGlpihOcI/Jr/K1rkLazj/E1KUQrePfku\nhvQYgneHvEujGuQfqFhpAIVSgTdS38CFygtYHr4cgfaBrCMRQghTsZJYNMgakHgjkXWUv5yvOI+X\nk1+Gv40/Po38FGKBmHUkooGoWGmAT09/iiRpEl4Z8AqiPaJZxyGEEOZCHEPgbu6uMUPsBXUF+P/2\n7j64qvrO4/j7yyUJhifBAI0BgeVBxEdYCrihAga6wtYwJm4HHRV33G4xQVFGsMhYIyNW2oqiJMYq\nzmB3FR3RNTowLQSESgUFFOVBNJGwICApAcKDkKff/pFrl40JXPDee5JzPq+ZzJzk/HLP55tfOHxz\nnm5ucS5dkruQn5FPckKy15GkmVJj5bFXtr/Cy9te5tYBt3LbZbd5HUdEpFkwM7L6ZbHxm42UHSnz\nNEv5iXImr5hMK2vF82OeJ+WCFE/zSPOmxspD7+1+j7kfzWVUj1HM+PEMnasXETnNhL4TCFnI04vY\nj1UdI6c4h4qTFRRkFNCjg65/lTNTY+WRrX/byow1M7is82XM/clcvQO6iEgDKRekMLL7SN4ufZvq\n2uq4b7+6tpr73ruPkkMlzBs1j8tTLo97Bml51Fh5YO+xveQW59IpqRMLMhboXL2ISBOy+2dTcbKC\n1XtWx3W7da6OWWtnsX7feh5Nf5QRaSPiun1pudRYxVllVSU5K3Koqq2iYEyBztWLiJxB+sXpdE3u\nGveL2OdtmMeyncuYOngqmX0y47ptadnUWMVRdW0196+6n11Hd/H06Kfpc6HeLFZE5ExCrULc1Pcm\n1n69lv3H98dlm4u2LmLRtkXcOuBW7rrirrhsU/xDjVWcOOfI+yCPD/d/yOx/ms3Q1KFeRxIRaRFu\n6ncTUP/E81hb+tVSfr/h94ztOVY3Fcl5UWMVJ4WbCykqLSLnmhxu7HOj13FERFqMtHZpDE8dzlsl\nb1FbVxuz7azbt45Za2cxpNsQfvOT3+imIjkvaqzi4O2StynYXMCEPhOYfNVkr+OIiLQ42f2z2Xd8\nH+v2rYvJ639e8Tn3rbqP3h17M//6+SSFkmKyHfE/NVYxtm7fOvL+msew1GE8cu0jOqwsInIeRvcY\nTaekTjG5iH3P0T3cveJu2ie257mM5+iQ2CHq25DgUGMVQyWHSpi2ahq9Ovaqf1+pkN5XSkTkfCSG\nErmxz42s2r2Kg98ejNrrHjp5iMkrJlNVW0XhmEK6te0WtdeWYFJjFSPlJ8rJKc4hqXUS+Rn5+gtI\nROQHyuqXRU1dDe+UvhOV1ztRfYIpxVPYf3w/CzIW6E5tiQo1VjFwovoEucW5HD51mPyMfC5ud7HX\nkUREWrw+F/bhmi7XsOTLJTjnftBr1dTVMH3NdLYc3MLc6+YyqOugKKWUoFNjFWW1dbXMWDODHYd2\n8LvrfsfAiwZ6HUlExDey+2dTVlnGxwc+Pu/XcM4x+4PZrNmzhlnDZpFxSUYUE0rQqbGKIuccT3z4\nBKv3rGbm0JmM7DHS60giIr7y054/pW1C2x90EXv+J/m8VfIWv7zql/z80p9HMZ2IGquoennbyyze\nsZhJAycxccBEr+OIiPhOckIy43uP589lf6ayqvKcv//1Ha/z/KfPk9Uvi9xrcmOQUIJOjVWULN+1\nnCc3PMnYnmOZNmSa13FERHwru182J2tPsuyrZef0fcX/U8yc9XMY2X0kDw9/WI+/kZhQYxUFm8s3\nM/MvM7myy5U8PuJxWpl+rCIisTLwooFc2unSczoduOmbTTy45kGuuOgKfnvdb2ndqnUME0qQqQP4\ngXZX7uae4nvomtyVZ69/ljat23gdSUTE18yM7P7ZbK/YzraD2846vvRwKVNWTiG1bSoLMhaQnJAc\nh5QSVGqsfoDDJw+TU5xDHXUUZBTQuU1nryOJiATC+N7jSQol8eaXb55x3P7j+5m8YjJJoSQKxxbS\nqU2nOCWUoFJjdZ5O1Z5i6qqpfH3sa54Z/Qy9OvbyOpKISGB0TOrI2J5jWfrVUr6t+bbRMZVVldy9\n4m6OVh3luTHPkdYuLc4pJYjUWJ2HOlfHw+8/zKYDm5gzYg6Duw32OpKISOBk9cviaPVRlu9a/r11\np2pPce/KeymrLGP+6PkM6DzAg4QSRGqszsOzHz/LsrJlTB08lXG9x3kdR0QkkIZ0G0LPDj1Z8sX/\nv4i9tq6WmX+ZycZvNvL4iMcZljrMo4QSRGqsztEbX7zBi5+9yM39b+auK+7yOo6ISGCZGVn9sth0\nYBM7j+wE6h/UPPejuSzftZzpQ6brj1+JOzVW52Dt12t5bN1jpKelM2vYLD0DRUTEY5l9Mmltrf9+\nEfvCLQt59fNXmTRwEndcfofH6SSI9CCPCO2o2MG096bR98K+PDnyST0DRUSkGUi5IIWRPUZSVFpE\nrw69mL9pPuN7j9eDmsUzOmIVgf3H95NTnEO7xHbkZ+TTNqGt15FERCQsq18WFScryPsgj+Gpw3ks\n/TE9qFk8o8MuZ3Gs6hi5xbkcrz7OohsW0a1tN68jiYjIadIvTueS9pfQNqEtT416ioRQgteRJMDU\nWJ1BdV01D6x+gNLDpeRn5HNp50u9jiQiIg2EWoVY/LPFtGndhoRWaqrEW2qsmuCcY866Oazdu5a8\na/NIT0v3OpKIiDShfWJ7ryOIALrGqkkLtyxkyZdL+MWVvyC7f7bXcURERKQFUGPViGU7lzF/03zG\n9R7HlEFTvI4jIiIiLYQaqwY2frORWe/PYnDXwbqzRERERM6JuobT7Dyyk6mrppLWLo1nrn+GxFCi\n15FERESkBVFjFVZxsoKcFTmELETBmAI6JnX0OpKIiIi0MLorEDhZc5J7Vt5D+bflLPznhfRo38Pr\nSCIiItICBb6xqnN1PPT+Q3xW/hnzRs3j6i5Xex1JREREWqjAnwqct2Eey3ct54EhDzCm5xiv44iI\niEgLFujG6tXPX2XRtkXcMuAWbh94u9dxREREpIULbGO1evdqnvjwCUZ1H8WDP34QM/M6koiIiLRw\ngWysth7cyvQ10xnQeQBzr5tLqFXI60giIiLiA4FrrPYe28uU4il0SupEfkY+yQnJXkcSERERnwjU\nXYGVVZXkFudyquYUL4x7gZQLUryOJCIiIj4SmMaquraaaaumUVZZRuGYQvp26ut1JBEREfGZQDRW\nzjnyPshj/f71zBkxh2Gpw7yOJCIiIj4UiGusCj8tpKi0iJyrc8jsk+l1HBEREfEp3zdWRaVFFHxS\nQGafTCZfPdnrOCIiIuJjvm6s1u9bzyN/fYRhPxpG3rV5elaViIiIxJRvG6vSw6Xcv+p+erbvybzR\n80gIJXgdSURERHzOt41VZVUlXZO7UjCmgA6JHbyOIyIiIgHg27sCB3UdxJLMJXqquoiIiMSNb49Y\nAWqqREREJK4iaqzM7AYz22FmJWb2q0bWJ5nZa+H1682sV7SDioiIiDR3Z22szCwE5APjgIHALWY2\nsMGwu4BDzrm+wFPA3GgHFREREWnuIjliNRQocc595ZyrAhYDExqMmQAsCi+/AWSYnm0gIiIiARNJ\nY5UG7D7t8z3hrzU6xjlXAxwBLopGQBEREZGWIpLGqrEjT+48xmBm/2FmG8xsQ3l5eST5RERERFqM\nSBqrPUCP0z7vDuxtaoyZtQY6AhUNX8g59wfn3BDn3JAuXbqcX2IRERGRZiqSxuojoJ+Z9TazRGAi\nUNRgTBEwKbx8M7DSOfe9I1YiIiIifnbWB4Q652rMbArwJyAEvOSc22pms4ENzrkiYCHwRzMrof5I\n1cRYhhYRERFpjiJ68rpzbimwtMHXfn3a8kngX6MbTURERKRl8fWT10VERETiSY2ViIiISJSosRIR\nERGJEjVWIiIiIlGixkpEREQkStRYiYiIiESJGisRERGRKFFjJSIiIhIl5tU7z5hZObArxptJAf4W\n4200Z0GuP8i1Q7DrV+3BFeT6g1w7xKf+ns65s77RsWeNVTyY2Qbn3BCvc3glyPUHuXYIdv2qPZi1\nQ7DrD3Lt0Lzq16lAERERkShRYyUiIiISJX5vrP7gdQCPBbn+INcOwa5ftQdXkOsPcu3QjOr39TVW\nIiIiIvHk9yNWIiIiInGjxkpEREQkSnzRWJnZDWa2w8xKzOxXjaxPMrPXwuvXm1mv+KeMnQjqv9PM\nys3sk/DHv3uRM9rM7CUzO2BmW5pYb2b2TPjn8qmZDY53xliKoP5RZnbktHn/dbwzxoqZ9TCzVWa2\n3cy2mtnURsb4cv4jrN3Pc9/GzD40s83h+h9tZIwv9/kR1u7L/f13zCxkZh+b2buNrGse8+6ca9Ef\nQAgoBf4BSAQ2AwMbjMkBCsPLE4HXvM4d5/rvBBZ4nTUGtV8HDAa2NLF+PLAMMGA4sN7rzHGufxTw\nrtc5Y1R7KjA4vNwe+KKR33tfzn+Etft57g1oF15OANYDwxuM8eU+P8Lafbm/P62+acArjf1+N5d5\n98MRq6FAiXPuK+dcFbAYmNBgzARgUXj5DSDDzCyOGWMpkvp9yTm3Bqg4w5AJwMuu3jrgQjNLjU+6\n2Iugft9yzu1zzm0KLx8FtgNpDYb5cv4jrN23wvN5LPxpQvij4V1YvtznR1i7b5lZd+BfgBebGNIs\n5t0PjVUasPu0z/fw/Z3M38c452qAI8BFcUkXe5HUD5AdPh3yhpn1iE80z0X6s/Gza8OnDZaZ2eVe\nh4mF8OH+QdT/9X4638//GWoHH899+HTQJ8ABYLlzrsm599s+P4Lawb/7+6eBGUBdE+ubxbz7obFq\nrBtt2MFHMqaliqS2d4BezrmrgBX8X0fvd36e90hsov69ra4GngX+2+M8UWdm7YAlwH3OucqGqxv5\nFt/M/1lq9/XcO+dqnXPXAN2BoWZ2RYMhvp37CGr35f7ezH4GHHDObTzTsEa+Fvd590NjtQc4vSPv\nDuxtaoyZtQY64p9TKGet3zl30Dl3KvzpC8A/ximb1yL53fAt51zld6cNnHNLgQQzS/E4VtSYWQL1\njcV/OefebGSIb+f/bLX7fe6/45w7DLwH3NBglZ/3+UDTtft4f58OZJpZGfWXvFxvZv/ZYEyzmHc/\nNFYfAf3MrLeZJVJ/wVpRgzFFwKTw8s3AShe+us0Hzlp/g+tKMqm/JiMIioA7wneHDQeOOOf2eR0q\nXszsR99dX2BmQ6n/937Q21TREa5rIbDdOTeviWG+nP9Iavf53HcxswvDyxcAY4DPGwzz5T4/ktr9\nur93zs10znV3zvWi/v+5lc652xoMaxbz3jreG4w251yNmU0B/kT9HXIvOee2mtlsYINzroj6ndAf\nzayE+u51oneJoyvC+u81s0yghvr67/QscBSZ2avU3/2UYmZ7gEeov5gT51whsJT6O8NKgBPAv3mT\nNDYiqP9m4G4zqwG+BSb64T+XsHTgduCz8PUmAA8Bl4Dv5z+S2v0896nAIjMLUd8wvu6cezcg+/xI\navfl/r4pzXHe9ZY2IiIiIlHih1OBIiIiIs2CGisRERGRKFFjJSIiIhIlaqxEREREokSNlYiIiEiU\nqLESERERiRI1ViIiIiJR8r+NSfN+afotyAAAAABJRU5ErkJggg==\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["from numpy import random\n", "import numpy as np\n", "import pandas as p\n", "\n", "plt.figure(figsize=(10,8))\n", "plt.subplot(111)\n", "plt.plot([random.random_sample(1) for i in range(5)])\n", "#Il est possible de passer des listes, des arrays de numpy, des Series et des Dataframes de pandas\n", "plt.plot(np.array([random.random_sample(1) for i in range(5)]))\n", "plt.plot(p.DataFrame(np.array([random.random_sample(1) for i in range(5)])))\n", "#pour afficher plusieurs courbes, il suffit de cumuler les instructions plt.plot\n", "#plt.show()"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Pour faire plusieurs sous graphes, il suffit de modifier les valeurs des param\u00e8tres de l'objet subplot."]}, {"cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3IAAAJDCAYAAABOhiZdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3V+o5edd7/HPtxljObXWQ2cEyUxM\nDk5t5wQhdRMrhWOl9TDJxcxNLQkU2xI64DGVo6UQUarEKytSEKJ1xFIVbBp7oYOMRLCRSmlKplRD\nkxLYJ63NJoXEGnNT2jT6PRdrte7u7Mn+rcnae61n9usFgfXnYc+Xh5l58p71W2tVdwcAAIBxvGLV\nAwAAALAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADCYPUOuqj5aVU9X1Rcv83xV1e9X1WZV\nPVJVb1z+mACwfpyRAKzKlFfkPpbk9Es8f2uSk/P/ziX5w5c/FgAM4WNxRgKwAnuGXHd/Osm/vcSS\ns0n+rGceSvJDVfUjyxoQANaVMxKAVVnGe+SuS/Lktvtb88cA4LBzRgKwL44s4WfULo/1rgurzmV2\naUle9apX/eTrX//6JfzyAKy7z3/+8//a3cdWPccKOCMBuKyXcz4uI+S2kpzYdv94kqd2W9jd55Oc\nT5KNjY2+dOnSEn55ANZdVf3LqmdYEWckAJf1cs7HZVxaeSHJL8w/metNSZ7r7q8t4ecCwOickQDs\niz1fkauqjyd5S5KjVbWV5DeTfF+SdPdHklxMcluSzSTfSPKe/RoWANaJMxKAVdkz5Lr7jj2e7yS/\ntLSJAGAQzkgAVmUZl1YCAABwgIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQc\nAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADA\nYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQc\nAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADA\nYIQcAADAYIQcAADAYIQcAADAYIQcAADAYIQcAADAYCaFXFWdrqrHq2qzqu7e5fnrq+rBqvpCVT1S\nVbctf1QAWC/ORwBWZc+Qq6prktyb5NYkp5LcUVWndiz7jST3d/fNSW5P8gfLHhQA1onzEYBVmvKK\n3C1JNrv7ie5+Psl9Sc7uWNNJfnB++zVJnlreiACwlpyPAKzMkQlrrkvy5Lb7W0l+asea30ryd1X1\nviSvSvK2pUwHAOvL+QjAykx5Ra52eax33L8jyce6+3iS25L8eVW96GdX1bmqulRVl5555pnFpwWA\n9bG08zFxRgKwmCkht5XkxLb7x/PiS0PuTHJ/knT3Z5O8MsnRnT+ou89390Z3bxw7duzKJgaA9bC0\n83H+vDMSgMmmhNzDSU5W1Y1VdW1mb9a+sGPNV5O8NUmq6g2ZHVT+ORGAq5nzEYCV2TPkuvuFJHcl\neSDJlzL79K1Hq+qeqjozX/b+JO+tqn9O8vEk7+7unZeXAMBVw/kIwCpN+bCTdPfFJBd3PPbBbbcf\nS/Lm5Y4GAOvN+QjAqkz6QnAAAADWh5ADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAY\njJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJAD\nAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAY\njJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYjJAD\nAAAYjJADAAAYjJADAAAYjJADAAAYjJADAAAYzKSQq6rTVfV4VW1W1d2XWfOOqnqsqh6tqr9Y7pgA\nsH6cjwCsypG9FlTVNUnuTfJzSbaSPFxVF7r7sW1rTib5tSRv7u5nq+qH92tgAFgHzkcAVmnKK3K3\nJNns7ie6+/kk9yU5u2PNe5Pc293PJkl3P73cMQFg7TgfAViZKSF3XZInt93fmj+23euSvK6qPlNV\nD1XV6WUNCABryvkIwMrseWllktrlsd7l55xM8pYkx5P8Y1Xd1N3//j0/qOpcknNJcv311y88LACs\nkaWdj4kzEoDFTHlFbivJiW33jyd5apc1f93d3+7uLyd5PLOD63t09/nu3ujujWPHjl3pzACwDpZ2\nPibOSAAWMyXkHk5ysqpurKprk9ye5MKONX+V5GeTpKqOZnYpyRPLHBQA1ozzEYCV2TPkuvuFJHcl\neSDJl5Lc392PVtU9VXVmvuyBJF+vqseSPJjkA9399f0aGgBWzfkIwCpV987L+Q/GxsZGX7p0aSW/\nNgAHq6o+390bq55jFM5IgMPh5ZyPk74QHAAAgPUh5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAA\nAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj\n5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAA\nAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj\n5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYj5AAAAAYzKeSq6nRVPV5Vm1V190use3tVdVVt\nLG9EAFhPzkcAVmXPkKuqa5Lcm+TWJKeS3FFVp3ZZ9+okv5zkc8seEgDWjfMRgFWa8orcLUk2u/uJ\n7n4+yX1Jzu6y7reTfCjJN5c4HwCsK+cjACszJeSuS/Lktvtb88e+q6puTnKiu/9mibMBwDpzPgKw\nMlNCrnZ5rL/7ZNUrknw4yfv3/EFV56rqUlVdeuaZZ6ZPCQDrZ2nn43y9MxKAyaaE3FaSE9vuH0/y\n1Lb7r05yU5J/qKqvJHlTkgu7vaG7u89390Z3bxw7duzKpwaA1Vva+Zg4IwFYzJSQezjJyaq6saqu\nTXJ7kgvfebK7n+vuo919Q3ffkOShJGe6+9K+TAwA68H5CMDK7Bly3f1CkruSPJDkS0nu7+5Hq+qe\nqjqz3wMCwDpyPgKwSkemLOrui0ku7njsg5dZ+5aXPxYArD/nIwCrMukLwQEAAFgfQg4AAGAwQg4A\nAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAw\nQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4A\nAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAw\nQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4AAGAwQg4A\nAGAwk0Kuqk5X1eNVtVlVd+/y/K9W1WNV9UhV/X1V/ejyRwWA9eJ8BGBV9gy5qromyb1Jbk1yKskd\nVXVqx7IvJNno7p9I8skkH1r2oACwTpyPAKzSlFfkbkmy2d1PdPfzSe5Lcnb7gu5+sLu/Mb/7UJLj\nyx0TANaO8xGAlZkSctcleXLb/a35Y5dzZ5K/fTlDAcAAnI8ArMyRCWtql8d614VV70yykeRnLvP8\nuSTnkuT666+fOCIArKWlnY/zNc5IACab8orcVpIT2+4fT/LUzkVV9bYkv57kTHd/a7cf1N3nu3uj\nuzeOHTt2JfMCwLpY2vmYOCMBWMyUkHs4ycmqurGqrk1ye5IL2xdU1c1J/iizQ+rp5Y8JAGvH+QjA\nyuwZct39QpK7kjyQ5EtJ7u/uR6vqnqo6M1/2u0l+IMlfVtU/VdWFy/w4ALgqOB8BWKUp75FLd19M\ncnHHYx/cdvttS54LANae8xGAVZn0heAAAACsDyEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAw\nGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEH\nAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAw\nGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEH\nAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwGCEHAAAwmEkhV1Wnq+rxqtqsqrt3ef77q+oT8+c/\nV1U3LHtQAFg3zkcAVmXPkKuqa5Lcm+TWJKeS3FFVp3YsuzPJs939Y0k+nOR3lj0oAKwT5yMAqzTl\nFblbkmx29xPd/XyS+5Kc3bHmbJI/nd/+ZJK3VlUtb0wAWDvORwBWZkrIXZfkyW33t+aP7bqmu19I\n8lyS1y5jQABYU85HAFbmyIQ1u/3LYV/BmlTVuSTn5ne/VVVfnPDrM3M0yb+ueoiB2K/F2K/F2K/F\n/fiqB9gHSzsfE2fky+TP5GLs12Ls12Ls12Ku+HycEnJbSU5su388yVOXWbNVVUeSvCbJv+38Qd19\nPsn5JKmqS929cSVDH0b2azH2azH2azH2a3FVdWnVM+yDpZ2PiTPy5bBfi7Ffi7Ffi7Ffi3k55+OU\nSysfTnKyqm6sqmuT3J7kwo41F5K8a3777Uk+1d27/osjAFwlnI8ArMyer8h19wtVdVeSB5Jck+Sj\n3f1oVd2T5FJ3X0jyJ0n+vKo2M/uXxtv3c2gAWDXnIwCrNOXSynT3xSQXdzz2wW23v5nk5xf8tc8v\nuP6ws1+LsV+LsV+LsV+Luyr3bJ/Ox+Qq3a99ZL8WY78WY78WY78Wc8X7Va7wAAAAGMuU98gBAACw\nRvY95KrqdFU9XlWbVXX3Ls9/f1V9Yv7856rqhv2eaZ1N2K9frarHquqRqvr7qvrRVcy5Lvbar23r\n3l5VXVWH+lOUpuxXVb1j/nvs0ar6i4OecZ1M+PN4fVU9WFVfmP+ZvG0Vc66LqvpoVT19uY/Nr5nf\nn+/nI1X1xoOecZ04HxfjfFycM3IxzsjFOCOn27fzsbv37b/M3vz9/5L8jyTXJvnnJKd2rPk/ST4y\nv317kk/s50zr/N/E/frZJP9tfvsX7ddL79d83auTfDrJQ0k2Vj33Ou9XkpNJvpDkv8/v//Cq517z\n/Tqf5Bfnt08l+cqq517xnv2vJG9M8sXLPH9bkr/N7LvV3pTkc6ueeYV75Xxc/n45Hxfcs/k6Z+TE\n/XJGLrxfzsj/2ot9OR/3+xW5W5JsdvcT3f18kvuSnN2x5mySP53f/mSSt1bVbl+gehjsuV/d/WB3\nf2N+96HMvrfosJry+ytJfjvJh5J88yCHW0NT9uu9Se7t7meTpLufPuAZ18mU/eokPzi//Zq8+DvE\nDpXu/nQu8x1pc2eT/FnPPJTkh6rqRw5murXjfFyM83FxzsjFOCMX44xcwH6dj/sdctcleXLb/a35\nY7uu6e4XkjyX5LX7PNe6mrJf292ZWb0fVnvuV1XdnOREd//NQQ62pqb8/npdktdV1Weq6qGqOn1g\n062fKfv1W0neWVVbmX1y4fsOZrRhLfp33NXM+bgY5+PinJGLcUYuxhm5XFd0Pk76+oGXYbd/Odz5\nMZlT1hwWk/eiqt6ZZCPJz+zrROvtJferql6R5MNJ3n1QA625Kb+/jmR26chbMvvX7H+sqpu6+9/3\nebZ1NGW/7kjyse7+var66cy+L+ym7v7P/R9vSP6+/y/Ox8U4HxfnjFyMM3IxzsjluqK/7/f7Fbmt\nJCe23T+eF7+s+t01VXUks5deX+qlx6vZlP1KVb0tya8nOdPd3zqg2dbRXvv16iQ3JfmHqvpKZtcc\nXzjEb+ae+ufxr7v729395SSPZ3ZoHUZT9uvOJPcnSXd/Nskrkxw9kOnGNOnvuEPC+bgY5+PinJGL\ncUYuxhm5XFd0Pu53yD2c5GRV3VhV12b2Zu0LO9ZcSPKu+e23J/lUz9/1dwjtuV/zyyD+KLND6jBf\nm53ssV/d/Vx3H+3uG7r7hszeM3Gmuy+tZtyVm/Ln8a8y+8CAVNXRzC4jeeJAp1wfU/brq0nemiRV\n9YbMDqlnDnTKsVxI8gvzT+d6U5Lnuvtrqx5qRZyPi3E+Ls4ZuRhn5GKckct1Refjvl5a2d0vVNVd\nSR7I7NNtPtrdj1bVPUkudfeFJH+S2Uutm5n9S+Pt+znTOpu4X7+b5AeS/OX8Pe9f7e4zKxt6hSbu\nF3MT9+uBJP+7qh5L8h9JPtDdX1/d1Kszcb/en+SPq+pXMrsE4t2H+H+0U1Ufz+ySo6Pz90T8ZpLv\nS5Lu/khm75G4Lclmkm8kec9qJl095+NinI+Lc0Yuxhm5GGfkYvbrfKxDup8AAADD2vcvBAcAAGC5\nhBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwA\nAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBg\nhBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwA\nAMBg9gy5qvpoVT1dVV+8zPNVVb9fVZtV9UhVvXH5YwIAAPAdU16R+1iS0y/x/K1JTs7/O5fkD1/+\nWAAAAFzOniHX3Z9O8m8vseRskj/rmYeS/FBV/ciyBgQAAOB7LeM9ctcleXLb/a35YwAAAOyDI0v4\nGbXLY73rwqpzmV1+mVe96lU/+frXv34JvzwA6+7zn//8v3b3sVXPAQBXi2WE3FaSE9vuH0/y1G4L\nu/t8kvNJsrGx0ZcuXVrCLw/Auquqf1n1DABwNVnGpZUXkvzC/NMr35Tkue7+2hJ+LgAAALvY8xW5\nqvp4krckOVpVW0l+M8n3JUl3fyTJxSS3JdlM8o0k79mvYQEAAJgQct19xx7Pd5JfWtpEAAAAvKRl\nXFoJAADAARJyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFy\nAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAA\ngxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFy\nAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAAgxFyAAAA\ngxFyAAAAgxFyAAAAg5kUclV1uqoer6rNqrp7l+evr6oHq+oLVfVIVd22/FEBAABIJoRcVV2T5N4k\ntyY5leSOqjq1Y9lvJLm/u29OcnuSP1j2oAAAAMxMeUXuliSb3f1Edz+f5L4kZ3es6SQ/OL/9miRP\nLW9EAAAAtjsyYc11SZ7cdn8ryU/tWPNbSf6uqt6X5FVJ3raU6QAAAHiRKa/I1S6P9Y77dyT5WHcf\nT3Jbkj+vqhf97Ko6V1WXqurSM888s/i0AAAATAq5rSQntt0/nhdfOnlnkvuTpLs/m+SVSY7u/EHd\nfb67N7p749ixY1c2MQAAwCE3JeQeTnKyqm6sqmsz+zCTCzvWfDXJW5Okqt6QWch5yQ0AAGAf7Bly\n3f1CkruSPJDkS5l9OuWjVXVPVZ2ZL3t/kvdW1T8n+XiSd3f3zssvAQAAWIIpH3aS7r6Y5OKOxz64\n7fZjSd683NEAAADYzaQvBAcAAGB9CDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDB\nCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkA\nAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDB\nCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkA\nAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBCDkAAIDBTAq5qjpdVY9X1WZV3X2ZNe+oqseq6tGq\n+ovljgkAAMB3HNlrQVVdk+TeJD+XZCvJw1V1obsf27bmZJJfS/Lm7n62qn54vwYGAAA47Ka8IndL\nks3ufqK7n09yX5KzO9a8N8m93f1sknT308sdEwAAgO+YEnLXJXly2/2t+WPbvS7J66rqM1X1UFWd\nXtaAAAAAfK89L61MUrs81rv8nJNJ3pLkeJJ/rKqbuvvfv+cHVZ1Lci5Jrr/++oWHBQAAYNorcltJ\nTmy7fzzJU7us+evu/nZ3fznJ45mF3ffo7vPdvdHdG8eOHbvSmQEAAA61KSH3cJKTVXVjVV2b5PYk\nF3as+askP5skVXU0s0stn1jmoAAAAMzsGXLd/UKSu5I8kORLSe7v7ker6p6qOjNf9kCSr1fVY0ke\nTPKB7v76fg0NAABwmFX3zre7HYyNjY2+dOnSSn5tAA5WVX2+uzdWPQcAXC0mfSE4AAAA60PIAQAA\nDEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbI\nAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAA\nDEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbI\nAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAADEbIAQAA\nDGZSyFXV6ap6vKo2q+rul1j39qrqqtpY3ogAAABst2fIVdU1Se5NcmuSU0nuqKpTu6x7dZJfTvK5\nZQ8JAADAf5nyitwtSTa7+4nufj7JfUnO7rLut5N8KMk3lzgfAAAAO0wJueuSPLnt/tb8se+qqpuT\nnOjuv1nibAAAAOxiSsjVLo/1d5+sekWSDyd5/54/qOpcVV2qqkvPPPPM9CkBAAD4rikht5XkxLb7\nx5M8te3+q5PclOQfquorSd6U5MJuH3jS3ee7e6O7N44dO3blUwMAABxiU0Lu4SQnq+rGqro2ye1J\nLnznye5+rruPdvcN3X1DkoeSnOnuS/syMQAAwCG3Z8h19wtJ7kryQJIvJbm/ux+tqnuq6sx+DwgA\nAMD3OjJlUXdfTHJxx2MfvMzat7z8sQAAALicSV8IDgAAwPoQcgAAAIMRcgAAAIMRcgAAAIMRcgAA\nAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMR\ncgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAA\nAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMR\ncgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIMRcgAAAIOZFHJVdbqqHq+qzaq6e5fn\nf7WqHquqR6rq76vqR5c/KgAAAMmEkKuqa5Lcm+TWJKeS3FFVp3Ys+0KSje7+iSSfTPKhZQ8KAADA\nzJRX5G5JstndT3T380nuS3J2+4LufrC7vzG/+1CS48sdEwAAgO+YEnLXJXly2/2t+WOXc2eSv305\nQwEAAHB5RyasqV0e610XVr0zyUaSn7nM8+eSnEuS66+/fuKIAAAAbDflFbmtJCe23T+e5Kmdi6rq\nbUl+PcmZ7v7Wbj+ou89390Z3bxw7duxK5gUAADj0poTcw0lOVtWNVXVtktuTXNi+oKpuTvJHmUXc\n08sfEwAAgO/YM+S6+4UkdyV5IMmXktzf3Y9W1T1VdWa+7HeT/ECSv6yqf6qqC5f5cQAAALxMU94j\nl+6+mOTijsc+uO3225Y8FwAAAJcx6QvBAQAAWB9CDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAA\nYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBC\nDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAA\nYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBC\nDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDBCDgAAYDCTQq6qTlfV41W1WVV37/L8\n91fVJ+bPf66qblj2oAAAAMzsGXJVdU2Se5PcmuRUkjuq6tSOZXcmeba7fyzJh5P8zrIHBQAAYGbK\nK3K3JNns7ie6+/kk9yU5u2PN2SR/Or/9ySRvrapa3pgAAAB8x5SQuy7Jk9vub80f23VNd7+Q5Lkk\nr13GgAAAAHyvIxPW7PbKWl/BmlTVuSTn5ne/VVVfnPDrM3M0yb+ueoiB2K/F2K/F2K/F/fiqBwCA\nq8mUkNtKcmLb/eNJnrrMmq2qOpLkNUn+becP6u7zSc4nSVVd6u6NKxn6MLJfi7Ffi7Ffi7Ffi6uq\nS6ueAQCuJlMurXw4ycmqurGqrk1ye5ILO9ZcSPKu+e23J/lUd7/oFTkAAABevj1fkevuF6rqriQP\nJLkmyUe7+9GquifJpe6+kORPkvx5VW1m9krc7fs5NAAAwGE25dLKdPfFJBd3PPbBbbe/meTnF/y1\nzy+4/rCzX4uxX4uxX4uxX4saC3+OAAAEI0lEQVSzZwCwROUKSAAAgLFMeY8cAAAAa2TfQ66qTlfV\n41W1WVV37/L891fVJ+bPf66qbtjvmdbZhP361ap6rKoeqaq/r6ofXcWc62Kv/dq27u1V1VV1qD9p\ncMp+VdU75r/HHq2qvzjoGdfJhD+P11fVg1X1hfmfydtWMee6qKqPVtXTl/tqmZr5/fl+PlJVbzzo\nGQHgarGvIVdV1yS5N8mtSU4luaOqTu1YdmeSZ7v7x5J8OMnv7OdM62zifn0hyUZ3/0SSTyb50MFO\nuT4m7leq6tVJfjnJ5w52wvUyZb+q6mSSX0vy5u7+n0n+74EPuiYm/v76jST3d/fNmX3I0x8c7JRr\n52NJTr/E87cmOTn/71ySPzyAmQDgqrTfr8jdkmSzu5/o7ueT3Jfk7I41Z5P86fz2J5O8tap2+4Lx\nw2DP/eruB7v7G/O7D2X2vX6H1ZTfX0ny25kF7zcPcrg1NGW/3pvk3u5+Nkm6++kDnnGdTNmvTvKD\n89uvyYu/Y/NQ6e5PZ5fvEN3mbJI/65mHkvxQVf3IwUwHAFeX/Q6565I8ue3+1vyxXdd09wtJnkvy\n2n2ea11N2a/t7kzyt/s60Xrbc7+q6uYkJ7r7bw5ysDU15ffX65K8rqo+U1UPVdVLvbpytZuyX7+V\n5J1VtZXZJ/u+72BGG9aif8cBAJcx6esHXobdXlnb+TGZU9YcFpP3oqremWQjyc/s60Tr7SX3q6pe\nkdnluu8+qIHW3JTfX0cyu+ztLZm92vuPVXVTd//7Ps+2jqbs1x1JPtbdv1dVP53Z92ne1N3/uf/j\nDcnf9wCwJPv9itxWkhPb7h/Piy89+u6aqjqS2eVJL3VpztVsyn6lqt6W5NeTnOnubx3QbOtor/16\ndZKbkvxDVX0lyZuSXDjEH3gy9c/jX3f3t7v7y0kezyzsDqMp+3VnkvuTpLs/m+SVSY4eyHRjmvR3\nHACwt/0OuYeTnKyqG6vq2sw+DODCjjUXkrxrfvvtST7Vh/fL7fbcr/mlgn+UWcQd5vcvJXvsV3c/\n191Hu/uG7r4hs/cUnunuS6sZd+Wm/Hn8qyQ/myRVdTSzSy2fONAp18eU/fpqkrcmSVW9IbOQe+ZA\npxzLhSS/MP/0yjclea67v7bqoQBgRPt6aWV3v1BVdyV5IMk1ST7a3Y9W1T1JLnX3hSR/ktnlSJuZ\nvRJ3+37OtM4m7tfvJvmBJH85/0yYr3b3mZUNvUIT94u5ifv1QJL/XVWPJfmPJB/o7q+vburVmbhf\n70/yx1X1K5ldIvjuQ/wPUamqj2d2We7R+fsGfzPJ9yVJd38ks/cR3pZkM8k3krxnNZMCwPjqEP8/\nBwAAwJD2/QvBAQAAWC4hBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMBghBwAAMJj/\nD/gF+QApoEmTAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig = plt.figure(figsize=(15,10))\n", "ax1 = fig.add_subplot(2,2,1) #modifie l'objet fig et cr\u00e9\u00e9 une nouvelle instance de subplot, appel\u00e9e ax1\n", "#vous verrez souvent la convention ax comme instance de subplot : c'est parce que l'on parle aussi d'objet \"Axe\"\n", "#\u00e0 ne pas confondre avec l'objet \"Axis\"\n", "ax2 = fig.add_subplot(2,2,2)\n", "ax3 = fig.add_subplot(2,2,3)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Si aucune instance d'axes n'est pr\u00e9cis\u00e9e, la m\u00e9thode plot est appliqu\u00e9e \u00e0 la derni\u00e8re instance cr\u00e9\u00e9e."]}, {"cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [{"data": {"text/plain": ["[]"]}, "execution_count": 8, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAHWCAYAAABAA0zqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl4VdW9//HP95CBeZAhAQKEMIcU\nBwIqiDiPCDiCc71e0XqdWqtFrbN9FLW3TlTFqdVWKdZbAcdKRfRnRQIKCIEwE0AgYZKZkGT9/gg5\nzXCSnOTsnZPh/XqePM85+6yz9ncTXH7Ye+21zTknAAAA+CMQ7QIAAAAaMsIWAACAjwhbAAAAPiJs\nAQAA+IiwBQAA4CPCFgAAgI+qDFtm9rqZ5ZjZkgo+NzN7zsxWmdliMzvO+zIBoGYYwwBEWzhntv4k\n6ZxKPj9XUp8jPxMkvRh5WQDgmT+JMQxAFFUZtpxzX0raUUmTMZLedEXmSmprZp29KhAAIsEYBiDa\nvJiz1VXShhLvNx7ZBgD1AWMYAF/FeNCHhdgW8hlAZjZBRafp1aJFi8H9+/f3YPcA6osFCxZsc851\njHYdZYQ1hjF+AY1bJOOXF2Fro6RuJd4nSfoxVEPn3BRJUyQpPT3dzZ8/34PdA6gvzGx9tGsIIawx\njPELaNwiGb+8uIw4Q9I1R+7oOUHST865zR70CwC1gTEMgK+qPLNlZu9IOkVSBzPbKOlBSbGS5Jx7\nSdJHks6TtErSfknX+VUsAFQXYxiAaKsybDnnLq/icyfpfzyrCAA8xBgGINpYQR4AAMBHhC0AAAAf\nEbYAAAB8RNgCAADwEWELAADAR4QtAAAAHxG2AAAAfETYAgAA8BFhCwAAwEeELQAAAB8RtgAAAHxE\n2AIAAPARYQsAAMBHhC0AAAAfEbYAAAB8RNgCAADwEWELAADAR4QtAAAAHxG2AAAAfETYAgAA8BFh\nCwAAwEeELQAAAB8RtgAAAHxE2AIAAPARYQsAAMBHhC0AAAAfEbYAAAB8RNgCAADwEWELAADAR4Qt\nAAAAHxG2AAAAfBRW2DKzc8wsy8xWmdnEEJ93N7PZZva9mS02s/O8LxUAqo/xC0C0VRm2zKyJpMmS\nzpWUKulyM0st0+y3kqY5546VNF7SH70uFACqi/ELQF0QzpmtoZJWOefWOOfyJE2VNKZMGyep9ZHX\nbST96F2JAFBjjF8Aoi6csNVV0oYS7zce2VbSQ5KuMrONkj6SdGuojsxsgpnNN7P5ubm5NSgXAKqF\n8QtA1IUTtizENlfm/eWS/uScS5J0nqS3zKxc3865Kc65dOdceseOHatfLQBUD+MXgKgLJ2xtlNSt\nxPsklT/Nfr2kaZLknPtGUlNJHbwoEAAiwPgFIOrCCVsZkvqYWU8zi1PRBNIZZdpkSzpdksxsgIoG\nK86zA4g2xi8AUVdl2HLO5Uu6RdKnkpap6K6dpWb2iJmNPtLsTkk3mNkiSe9I+rlzruypegCoVYxf\nAOqCmHAaOec+UtHE0ZLbHijxOlPScG9LA4DIMX4BiDZWkAcAAPARYQsAAMBHhC0AAAAfEbYAAAB8\nRNgCAADwEWELAADAR4QtAAAAHxG2AAAAfETYAgAA8BFhCwAAwEeELQAAAB8RtgAAAHxE2AIAAPAR\nYQsAAMBHhC0AAAAfEbYAAAB8RNgCAADwEWELAADAR4QtAAAAHxG2AAAAfETYAgAA8BFhCwAAwEeE\nLQAAAB8RtgAAAHxE2AIAAPARYQsAAMBHhC0AAAAfEbYAAAB8RNgCAADwEWELAADAR2GFLTM7x8yy\nzGyVmU2soM1lZpZpZkvN7G1vywSAmmH8AhBtMVU1MLMmkiZLOlPSRkkZZjbDOZdZok0fSfdIGu6c\n22lmnfwqGADCxfgFoC4I58zWUEmrnHNrnHN5kqZKGlOmzQ2SJjvndkqScy7H2zIBoEYYvwBEXThh\nq6ukDSXebzyyraS+kvqa2ddmNtfMzvGqQACIAOMXgKir8jKiJAuxzYXop4+kUyQlSfrKzNKcc7tK\ndWQ2QdIESerevXu1iwWAamL8AhB14ZzZ2iipW4n3SZJ+DNFmunPusHNuraQsFQ1epTjnpjjn0p1z\n6R07dqxpzQAQLsYvAFEXTtjKkNTHzHqaWZyk8ZJmlGnzvqRTJcnMOqjotPwaLwsFgBpg/AIQdVWG\nLedcvqRbJH0qaZmkac65pWb2iJmNPtLsU0nbzSxT0mxJdznntvtVNACEg/ELQF1gzpWdvlA70tPT\n3fz586OybwDRYWYLnHPp0a4jUoxfQOMTyfjFCvIAAAA+ImwBAAD4iLAFAADgI8IWAACAjwhbAAAA\nPiJsAQAA+IiwBQAA4CPCFgAAgI8IWwAAAD4ibAEAAPiIsAUAAOAjwhYAAICPCFsAAAA+ImwBAAD4\niLAFAADgI8IWAACAjwhbAAAAPiJsAQAA+IiwBQAA4CPCFgAAgI8IWwAAAD4ibAEAAPiIsAUAAOAj\nwhYAAICPCFsAAAA+ImwBAAD4iLAFAADgI8IWAACAjwhbAAAAPiJsAQAA+IiwBQAA4KOwwpaZnWNm\nWWa2yswmVtLuEjNzZpbuXYkAUHOMXwCircqwZWZNJE2WdK6kVEmXm1lqiHatJN0m6VuviwSAmmD8\nAlAXhHNma6ikVc65Nc65PElTJY0J0e5RSU9KOuhhfQAQCcYvAFEXTtjqKmlDifcbj2wLMrNjJXVz\nzn3gYW0AECnGLwBRF07YshDbXPBDs4CkP0i6s8qOzCaY2Xwzm5+bmxt+lQBQM4xfAKIunLC1UVK3\nEu+TJP1Y4n0rSWmSvjCzdZJOkDQj1CRT59wU51y6cy69Y8eONa8aAMLD+AUg6sIJWxmS+phZTzOL\nkzRe0oziD51zPznnOjjnkp1zyZLmShrtnJvvS8UAED7GLwBRV2XYcs7lS7pF0qeSlkma5pxbamaP\nmNlovwsEgJpi/AJQF8SE08g595Gkj8pse6CCtqdEXhYAeIPxC0C0sYI8AACAjwhbAAAAPiJsAQAA\n+IiwBQAA4CPCFgAAgI8IWwAAAD4ibAEAAPiIsAUAAOAjwhYAAICPCFsAAAA+ImwBAAD4iLAFAADg\nI8IWAACAjwhbAAAAPiJsAQAA+IiwBQAA4CPCFgAAgI8IWwAAAD4ibAEAAPiIsAUAAOAjwhYAAICP\nCFsAAAA+ImwBAAD4iLAFAADgI8IWAACAjwhbAAAAPiJsAQAA+IiwBQAA4CPCFgAAgI8IWwAAAD4K\nK2yZ2TlmlmVmq8xsYojPf2VmmWa22Mz+ZWY9vC8VAKqP8QtAtFUZtsysiaTJks6VlCrpcjNLLdPs\ne0npzrlBkv4u6UmvCwWA6mL8AlAXhHNma6ikVc65Nc65PElTJY0p2cA5N9s5t//I27mSkrwtEwBq\nhPELQNSFE7a6StpQ4v3GI9sqcr2kjyMpCgA8wvgFIOpiwmhjIba5kA3NrpKULmlkBZ9PkDRBkrp3\n7x5miQBQY4xfAKIunDNbGyV1K/E+SdKPZRuZ2RmS7pM02jl3KFRHzrkpzrl051x6x44da1IvAFQH\n4xeAqAsnbGVI6mNmPc0sTtJ4STNKNjCzYyW9rKKBKsf7MgGgRhi/AERdlWHLOZcv6RZJn0paJmma\nc26pmT1iZqOPNHtKUktJ75rZQjObUUF3AFBrGL8A1AXhzNmSc+4jSR+V2fZAiddneFwXAHiC8QtA\ntLGCPAAAgI8IWwAAAD4ibAEAAPiIsAUAAOAjwhYAAICPCFsAAAA+ImwBAAD4iLAFAADgI8IWAACA\njwhbAAAAPiJsAQAA+IiwBQAA4CPCFgAAgI8IWwAAAD4ibAEAAPiIsAUAAOAjwhYAAICPCFsAAAA+\nImwBAAD4iLAFAADgI8IWAACAjwhbAAAAPiJsAQAA+IiwBQAA4CPCFgAAgI8IWwAAAD4ibAEAAPiI\nsAUAAOAjwhYAAICPCFsAAAA+ImwBAAD4KKywZWbnmFmWma0ys4khPo83s78d+fxbM0v2ulAAqAnG\nLwDRVmXYMrMmkiZLOldSqqTLzSy1TLPrJe10zvWW9AdJk7wuFACqi/ELQF0QzpmtoZJWOefWOOfy\nJE2VNKZMmzGS/nzk9d8lnW5m5l2ZAFAjjF8Aoi6csNVV0oYS7zce2RayjXMuX9JPktp7USAARIDx\nC0DUxYTRJtS/8FwN2sjMJkiacOTtITNbEsb+64MOkrZFuwiPNJRjaSjHITWsY+lXy/tj/KpaQ/r7\nxbHUPQ3lOKQIxq9wwtZGSd1KvE+S9GMFbTaaWYykNpJ2lO3IOTdF0hRJMrP5zrn0mhRd13AsdU9D\nOQ6p4R1LLe+S8asKHEvd1FCOpaEchxTZ+BXOZcQMSX3MrKeZxUkaL2lGmTYzJF175PUlkj53zpX7\nlyEA1DLGLwBRV+WZLedcvpndIulTSU0kve6cW2pmj0ia75ybIek1SW+Z2SoV/YtwvJ9FA0A4GL8A\n1AXhXEaUc+4jSR+V2fZAidcHJV1azX1PqWb7uoxjqXsaynFIHEtEGL+qxLHUTQ3lWBrKcUgRHItx\nthwAAMA/PK4HAADAR76HrYbyqIwwjuNXZpZpZovN7F9m1iMadYajqmMp0e4SM3NmVmfvJAnnWMzs\nsiO/m6Vm9nZt1xiuMP6OdTez2Wb2/ZG/Z+dFo86qmNnrZpZT0dIIVuS5I8e52MyOq+0aw9VQxi+J\nMaw26wsX41fd49v45Zzz7UdFE1JXS0qRFCdpkaTUMm1ulvTSkdfjJf3Nz5p8PI5TJTU/8voXdfE4\nwj2WI+1aSfpS0lxJ6dGuO4LfSx9J30tqd+R9p2jXHcGxTJH0iyOvUyWti3bdFRzLyZKOk7Skgs/P\nk/Sxita3OkHSt9GuOYLfSZ0fv6pxLIxhdew4GL+iciy+jF9+n9lqKI/KqPI4nHOznXP7j7ydq6L1\nfOqicH4nkvSopCclHazN4qopnGO5QdJk59xOSXLO5dRyjeEK51icpNZHXrdR+fWi6gTn3JcKsU5V\nCWMkvemKzJXU1sw610511dJQxi+JMawuYvyqg/wav/wOWw3lURnhHEdJ16so+dZFVR6LmR0rqZtz\n7oPaLKwGwvm99JXU18y+NrO5ZnZOrVVXPeEcy0OSrjKzjSq6u+7W2inNc9X97ylaGsr4JTGG1UWM\nX/VTjcavsJZ+iIBnj8qIsrBrNLOrJKVLGulrRTVX6bGYWUDSHyT9vLYKikA4v5cYFZ2KP0VF/1L/\nyszSnHO7fK6tusI5lssl/ck593szO1FFa0OlOecK/S/PU/Xhv3mp4YxfEmNYXcT41YjGL7/PbFXn\nURmySh6VEWXhHIfM7AxJ90ka7Zw7VEu1VVdVx9JKUpqkL8xsnYquSc+ooxNMw/37Nd05d9g5t1ZS\nlooGr7omnGO5XtI0SXLOfSOpqYqeO1bfhPXfUx3QUMYviTGsLo5hjF+NafzyeaJZjKQ1knrqP5Pm\nBpZp8z8qPcF0Wm1OhvPwOI5V0QTBPtGuN9JjKdP+C9XByaXV+L2cI+nPR153UNHp3/bRrr2Gx/Kx\npJ8feT3gyH/gFu3aKzieZFU8wfR8lZ5gOi/a9UbwO6nz41c1joUxrI4dB+NX1I7H8/GrNoo+T9KK\nI/8R33dk2yMq+peTVJRu35W0StI8SSnR/oOu4XHMkrRV0sIjPzOiXXNNj6VM2zo5UFXj92KS/ldS\npqQfJI2Pds0RHEuqpK+PDGQLJZ0V7ZorOI53JG2WdFhF/wq8XtJNkm4q8TuZfOQ4f6jnf7/qxfgV\n5rEwhtWx42D8ispx+DJ+sYI8AACAj1hBHgAAwEeELQAAAB8RtgAAAHxE2AIAAPARYQsAAMBHhC0A\nAAAfEbYAAAB8RNgCAADwEWELAADAR4QtAAAAHxG2AAAAfETYAgAA8BFhCwAAwEeELQAAAB8RtgAA\nAHxE2AIAAPARYQsAAMBHhC0AAAAfEbYAAAB8RNgCAADwEWELAADAR4QtAAAAH3kWtszsdTPLMbMl\nXvUJAABQ35lzzpuOzE6WtFfSm865tKrad+jQwSUnJ3uybwD1w4IFC7Y55zpGuw4AqE0xXnXknPvS\nzJLDbZ+cnKz58+d7tXsA9YCZrY92DQBQ22p1zpaZTTCz+WY2Pzc3tzZ3DQAAEBW1Gracc1Occ+nO\nufSOHbmSAAAAGj7uRgQAAPARYQsAAMBHXi798I6kbyT1M7ONZna9V30DAADUV17ejXi5V30BAAA0\nFFxGDMOhQ4d07733ateuXdEuBQAA1DOErTBMnz5djz/+uCZOnBjtUgAAQD1D2ArDvn37JEm33npr\nlCsBAAD1DWErDNnZ2TIz9e7dO9qlAACAeoawFYb169fLOaeHHnpIOTk50S4HAADUI4StMJx55pka\nPXq0nnjiCX399dfRLgcAANQjhK0wXH755Zo2bZri4+MJWwAAoFoIW1VwzmnTpk2KiYlReno6YQsA\nAFQLYasKOTk5SkpK0uTJkzV8+HAtWLBABw8ejHZZAACgniBsVSE7O1uS1KNHDw0bNkwtWrTQ6tWr\no1wVAACoLzx7XE9DVTJspaWlafv27QoEyKgAACA8hK0qrF+/XpLUvXt3xcTwxwUAAKqnUZ+i2b9/\nf5VtsrOz1aJFC7Vr106S9Oc//1kjRoyQc87v8gAAQAPQaE/V/Pjjjxo+fLhOOOEEbdiwQe+9954S\nEhLKtRs7dqz69esnM5MkHT58WP/v//0/rVy5Un379q3tsgEAQD3TKM9s7dq1S+ecc462bdumY489\nVl9//bWWLl0asu0pp5yiX/ziF8H3w4cPlySWgAAAAGFpdGHr4MGDGjt2rJYvX67/+7//01VXXSVJ\nyszMDNk+IyNDO3bsCL7v16+f2rVrR9gCAABh8Sxsmdk5ZpZlZqvMbKJX/XrJOadrrrlGc+bM0Z/+\n9CedeeaZ6ty5s9q2bRsybO3fv19Dhw7Viy++GNwWCAQ0bNiwsMJWYWGhp/UDAID6x5OwZWZNJE2W\ndK6kVEmXm1mqF317ycw0bNgwPf3007riiiuC21JTU0OGrQ0bNkgqWvahpNGjR2vIkCEqKCiodH8P\nPPCAzjjjDB0+fNijIwAAAPWNVxPkh0pa5ZxbI0lmNlXSGEmhr81F0R133FFu22mnnRYMViWVXPah\npAkTJmjChAmV7icvL0+vvvqqtm7dqt/+9reaNGlShW3Xr1+vvXv3auDAgeEcAgAAqEe8uozYVVLJ\ntLLxyLY65dtvv9WaNWvKbX/00Uf1pz/9qdz24gVNy4YtqeiS5O7duyvc1/vvv6+tW7eqZcuWeu+9\n9yqtKzk5WWlpaVVUDwAA6iOvwpaF2FZuISozm2Bm881sfm5urke7Dt91112nX/3qVxV+XnbtrOzs\nbAUCAXXtWj43nn/++brgggsq7Oull15ScnKybrvtNq1du1aHDh2qsr6SE/EBAEDD4FXY2iipW4n3\nSZJ+LNvIOTfFOZfunEvv2LGjR7sOT15enlauXBnyUt327duVnJysKVOmlNo+fvx4vf3224qNjS33\nnQEDBujbb7/V2rVry322fPlyzZ49WzfeeKMGDBigwsLCCp+nWHI+13fffVfdwwIAAHWcV2ErQ1If\nM+tpZnGSxkua4VHfnlixYoXy8/OVmlp+3v5RRx2lHTt2lFtrKzU1VePGjQvZ36233qqmTZvqiiuu\nKDcBvnPnznrmmWd03XXXqV+/fpKkrKyskP3ExsZq165devXVV5mzBQBAA+RJ2HLO5Uu6RdKnkpZJ\nmuacC71KaJQU320YKtBUdEfihx9+qJUrV4bsLzk5WS+//LLmzp2rhx56qNRnbdq00e23366EhAT1\n69dPvXv3Vn5+foW1tWnTRtdff706d+5czaMCAAB1nWfrbDnnPnLO9XXO9XLO/c6rfr2ydOlSBQKB\n4JmmslJTU0ud2SosLNSFF16o1157rcI+x40bp+uvv16zZ88Ont368MMP9frrrweXhWjdurVWrlyp\nSy+9NGQfDz74oE499VStW7dO7777bk0PDwAA1FGNZgX5G264QR999JGaNWsW8vPU1FRt2bIlOEl9\n69atOnz4cLk1tsp6/vnnNWfOnOC8rocffli///3vFQiE90c7b9487dq1S++8844uu+wy7dy5sxpH\nBQAA6rpGE7aSkpJ09tlnV/j5SSedpF/84hfKy8uTVPEaW2U1a9ZMsbGx2r59u2655RZlZGTopptu\nCj64WpKeffZZHXvssSG/v3TpUg0cOFCDBw+WxCR5AAAamkYRtvLy8vTCCy9o1apVFbY54YQT9Mc/\n/lGJiYmSKl9jK5T33ntPkydPVvPmzXX11VeX+qygoEALFy7Utm3bSm3fvXu3NmzYUCpsLViwIOzj\nAgAAdZ9XK8jXaStWrNCtt96qv/71r+rdu3eF7fLz8/XTTz+pffv21Q5bN9xwg5YsWaJu3bqpbdu2\npT4reUdihw4dgtuLJ+Snpqaqffv26tGjB2e2AABoYBpF2Cqe+B5q2YeSRowYodatW+vTTz/V1Vdf\nrcGDB6tNmzZh7cPM9Nxzz4X8rGTYGj58eHB7bGysxo4dq6OPPlqSNHjwYM5sAQDQwNSLsLVnzx7l\n5+erXbt2Nfp+ZmamAoGA+vfvX2m7Pn36aPbs2ZKkhIQEJSQk1Gh/ZSUnJys2NrbcWluDBw/WP/7x\nj+D7J598Ui1atPBknwAAoG6oF3O2/va3v+moo45SQkKCRo4cqRtvvFFvvvlm2N9funSpevXqpaZN\nm1baLjU1VRs3btTu3bv15ptv6uuvv460dElSTEyMrrzySqWkpJTafvDgwVLve/XqFZwzBgAAGoZ6\nEbZOPPFEPfnkk7rgggtUUFCgKVOm6Nprr1VOTk5Y38/MzAxrdfbiy4zLli3TL3/5S7399tsR1V3S\nG2+8oRtvvLHUtr59++qWW24Jvi8sLNSkSZM0c+ZMz/YLAACiq15cRhw4cGCpsLRnzx4VFBSUm4he\nkYyMDP30009VtisOW/PmzdOOHTvCnhwfroKCAgUCAZlZ8E7Ekg+5DgQCevHFF3XCCSdU+pBrAABQ\nf9SLM1tltWrVKuygJUktWrRQly5dqmzXs2dP/e53v1OnTp0khX8nYjjee+89NW/ePPhA6ooeH8Qk\neQAAGpZ6Gbby8vI0ceJEffrpp1W2/eqrrzRx4sSwzmw1adJE9957b/AORC/DVmJiovLy8oKT5Cu6\nQ3Lw4MFatWpVWPUCAIC6r16GrdjYWD377LOaNWtWlW0/++wzPfXUU4qPjw+r7x07dgTnankZtkou\n/yAVndlq2rSpevbsWaodK8kDANCw1Is5W2WZmZKSkrRhw4Yq22ZmZqp3795V3olY7MUXX9Rbb72l\n7777LqxLj+Hq0KGDjjrqKK1YsUKSdPrpp6tjx45q0qRJqXaDBw9WbGxs8HFBAACgfquXYUsqOusU\nTtgqfvZguIov6xUUFJQLQpHq169f8MzWeeedp/POO69cmw4dOmjv3r2Ki4vzdN8AACA66uVlREnq\n1q1blWHr0KFDWrlyZY3C1iOPPBJRfaH813/9ly6++GIdPHhQmZmZOnz4cMh2BC0AABqOeh22ipeA\nqMimTZvUunXrKh/TU1KvXr0kyZe1rv77v/9bt9xyixYuXKiBAwfq448/Dtlu1qxZGjlyJJPkAQBo\nACIOW2Z2qZktNbNCM0v3oqhwPPjgg9qxY0ell/pSUlK0fft2XXbZZWH3GxMTo5deeklz5871osxS\nnHPavHlzsO+Kzrjl5+fryy+/1Pfff+95DQAAoHZ5MWdriaSLJL3sQV9hi4kJr3Qzq/bcq7IrvXtl\n2bJlGjhwoDp16qSmTZsqOTk5ZLviOxJffPFF9e3b19OJ+gAAoHZFfGbLObfMOZdVdUtv5eTk6Kqr\nrtLnn39eYZu7775bEydOrMWqKterVy8FAgHl5ORowIABFYbAjh076pZbbtHf//53JScn65VXXqnl\nSgEAgFfq7Zyt+Ph4/fWvf610tfUZM2YEl1qoC+Lj44PralU1af/555/XihUrdMMNN2jIkCG1UR4A\nAPBBWGHLzGaZ2ZIQP2OqszMzm2Bm881sfm5ubs0qPqJNmzZq1apVhXckHjp0SKtWrarW5PjaULy4\n6c0331xl2169emny5Mk65phjtHz5cqWlpemzzz7zu0QAAOChsMKWc+4M51xaiJ/p1dmZc26Kcy7d\nOZfesWPHmlVcQmXLP2RlZamgoEBpaWkR78dL/fr1U7NmzXT88cdX63tt27bV0qVLg+t0AQCA+qHe\nLmoqVb6wafGzB6uzxlZtGD9+vI4++mgVFBQoEAj/Km5CQoKaN2+uNWvW+FgdAADwWsRhy8wulPS8\npI6SPjSzhc65syOuLAz9+/fX/v37Q34WCAQ0aNAg9e3btzZKCdvQoUM1dOjQan/PzJSSkkLYAgCg\nnjHnXFR2nJ6e7ubPnx+VfddXY8aM0dq1a7V48eJolwLUiJktcM7V2np8AFAX1Nu7ERujM844Qyee\neGKlbS6//HLdf//9tVQRAACoSr0OW5mZmRo5cmS51d4PHDigzp0764033ohSZf649dZb9fLLFa8d\nW1BQoKlTp+qxxx5TtM5YAgCA0up12IqJidGXX35Zbi2t5cuXa8uWLWrRokWUKvOPc06FhYUhP9u6\ndWvwNY/6AQCgbqjXYSspKUmSyt2RWFfvRIzUmjVr1LZtW02dOjXk5126dAkGri+++KIWKwMAABWp\n10s/NG/eXO3btw8ZtmJjY9WnT58oVeaPzp07a/fu3ZXekdipUyetW7dOPXr0qMXKAABARep12JJC\nr7W1dOlS9e3bV3FxcVGqyh/NmjVTly5dKgxbjz32mLZu3arnn3++lisDAAAVqfdh66STTtLhw4dL\nbRs+fHiVd+3VV5WttfXxxx8rNjZW+/fv14QJE3T22Wfr6quvruUKAQBASfU+bD333HPltv3mN7+J\nQiW1IyUlRbNnzy633TmnZcuW6bLLLlOzZs307bffaseOHYQtAACirN6HrbIOHDggM1PTpk2jXYov\nRo8erW7dusk5JzMLbs/NzdXOnTs1YMAAmZkuuOACTZ48WXv37lXLli2jWDEAAI1bvb4bUZL+9a9/\nKSUlRcuXL5ckTZs2TS1atNCos+baAAAgAElEQVTq1aujXJk/Lr74Yj322GOlgpak4PH3799fUlEo\ny8vL02effVauj0OHDtVoFfr8/Hx9/vnnNagaAIDGq96Hrfj4eK1du1br16+XVDQ5PiYmpkHfjbd7\n927t2bOn1La8vDwNGjRIqampkormrbVt21YzZswo1a6wsFCXXnqpBg8erJ07d1Zrv0899ZROP/10\nzZo1K7IDAACgEan3Yatbt26S/rPW1tKlS9WvXz/FxDS4K6SSpC1btqhNmzZ66623Sm0/44wztGjR\nouCfR2xsrCZMmKCUlJRS7T766CPNnDlT+fn55RaDrUrx2cLqfg8AgMas3oetLl26yMxKha2Gtphp\nSQkJCWratGmla20VmzRpUrnnJI4aNUqvv/66JGnlypXV2nerVq0kFV2GBAAA4an3YSs2NladO3fW\nhg0btHfvXq1fv15paWnRLss3ZhZy+YchQ4bo0UcfLdc+Pz9f69at07Jly4LztK644grFx8dr27Zt\n1dr3HXfcoZkzZ+qXv/xlzQ8AAIBGpkFca7v00kvVvXt3FRYW6n//9381cuTIaJfkq7Jha9++fZo/\nf77GjBlTru0ll1yiJUuWKBAIqKCgQFlZWYqPj9e+ffvUpEmTau23R48eDXouHAAAfmgQYeuZZ54J\nvm4MZ11SUlI0Z86c4PIPWVlZkv5zJ2JJp512mqZPn67Y2FjNnj07OJetukFLkmbMmKHPPvtM+/bt\nC16KBAAAlav3lxGLFRYWatmyZcG7EhuySy65RJMmTVJBQYEkadmyZZKkAQMGlGt74YUXqnXr1po8\nebKGDx8e3P63v/1NY8aMkXMu7P3++te/1gsvvKA33nhDBw4ciPAoAABoHCI+s2VmT0m6QFKepNWS\nrnPO7Yq03+p47bXXdPPNN+voo49Wfn6+vvvuu9rcfa0bMWKERowYEXy/fPlyBQIB9e7du1zbbt26\naefOnQoESufqzZs3a8aMGdq2bZs6duwY1n5zc3PVvn17bd++XWvXrg0uMwEAACrmxZmtzySlOecG\nSVoh6R4P+qyWtm3bKi8vTxkZGQ36TsRiBQUFWrp0qTZt2iRJ6tOnj6677jrFx8eHbF82aBV/Rwr/\njsS8vDzt2rUr+MzJhrpoLAAAXos4bDnn/umcyz/ydq6kpEj7rK7itaUkNYqwdejQIaWlpenPf/6z\nJOmaa67Rq6++Wq0+qhu2cnNzJUknnHCCJMIWAADh8nrO1n9J+tjjPqvU2MJW8+bNlZiYqDVr1qiw\nsLBG86d69uypJk2aVDtsDRgwQL1791Z+fn4V3wAAAFKYc7bMbJakxBAf3eecm36kzX2S8iX9tZJ+\nJkiaIEndu3evdrEVSUhICL5uDGFL+s/yD6tXr1a/fv00depUXXbZZWF/PzY2VieddFKFlx7L6t+/\nvxYvXqxu3bpVezFUAAAas7DClnPujMo+N7NrJY2SdLqr5PY259wUSVMkKT09Pfzb4KoQCAR05ZVX\nqqCgQMnJyV51W6elpKToq6++0rJly+Scq1F4/eKLL8Ju27RpU/3sZz+r9j4AAGjsIr6MaGbnSPqN\npNHOuf2Rl1Qzf/nLX/TOO++EnAzeEKWkpGjDhg3BVeFDrbHlpW+++UaTJ09Wfn6+3nnnHQ0dOpRL\niQAAhMGLZPKCpFaSPjOzhWb2kgd9ogrjxo3T9OnTtXz5ciUmJqpt27bV7mPmzJnq37+/tm7dWmXb\nGTNm6I477lCTJk20f/9+ZWRkBJ9HCQAAKubF3Yi9nXPdnHPHHPm5yYvCULnU1FSNGjVKq1evrvFZ\nrdjYWGVlZWnFihVVts3JyVGnTp1kZurVq5ck7kgEACAcjeOaWwNUUFCgTz75REOHDtUNN9xQoz6q\ns/xDcdiSRNgCAKAaCFv1lJlp7Nixio+P1xVXXFGjPnr06KGYmJiwwlZubm5wpfmuXbsqPj5eq1at\nqtF+AQBoTAhb9VQgEFDr1q01a9YsFRYW1qiPmJgYpaSkVPvMViAQ0KhRo0otuQEAAEKL+NmIiJ7c\n3Fzl5uZq06ZNpRZ2rY6xY8eqWbNmVbabP39+qbsP//73v9dof6h7cnNztWbNGh1//PHRLgUAGiSr\nZFksX6Wnp7v58+dHZd8NxSmnnKI5c+aosLBQZhbtclAP5eTk6Pe//72eeeYZ7d+/X02aNPF1f2a2\nwDmX7utOAKCO4TJiPfbBBx9o/fr1EQct51yllyK3bdume++9V0uWLAlue/fdd9WpUydt2bIlon0j\nejZu3KhevXpp1qxZysvLU3Z2drRLAoAGibBVj7Vs2TLixx79+9//VqtWrfTVV19V2GbdunV6/PHH\ntXbt2lL7zs3N5Y7EeuzOO+9Ufn6+brvtNknhP5QcAFA9hK1GrnPnztq3b1+la23l5ORIUnCCvCT1\n7t1bkrgjsZ7617/+pWnTpumee+7RmWeeKYmwBQB+YYJ8I9e9e3fFxcVV+j/a3NxcSQou/SAVLRsR\nCAQ4s1UP5eXl6dZbb1VKSoruvvtuxcfHq0WLFoQtAPAJYauRa9KkSZXLP4Q6sxUXF6fu3btzZqse\nWrRokbKzszV16lQ1bdpUkjR16tTg2UoAgLcIW1CfPn0qDVvbt29Xs2bN1KJFi1Lbr776anXo0MHv\n8uCxIUOGaN26daV+d6NGjYpiRQDQsLH0A/SXv/xF69at029/+9uQnzvntH///nJhC/VPQUFByOUd\n1q9fry+//FLjx49XbGysb/tn6QcAjRET5KGrrrqqwqAlFT0aqKKgdeDAgVKLnaJumzhxojp37qyy\n/8iaPXu2rrnmGq1bty46hQFAA0bYgiRp586d2rNnT8jPHnzwQb322mvltn/44Ydq3ry5Fi9e7Hd5\n8Eh2drZatWpVbm226jyUHABQPYQtaMOGDTrqqKP09ttvh/z8jTfeCLkOV/EjgpgkX39kZ2eHXJut\nb9++kghbAOAHwhbUtWtXNW3aNOT/aJ1zys3NLbXsQ7GUlBRJYvmHeqSisNWhQwe1adOm0vXWAAA1\n40nYMrNHzWyxmS00s3+aWRcv+kXtCAQC6t27d8iwtXfvXh08eLDUsg/FWrZsqYSEhGDY2rRpk557\n7jmdddZZevfdd32vG9WTl5enzZs3q0ePHuU+M7Mq70oFANSMV0s/POWcu1+SzOw2SQ9IusmjvlEL\nBg4cqG+//bbc9lBrbJXUt2/f4DP1fvWrX2natGkKBAJq2bKlLr30Uv8KRrXl5eXp17/+tUaOHBny\n8zfffFPt2rWr5aoAoOHz5MyWc253ibctJEVnPQnUWHp6utatWxdcLb7Y7t271bp165CXESXpZz/7\nme69915JRRPply9frtGjR2v58uW+14zqadmypZ588kmdcsopIT8fMGCAEhMTa7coAGgEPFvU1Mx+\nJ+kaST9JOtWrflE7Ro0apTZt2iguLq7U9mOPPVY//fRTuaUCij355JPBpR9SU1MlSWlpaVq5cqWc\nc+XuekP07N69O3jWMZTs7Gz95S9/0TXXXKOkpKRarg4AGq6wFzU1s1mSQv2z9z7n3PQS7e6R1NQ5\n92CIPiZImiBJ3bt3H7x+/foaFQ2g+h577DHdf//9OnDgQPAxPSXNmzdPxx9/vN5//32NGTPGlxpY\n1BRAYxT2ZUTn3BnOubQQP9PLNH1b0sUV9DHFOZfunEuv6LIUomf16tX6/PPPS2175513dPnll6ug\noCBKVcEr69evV0JCQsigJbHWFgD4xau7EfuUeDtaEhN26qGHHnpIV111Valt8+bN0wcffBDyES8V\nycvL09lnnx1yIVRET0XLPhRr166d2rdvT9gCAI95tc7WE2a2xMwWSzpL0u0e9YtalJ6ers2bN2vT\npk3BbTk5ORXeiViRuLg4LVy4UHPnzvW6REQgOzs75LIPJbH8AwB4z6u7ES8+cklxkHPuAufcpqq/\nhbpmyJAhkqSSDwjPzc2tdtiSpH79+nFHYh3inNP69esrPbMlFYUtno8IAN5iBXkEHXPMMWrSpEmp\nsJWTk1Phsg+V6devn7KysrwsDxEoKCjQpEmTNHbs2ErbPf/886wiDwAeI2whqHnz5ho4cKAyMjKC\n29q1a6fevXtXu6/+/fsrNzdXO3bs8LJE1FBMTIxuvfVWjRgxotJ2bdq0UUyMZyvCAADk4TpbaBje\nfPPNUpcNZ8+eXaN+jj32WJ166qn66aefdNRRR3lVHmooJydH27dvV58+fSoNU9u2bdMDDzygyy+/\nvMpgBgAID2e2UMrRRx+tzp07R9zPaaedps8//1w9e/b0oCpE6p133lFqaqp27dpVabv4+Hi9+OKL\n+vrrr2upMgBo+AhbKGXv3r16+umn9c0332jt2rU6+eST9eWXX0a7LEQoOztbzZo1U/v27Stt16pV\nKyUmJjJvCwA8RNhCKbGxsbrvvvv0/vvva9OmTfrqq6908ODBGvU1duxYjRs3zuMKURPFa2yF8/gk\nln8AAG8RtlBKfHy8Bg0apIyMDOXk5EhSjZZ+kKRAIKDFixd7WR5qKJxlH4oRtgDAW4QtlDNkyBAt\nWLBAW7dulaQaLf0gFd2RuHr1ah0+fNjL8lADVa0eX1K/fv0UHx9f4zOaAIDSCFsoJz09Xbt37w5O\nkq5p2OrXr58OHz6stWvXelkeamDKlCmaMGFCWG3vuusurV+/vsJnKAIAqoelH1DOkCFDFBMTo+3b\nt2v48OGKi4urUT/9+vWTJGVlZalv375elohqGj16dNhtw5nXBQAIH2EL5QwcOFB79uyJ+MxG//79\ndfXVV9f4zBi8sWnTJi1dulTDhw9XixYtqmxfWFioCy+8UGeddZb+53/+pxYqBICGjcuIKCcQCHhy\nCalt27Z68803dcIJJ3hQVcO0f/9+31fZ/+c//6mzzz5bW7ZsCat9IBDQli1b9Prrr/taFwA0FoQt\nhDRjxgyZmX79619H1I9zTjt37vSoqoZn6NChVa59Fans7GxJUlJSUtjfueyyy/Tdd99p1apVfpUF\nAI0GYQsh7dmzR5L0zTffRNTPbbfd5vt8rfz8fOXl5fm6Dz8457R06dLga79kZ2erc+fOio+PD/s7\nl156qSTp3Xff9assAGg0CFsIafDgwZKk3bt3R9RPz549tW3bNm3fvt2LskIaOXKkOnTo4Fv/flm/\nfn3wdaR/zlXtJ9xlH4p1795dJ554oqZNm+ZTVQDQeDBBHiH17dtXt99+u6699tqI+il5R+KwYcO8\nKK2cf//735KKznBV9pDluiY5OVkffvihFi5c6Gvd2dnZOuaYY6r9vZtvvlnLly+vd3+uAFDXmJ+X\nLyqTnp7u5s+fH5V9o/asXr1avXv31uuvv67rrrvOl308/PDDeuihh7R8+fJguMN/FIe5tLS0aJci\nM1vgnEuPdh0AUJs8vYxoZr82M2dm9e+aDnyRnJysuLg4LV++3Ld9jBo1SpK0ZMkS3/bhh5tuukkf\nfPCBFi1aFFyt3w/HHHNMjYNWXl6eZs+e7XFFANC4eBa2zKybpDMlZXvVJ+q/Jk2a6PHHH9c555zj\nS/8LFizQJ598omuuuUY9evTwZR9+WL9+vV5++WXNmzdPxxxzjG9zozZu3KjXXnst+JzL6nrllVd0\n2mmn+RqWAaCh8/LM1h8k3S0pOtclUWf96le/0qmnnupL3x9//LF++9vf6o9//KPS0+vP1ak5c+ZI\nki666CI1adLEtzNb3377rf77v/9bmzZtqtH3L7zwQpkZE+UBIAKehC0zGy1pk3NuURXtJpjZfDOb\nn5ub68WuUQ/s27dPGRkZys/Pr9b38vPzdfPNNysrK6vCNpmZmcFLlStXroy01FrzxRdf6KijjtKg\nQYPUqVOnsBccra7iNbZqetavS5cuGjFiBGELACIQdtgys1lmtiTEzxhJ90l6oKo+nHNTnHPpzrl0\nHuHSeLz33nsaOnSoVq9eXa3vLVq0SC+++KKeeuqpCttkZmZqwIABevTRR9W/f38dPHgw0nJrxZw5\nc3TyyScrEAgoISHBtzNb2dnZatGihdq1a1fjPi677DItXbo0uCaYVLQu2Mcff6zCwkIvygSABi3s\nsOWcO8M5l1b2R9IaST0lLTKzdZKSJH1nZon+lIz6ZuDAgZKqv0Bq8Zmq22+/PeTnBQUFysrKUmpq\nqtLS0lRYWFgv5hbt3btXbdu21WmnnSZJSkxM9PXMVvfu3SN6uPTFF18sM9PMmTMlFV2aHDFihM47\n7zy99957XpUKAA1WxIvnOOd+kNSp+P2RwJXunNsWad9oGI477jj16dNHr7zyin7+85+H/b3MzEwF\nAgH16dNHzrlygWHjxo06dOiQBgwYELzbbsmSJTVaU6o2tWzZUgsWLAiuGj9x4sRqX2INV3Z2dsQ3\nDiQmJmrhwoXq1KmTxo8fr7/97W9KSEjQlClTdOGFF3pUKQA0XKxUCN+ZmSZMmKC77rpLS5YsCXsZ\ngmXLlqmwsFBdunTR3Llzyz32p0ePHtq3b5+cc4qNjVVsbGy9WP6hODgWh8eRI0f6tq+PPvpIBw4c\niLifQYMGaffu3fr22291//3366677lKrVq08qBAAGj7PH9fjnEvmrBbK+vnPf664uDhNnTo17O8k\nJSVp5MiR2rlzpzIyMkK2adasmZo3b67Y2Fj179+/XoStwYMH68EHHwy+37Jliz788ENPQlFZHTt2\nrPajeirSunVrZWVl6ZFHHiFoAUA18GxE1IoOHTooIyNDjzzySNjf+cMf/qBZs2apWbNmIcPWH/7w\nBz322GPB948++qjuvPNOT+r1y+bNm/X999+rdevWwW2zZ8/WqFGjtG7dOk/3tXXrVj300ENasWKF\nZ33GxcV51hcANBaELdSaQYMGKRAI769c8XymmJgYDR48WPPmzSvXZurUqaVWNx8zZoxv63l5pXh9\nrZKXDhMSEiTJ8zsSV6xYoYcfftjzEAcAqB7CFmrVs88+q7Fjx1bZbvr06UpKSlJWVpaGDBmi77//\nXocPHw5+7pzTsmXLlJqaGty2f/9+ffbZZzVewLM2zJkzR61atSo1iT8xsejGXa/vSNy8eXOp/gEA\n0UHYQq0qKCjQ9OnTq5xblZmZqU2bNqlLly664IILdPvtt5ea07Rp0ybt2bNHAwYMCG7bunWrzjrr\nLH388ce+1R+pOXPm6KSTTlJMzH/uTfHrzFZx2OrcubOn/QIAqoewhVp17bXXKi4uTi+//HKl7ZYt\nW6Zu3bqpVatWOvXUU/XEE0+Umue0bNkySSp1ZqtHjx5q0aJFnZ0kX1hYqHHjxunaa68ttb1du3aK\njY31/MzWli1bFBMTo/bt23vaLwCgelj6AbWqffv2uuSSS/TWW29p0qRJat68ech2xSvDFztw4IA2\nb96slJQUSdKuXbvUqVOnUm0CgYAGDhxYJ8PW4cOHFRMTU+ouxGKBQECffPJJ8Ni8smXLFiUmJoY9\nTw4A4A9GYdS6G2+8UT/99FOFz9srXgm+ZJC66KKLdNFFFwXfX3rppdq6dWvwElyxtLS0Ohe2cnNz\ndfrpp1f62KHTTjtNycnJnu73tdde0w8//OBpnwCA6iNsodaNGDFCd955pwYNGhTy84MHD+r666/X\nmWeeGdyWnp6uJUuWaP/+/ZX2nZaWpq1bt6quPOj8hx9+0JAhQ5SRkVHpeldz5871/NE3gUBAbdu2\n9bRPAED1EbZQ68xMTz/9tI477riQnzdv3lzPPfeczj///OC2IUOGqKCgQN9//72koqUTpkyZUu67\n48aN0/fffx/Rg5e9MnPmTA0bNkx5eXn68ssvNX78+ArbvvLKK7rttts83f8dd9yhGTNmeNonAKD6\nCFuICuecMjIyQq6ftWvXrlLLPEhFYUuSMjIylJubqy+//DLkWa4uXbromGOOKXW3XzRs2rRJF110\nkfr166eMjIxg/RVJSEhQTk6OCgsLPdn/4cOH9eyzzwbDKQAgeghbiJorrrhCDz/8cLntd911V7n5\nS507d1ZSUpLmzZunzMxMSSo1p6ukadOm6e9//7vn9VZH165dNXv2bM2cOVNdu3atsn1iYqLy8/O1\nY8cOT/ZfvIwEyz4AQPRxNyKiwsx0/vnn6+WXX9b+/ftL3ZW4bNky9e7du9x3XnjhBXXt2lXz58+X\nVHrZh5ImT56s/Px8XXLJJf4UH6aTTjop7LYl19rq0KFDxPtmjS0AqDs4s4WoOf/883Xw4EF9/vnn\nwW3OuXLLPhQbM2aM0tPTlZmZqZYtWyopKSlkv8V3JBY/8qe23XPPPbrtttuqtX+vV5Fn9XgAqDsI\nW4iak08+WS1bttQHH3wQ3JaTk6OdO3eGPGt14MAB/eMf/9C+ffs0duxYmVnIftPS0rR7925t3LjR\nt9orkpubq2effVY//fRThfWFkp6ersWLF+vEE0/0pI49e/YoPj6eM1sAUAcQthA18fHxOvPMM0s9\nTLqy+ViHDh3SRRddpJSUFL311lsV9puWliZJUVlv65lnntHBgwd1zz33VOt7LVq00M9+9rMKF3mt\nriuvvFIHDhwIa74YAMBfhC1E1fPPP6+FCxcG3ycnJ2vSpEmlHtRcrG3bturTp0/IOxhLSktLU0xM\njGfBJVy7du3SCy+8oIsvvlj9+/ev9vdfeeUV/fOf//SsHjOr1tk1AIA/Ig5bZvaQmW0ys4VHfs7z\nojA0Dl27dlWzZs2C73v27Km7775bHTt2DNm+sLBQM2bM0FdffVVhn+3atdP06dM1cuRISSoV5vw0\nefJk7d69W/fee2+Nvv/YY4/p7bff9qSWRx55JOSjgQAAtc+rM1t/cM4dc+TnI4/6RCPx6quv6vrr\nr5ckLViwoNJJ4ueee64klXtMT1nnnVeU+b/66isde+yxuuiii5Sdne1RxaGNGzdOzzzzjI499tga\nfT8hIcGzCfIffvih5s6d60lfAIDIcBkRUbdx40a98cYbys3N1QUXXFDpfKff//73+vrrr9W3b9+w\n+j7++OP1+OOP65NPPlFqamqlZ8Qi1bt3b91+++01/n5iYqKndyMyOR4A6gavwtYtZrbYzF43s+g/\nJwX1yqhRo+Sc09SpU7V58+YKFyuVpLi4OA0bNizsvuPi4jRx4kQtW7ZMXbt21YUXXqg1a9Z4UXYp\njz/+uP71r39F1EdCQkJwMdJIOOe0ZcsWwhYA1BFhhS0zm2VmS0L8jJH0oqReko6RtFnS7yvpZ4KZ\nzTez+XXlQcGIvuOOO04JCQl6+umnJVW8MnwkevTooQ8++ECBQEDffPONp33v27dP999/f6m7Kmsi\nMTFROTk5KigoiKif7du36/Dhw6yxBQB1RFhhyzl3hnMuLcTPdOfcVudcgXOuUNIrkoZW0s8U51y6\ncy69ognQaHwCgYDOP//84JwqP8KWJPXp00erVq3SlVde6Wm/CxYsUEFBgU444YSI+rnzzju1bds2\nBQKRnXDevXu3evXqpR49ekTUDwDAG17cjVjyWsWFkmp/cSPUexdddFHwdc+ePX3bT+vWrSVJM2fO\nrPZaWBUpnoh+/PHHR9RP27Zt1a5du4iXa0hJSdGqVas0duzYiPoBAHjDizlbT5rZD2a2WNKpkn7p\nQZ9oZM4//3ytWLFCM2bMUJMmTXzf3xdffKEnnnhCL730UsR9zZ07V7169apwuYpw/fjjj7rnnnu0\ndOnSiGsCANQdEYct59zVzrmfOecGOedGO+c2e1EYGp8+ffroggsuqJV9Pfnkkzr33HN1++23a926\ndRH1tXHjxogvIUpFc7+eeOIJff/99xH188Ybb+jMM89UXl5exDUBACLH0g9olJo0aaIpU6aoSZMm\nEV9OnDdvnl599dWIaypeOyzS5R8WLVqkuXPnKi4uLuKaAACRI2yh0UpKStKdd96pqVOnRvwcxaZN\nm0ZcT6tWrdSsWbOIwxbLPgBA3ULYQqN29913a8aMGRo4cGCNvv/EE0/ouuuu86QWM/NkrS0WNAWA\nuiUm2gUA0dSqVavgPLGCgoJqT86fOXOmpw97TkxM1I4dOyLqY/PmzTruuOM8qggAECnObAGSXn75\nZQ0ePLhak8rz8vK0YMECTybHF/viiy/0wQcfRNRH3759dfTRR3tUEQAgUpzZAiR1795dixYt0ksv\nvaTbbrstrO8sWrRIhw4d8jRsxcfHV/jZV199pZiYGJ144omV9hFpWAMAeIszW4Ckc845R2eccYYe\nfvhh7dy5M6zvFC9m6mXY+uc//6lrrrlG+fn5kqT9+/fr3//+tyTp4Ycf1rBhwzRixAjNnDlThYWF\nnu0XAOAfwhagosnpTz/9tHbu3Bl8RmNVWrZsqbPOOktJSUme1bF69Wq99dZb2rZtmyTpvvvu04gR\nI7R69Wq9//77evbZZ7VhwwaNHj1aI0aMKBe4vvnmG/Xv31/z58/3rCYAQGQIW8ARRx99tE455RR9\n8sknYbW/7rrr9Omnn3paQ8m1tr7++ms9++yzuummm9SrVy+1bNlSt912m1atWqVHHnlE//73v8st\ngJqdna2srKxKL0cCAGoXc7aAEn73u9+FtRhofn6+zMzzRwslJiZKktatW6ff/OY36t69uyZNmlSq\nTUxMjO644w6NGzdOffv2LfXZ5s1FD3Bg6QcAqDs4swWUcOKJJ2rw4MFVtvv444/Vtm1b/fDDD57u\nv/jM1o033qgVK1botddeU8uWLcu1a9WqVbmgJRWdEYuNjVX79u09rQsAUHOELaCMd999V5999lml\nbebOnauDBw+qV69enu47MTFRrVq1UseOHXXHHXfo9NNPr7BtZmamrrzySm3cuDG4bfPmzUpMTPR0\n7S8AQGS4jAiU8cADD6h3794688wzK2wzd+5cHX300WrevLmn+27RooV2794dVlsz09tvv62TTz5Z\nN954oyQpNTU15JkwAED0cGYLKGPYsGH65ptv5JwL+XlBQYHmzZvn6ZIPNdG/f3+lpKSUWlfrN7/5\njSZPnhzFqgAAZRG2gJliHHYAAAecSURBVDJOPPFEbd++XStXrgz5eWZmpvbu3Rv1sGVmGjVqlGbN\nmqX9+/dHtRYAQMUIW0AZw4YNk1S0ZlUobdq00QMPPKCTTz65NssKadSoUTp48KA+//xz5eXlqXXr\n1nr++eejXRYAoARPwpaZ3WpmWWa21Mye9KJPIFr69++vtm3batGiRSE/7969ux5++GF17969lisr\n7+STT9Zxxx2ngwcPauvWrdqzZ4+aNm0a7bIAACVEPEHezE6VNEbSIOfcITPrFHlZQPQEAgFlZWWp\nY8eO5T7bsmWLvvvuO5111lmKiYn+/SXx8fFasGCBJGnevHmS/rNWFwCgbvDizNYvJD3hnDskSc65\nHA/6BKKqU6dOIZdP+POf/6zzzz9f69evj0JVFcvPz9eqVasksaApANQ1XoStvpJGmNm3ZjbHzIZ4\n0Of/b+/+Yqus7ziOvz/UEhek8Q8iIm7OHEeUITQhBk530RFD2GjGLjYyM6AhI97swiWoqDdmJl5I\niNvNbgwjMw1b12z1TxYuBuqypQk6xBpL6jJH3FYwFsNE5UKj/XrxPGhXz2lBznN+z5N8XsnJeX6/\nPj39tPkl/Z7n93t+xyypkydPsm3bNkZGRj7riwgGBgao1+st31/rUpw7d44lS5awe/duwMWWmVnZ\nXFCxJemwpLEGj81kU5FXAWuB+4AhNdlRUdLdko5KOnr69OmW/RJmrbZw4UIOHDjA4cOHP+sbHR3l\n+PHjbN26NWGyL1qwYAG1Wo2JiQm2b9/O4sWeyTczK5MLKrYi4s6I+GaDxzPABDAcmZeAKWBRk9d5\nIiLWRMSaRuthzMqiq6uLlStX/t8diQMDA3R2drJly5aEyRrr6+tDEnv27KGzszN1HDMzm6YV04hP\nA+sBJH0DmA+804LXNUtq3bp1HDlyhKmpKQBGRkbYtGlTKT93sK+vj4jg4MGDqaOYmdkMrSi29gM3\nSxoDBoH+aLb1tlmF1Ot1zp49y/j4OJDtu7Vv377EqRpbtWoVADt37kycxMzMZrrke9cj4iOgXItY\nzFqgXq+zYsUKzpw5Q0Qwb968Ul7Vgmw3+WPHjrX8sxrNzOzSeQd5syZqtRpjY2N0d3dTq9UYGhpK\nHWlW3d3dLF++PHUMMzObwcWW2RyGh4c5ceIES5cuTR3FzMwqyMWW2SwGBwfp7++nq6uLnp6e1HHM\nzKyCXGyZzeL8FiUbNmxouKO8mZnZXNJ/uJtZifX29rJ371527NiROoqZmVWUiy2zWXR0dLBr167U\nMczMrMI8jWhmZmZWIBdbZmZmZgVysWVmZmZWIBdbZmZmZgVysWVmZmZWIBdbZmZmZgVysWVmZmZW\nIEVEmh8snQb+fRHfsgh4p6A4RXP2NJw9jdmyfy0irm1nGDOz1JIVWxdL0tGIWJM6x5fh7Gk4expV\nzm5mVgRPI5qZmZkVyMWWmZmZWYGqVGw9kTrAJXD2NJw9jSpnNzNrucqs2TIzMzOroipd2TIzMzOr\nnNIXW5I2SvqHpDckPZA6z2wk7Zc0KWlsWt/Vkg5J+mf+fFXKjM1IulHSC5LGJR2XdE/eX/r8ki6X\n9JKkV/PsP8/7vy7pxTz77yXNT521GUkdkl6R9Ke8XYnskt6U9JqkUUlH877Sjxkzs3YqdbElqQP4\nFfAd4DbgLkm3pU01q98AG2f0PQA8FxG3AM/l7TL6GNgVEbcCa4Gf5n/rKuT/EFgfEauA1cBGSWuB\nx4Bf5Nn/B/wkYca53AOMT2tXKfu3I2L1tO0eqjBmzMzaptTFFnAH8EZEnIiIj4BBYHPiTE1FxF+B\nMzO6NwNP5sdPAt9va6gLFBFvRcSx/Ph9sn/8N1CB/JH5IG925o8A1gN/yPtLmR1A0jJgE7Avb4uK\nZG+i9GPGzKydyl5s3QD8d1p7Iu+rkusi4i3IChpgceI8c5J0E9ANvEhF8ufTcKPAJHAI+BfwbkR8\nnJ9S5rHzS+B+YCpvX0N1sgfwZ0kvS7o776vEmDEza5fLUgeYgxr0+fbJAkm6Avgj8LOIeC+7yFJ+\nEfEJsFrSlcBTwK2NTmtvqrlJ6gMmI+JlSb3nuxucWrrsuZ6IOCVpMXBI0uupA5mZlU3Zr2xNADdO\nay8DTiXK8mW9Lel6gPx5MnGepiR1khVaByJiOO+uTH6AiHgX+AvZurMrJZ1/Q1HWsdMDfE/Sm2TT\n5OvJrnRVITsRcSp/niQrcu+gYmPGzKxoZS+2/g7ckt+ZNR/4EfBs4kwX61mgPz/uB55JmKWpfJ3Q\nr4HxiHh82pdKn1/StfkVLSR9BbiTbM3ZC8AP8tNKmT0iHoyIZRFxE9n4fj4ifkwFsktaIGnh+WNg\nAzBGBcaMmVk7lX5TU0nfJXun3wHsj4hHE0dqStLvgF5gEfA28DDwNDAEfBX4D/DDiJi5iD45Sd8C\n/ga8xudrhx4iW7dV6vySbidbiN1B9gZiKCIekXQz2dWiq4FXgK0R8WG6pLPLpxHvjYi+KmTPMz6V\nNy8DfhsRj0q6hpKPGTOzdip9sWVmZmZWZWWfRjQzMzOrNBdbZmZmZgVysWVmZmZWIBdbZmZmZgVy\nsWVmZmZWIBdbZmZmZgVysWVmZmZWIBdbZmZmZgX6FIOKCqgomNmkAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["from numpy.random import randn\n", "\n", "fig = plt.figure(figsize=(10,8))\n", "ax1 = fig.add_subplot(2,2,1)\n", "ax2 = fig.add_subplot(2,2,2)\n", "ax3 = fig.add_subplot(2,2,3)\n", "plt.plot(randn(50).cumsum(),'k--')\n", "# plt.show()"]}, {"cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [{"data": {"text/plain": ["[]"]}, "execution_count": 9, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAJCCAYAAAC8vUSjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3X10VOW59/HfZQg0FDWAQSGCWBXU\nohAbAU19QaShHhH0VKutHj34FLvUc6pVjlLb42lPu/CR1upqrS0WxC59tGppMCilVLEq74EooBDf\nURIqEUkBTSEv1/NHJjTBJCSZPbP3zHw/a2Uls2fP3tdmMOOP+97Xbe4uAAAAAED0HBJ2AQAAAACA\nthHYAAAAACCiCGwAAAAAEFEENgAAAACIKAIbAAAAAEQUgQ0AAAAAIorABgAAAAARRWADAAAAgIgi\nsAEAAABARPUI46RHHHGEDx06NIxTAwCSaO3atR+5e17YdaQKPh8BIHN09jMylMA2dOhQlZWVhXFq\nAEASmdmWsGtIJXw+AkDm6OxnJFMiAQAAACCiCGwAAAAAEFEENgAAAACIKAIbAAAAAEQUgQ0AgDiZ\n2efMbLWZvWpmr5nZD2PbjzWzVWb2ppn93sx6hl0rACC1ENgAAIjfXknnuftISaMkTTSzsZL+r6Sf\nu/sJknZKujbEGgEAKajTgc3M5prZdjPb2MZzt5qZm9kRwZYHAED0eZM9sYfZsS+XdJ6kp2LbH5Y0\nJYTyAAAprCsjbPMkTTxwo5kNljRB0vsB1QQAQMoxsywze0XSdklLJL0tqcbd62O7bJWUH1Z9AJAI\nJeWVKrrreR17+zMquut5lZRXhl1S2ul0YHP3FyV93MZTP5f0X2r6l0QAADKSuze4+yhJR0saLemk\ntnY7cIOZTTOzMjMrq66uTnSZABCYkvJKzZi/QZU1tXJJlTW1mjF/A6EtYHHdw2ZmF0mqdPdXA6oH\nAICU5u41kl6QNFZSrpn1iD11tKSqNvaf7e6F7l6Yl5eXvEIBoA1dGTGbtbhCtXUNrbbV1jVo1uKK\nRJeZUXocfJe2mVlvSXdI+kon958maZokDRkypLunRYooLS2N+xiTJk0KoBIASDwzy5NU5+41ZpYj\n6Xw1NRxZKulrkh6XdLWkBeFVCQAdax4xaw5hzSNmkjSl4LMzuqtqats8Tnvb0T3xjLAdJ+lYSa+a\n2Xtq+pfDdWZ2VFs78y+IAIA0NlDSUjNbL2mNpCXuvlDSbZK+a2ZvSeovaU6INQJAh7o6YjYoN6dL\n29E93R5hc/cNkgY0P46FtkJ3/yiAugAASBnuvl5SQRvb31HT/WwAEHldHTGbXjy81YicJOVkZ2l6\n8fCE1JeputLW/zFJKyQNN7OtZsZaMgAAAECa6OqI2ZSCfM285BTl5+bIJOXn5mjmJae0OX0S3dfp\nETZ3v+Igzw+NuxoAAAAAoejOiNmUgnwCWoJ1e0okAAAAgPTRHLxmLa5QVU2tBuXmaHrxcAJZyAhs\nAAAAACQxYhZFca3DBgAAAABIHAIbAAAAAEQUgQ0AAAAAIorABgAAAAARRWADAAAAgIiiSyQAAACA\njFRSXhn5ZQwIbAAAAAAyTkl5ZauFwitrajVj/gZJilRoI7ABAAAASAtdGTGbtbhif1hrVlvXoFmL\nKwhsAAAAADJPIqcgdnXErKqmts3jtLc9LDQdAQAAAJBwzYGqsqZWrn8GqpLyykCO39GIWVsG5eZ0\naXtYGGEDkqS0tDTuY0yaNCmASgAAAJIv0VMQuzpiNr14eKsROUnKyc7S9OLhcdcSJEbYAAAAACRc\noqcgdnXEbEpBvmZecoryc3NkkvJzczTzklMidf+axAgbAAAAgCQYlJujyjbCWVBTELszYjalID9y\nAe1AjLABAAAASLjpxcOVk53ValuQUxBTZcSsqxhhAwAAAJBwzcGpK10iu9pVMhVGzLqKwAYAAAAg\nKboSqFJlYetEY0okAAAAgMjpapv+dEVgAwAAABA5qbKwdaIR2AAAAABETqosbJ1oBDYAAAAAkZPo\nrpKpgqYjAAAAACKnO10l0xGBDQAAAEAkpWOb/q5iSiQAAAAARFSnA5uZzTWz7Wa2scW2WWa22czW\nm9kfzSw3MWUCAAAAQObpygjbPEkTD9i2RNIIdz9V0huSZgRUFwAAAABkvE4HNnd/UdLHB2z7s7vX\nxx6ulHR0gLUBAAAAQEYL8h62qZIWBXg8AAAiz8wGm9lSM9tkZq+Z2Xdi2//HzCrN7JXY1wVh1woA\nSD2BdIk0szsk1Ut6tIN9pkmaJklDhgwJ4rQAAERBvaRb3H2dmR0qaa2ZLYk993N3/2mItQEAUlzc\nI2xmdrWkCyV90929vf3cfba7F7p7YV5eXrynBQAgEtx9m7uvi/28W9ImSZndgxoAEJi4ApuZTZR0\nm6SL3P3TYEoCACA1mdlQSQWSVsU23RjrpDzXzPqGVhgAIGV1pa3/Y5JWSBpuZlvN7FpJv5R0qKQl\nsfn5v05QnQAARJqZ9ZH0B0k3ufsuSQ9IOk7SKEnbJP2snddNM7MyMyurrq5OWr0AgNTQ6XvY3P2K\nNjbPCbAWAABSkpllqymsPeru8yXJ3T9s8fyDkha29Vp3ny1ptiQVFha2e2sBACAzBdklEgCAjGNm\npqZ/wNzk7ve02D6wxW4XS9qY7NoAAKkvkC6RAABksCJJV0naYGavxLZ9T9IVZjZKkkt6T9J14ZQH\nAEhlBDYAAOLg7i9LsjaeejbZtQAA0g9TIgEAAAAgoghsAAAAABBRBDYAAAAAiCgCGwAAAABEFE1H\nAAAAgDRVUl6pWYsrVFVTq0G5OZpePFxTCvLDLgtdQGADAAAA0lBJeaVmzN+g2roGSVJlTa1mzN8g\nSYS2FMKUSAAAACANzVpcsT+sNauta9CsxRUhVYTuILABAAAAaaiqprZL2xFNTInEZ5SWloZdQqCC\nuJ5JkyYFUAkAAEDyDMrNUWUb4WxQbk4I1aC7GGEDAAAA0tD04uHKyc5qtS0nO0vTi4eHVBG6gxE2\nAAAAIA01NxahS2RqI7ABAAAAaWpKQT4BLcUxJRIAAAAAIorABgAAAAARRWADAAAAgIgisAEAAABA\nRBHYAAAAACCiCGwAAAAAEFEENgAAAACIKAIbAAAAAEQUgQ0AAAAAIorABgAAAAAR1enAZmZzzWy7\nmW1ssa2fmS0xszdj3/smpkwAAAAAyDxdGWGbJ2niAdtul/Scu58g6bnYYwAAAACdUFJeqaK7ntex\ntz+jorueV0l5ZdglIWI6Hdjc/UVJHx+webKkh2M/PyxpSkB1AQAAAGmtpLxSM+ZvUGVNrVxSZU2t\nZszfQGhDK/Hew3aku2+TpNj3Ae3taGbTzKzMzMqqq6vjPC0AAACQ2mYtrlBtXUOrbbV1DZq1uCKk\ninAwYYyIJq3piLvPdvdCdy/My8tL1mkBAACASKqqqe3SdoQrrBHReAPbh2Y2UJJi37fHXxIAAACQ\n/gbl5nRpO8IV1ohovIHtaUlXx36+WtKCOI8HAAAAZITpxcOVk53ValtOdpamFw8PqSJ0JKwR0a60\n9X9M0gpJw81sq5ldK+kuSRPM7E1JE2KPAQAAABzElIJ8zbzkFOXn5sgk5efmaOYlp2hKQX7YpaEN\nYY2I9ujsju5+RTtPjQ+oFgAAUpKZDZb0O0lHSWqUNNvd7zOzfpJ+L2mopPckXebuO8OqE0D0TCnI\nJ6CliOnFwzVj/oZW0yKTMSKatKYjAACksXpJt7j7SZLGSrrBzE4W65UCQNoIa0S00yNsAACgbbGl\nbZqXudltZpsk5atpvdJzY7s9LOkFSbeFUCIAIABhjIgywgYAQIDMbKikAkmr1IX1SgEAaAuBDQCA\ngJhZH0l/kHSTu+/q5GummVmZmZVVV1cntkAAQMohsAEAEAAzy1ZTWHvU3efHNh90vVJ3n+3uhe5e\nmJeXl7yCAQApgcAGAECczMwkzZG0yd3vafEU65UCAOJC0xEAAOJXJOkqSRvM7JXYtu+paX3SJ2Jr\nl74v6dKQ6gMApCgCGwAAcXL3lyVZO0+zXikAoNuYEgkAAAAAEUVgAwAAAICIIrABAAAAQERxDxsA\nAABSWkl5pWYtrlBVTa0G5eZoevFwTSnID7ssIBAENgAAAKSskvJKzZi/QbV1DZKkyppazZi/QZII\nbUgLTIkEAABAypq1uGJ/WGtWW9egWYsrQqoICBaBDQAAACmrqqa2S9uBVENgAwAAQMoalJvTpe1A\nqiGwAQAAIGVNLx6unOysVttysrM0vXh4KPWUlFeq6K7ndeztz6jorudVUl4ZSh1IHzQdAQAASDOZ\n1DWx+bqicL00QEEiENgAAADSSCaGhikF+ZG4to4aoEShPqQmpkQCAACkEbomhocGKEgEAhsAAEAa\nITSEhwYoSAQCGwAAQBohNIQnag1QkB4IbAAAAGmE0BCeKQX5mnnJKcrPzZFJys/N0cxLTuH+NcSF\npiMAAABpJEpdEzNRVBqgIH0EEtjM7GZJ/0eSS9og6d/d/R9BHBsAAABdQ2gA0kfcgc3M8iX9p6ST\n3b3WzJ6QdLmkefEeGwAAAAhaJq1Th9QX1JTIHpJyzKxOUm9JVQEdFwAAAAhMJq5Th9QWd9MRd6+U\n9FNJ70vaJunv7v7neI8LAAAABI116pBqgpgS2VfSZEnHSqqR9KSZXenujxyw3zRJ0yRpyJAh8Z4W\nbSgtLQ27hECl2/UAAIDwsU4dUk0Qbf3Pl/Suu1e7e52k+ZLOPHAnd5/t7oXuXpiXlxfAaQEAAICu\nYZ06pJogAtv7ksaaWW8zM0njJW0K4LgAAABAoFinDqkm7imR7r7KzJ6StE5SvaRySbPjPS4AAAAQ\nNNapQ6oJpEuku98p6c4gjgUAAAAkEuvUIZUEMSUSAAAAAJAABDYAAAAAiCgCGwAAAABEFIENAAAA\nACKKwAYAAAAAEUVgAwAgTmY218y2m9nGFtv+x8wqzeyV2NcFYdYIAEhNgbT1BwAgw82T9EtJvztg\n+8/d/afJLwdAuiopr2QNuQxDYAMAIE7u/qKZDQ27DgDpraS8UjPmb1BtXYMkqbKmVjPmb5AkQlsa\nY0okAACJc6OZrY9Nmezb1g5mNs3MysysrLq6Otn1AUghsxZX7A9rzWrrGjRrcUVIFSEZCGwAACTG\nA5KOkzRK0jZJP2trJ3ef7e6F7l6Yl5eXzPoApJiqmtoubUd6ILABAJAA7v6huze4e6OkByWNDrsm\nAKltUG5Ol7YjPRDYAABIADMb2OLhxZI2trcvcDAl5ZUquut5HXv7Myq663mVlFeGXRJCML14uHKy\ns1pty8nO0vTi4SFVhGSg6UhElJaWhl0COhCV9yeoOiZNmhTIcQA0MbPHJJ0r6Qgz2yrpTknnmtko\nSS7pPUnXhVYgUhqNJtCs+f2mS2RmIbABABAnd7+ijc1zkl4I0lJHjSb4H/XMM6Ugn/c9wxDYAAAA\nIiyKjSZYCwxIHu5hAwAAiLCoNZponqJZWVMr1z+naHJfHZAYBDYAAIAIi1qjCdYCA5KLKZEAAAAR\nFrVGE1GcogmkMwIbAABAxEWp0cSg3BxVthHOWAsMSAymRAIAAKDTojZFE0h3jLABAACg06I2RRNI\ndwQ2AACADNfVNv1RmqIJpDsCGwAAQAZrbtPf3PmxuU2/JEIZEAHcwwYAAJDBaNMPRBuBDQAAIIPR\nph+ItkACm5nlmtlTZrbZzDaZ2RlBHBcAAACJ1V47ftr0A9EQ1AjbfZL+5O4nShopaVNAxwUAAEAC\n0aYfiLa4m46Y2WGSzpZ0jSS5+z5J++I9LgAAABKPNv1AtAXRJfILkqolPWRmIyWtlfQdd/+k5U5m\nNk3SNEkaMmRIAKcFAABAEBLdpr+rywYA+KcgpkT2kHSapAfcvUDSJ5JuP3And5/t7oXuXpiXlxfA\naQEAABB1zcsGVNbUyvXPZQNKyivDLg1ICUEEtq2Strr7qtjjp9QU4AAAAJDhWDYAiE/cUyLd/W9m\n9oGZDXf3CknjJb0ef2kAAADhYApfcFg2AIhPEPewSdJ/SHrUzHpKekfSvwd0XAAAgKRqnsLXPCrU\nPIVPEqGtGwbl5qiyjXDGsgFA5wTS1t/dX4ndn3aqu09x951BHBcAACDZmMIXLJYNAOIT1AgbAABA\nWmAKX7BYNgCID4ENAACgBabwBS/RywYA6SyQKZEAAADpgil8AKKEETYAAIAWmMIHIEoIbAAAAAdg\nCh+AqCCwAQAAxIl12wAkCoENAAAgDqzbBiCRaDoCAAAQB9ZtA5BIBDYAAIA4sG4bgEQisAEAAMSh\nvfXZWLcNQBAIbAAAxMnM5prZdjPb2GJbPzNbYmZvxr73DbNGJA7rtgFIJAIbAADxmydp4gHbbpf0\nnLufIOm52GOkoSkF+Zp5ySnKz82RScrPzdHMS06h4QiAQNAlEgCAOLn7i2Y29IDNkyWdG/v5YUkv\nSLotaUUhqVi3DUCiMMIGAEBiHOnu2yQp9n1AWzuZ2TQzKzOzsurq6qQWCACIPgIbAAAhcvfZ7l7o\n7oV5eXlhlwMAiBgCGwAAifGhmQ2UpNj37SHXAwBIQdzDBgBAYjwt6WpJd8W+Lwi3HADdUVJeqVmL\nK1RVU6tBuTmaXjyc+xWRVAQ2AADiZGaPqanByBFmtlXSnWoKak+Y2bWS3pd0aXgVAuiOkvJKzZi/\nQbV1DZKkyppazZi/QZIIbUgaAhsAAHFy9yvaeWp8UgsBEKhZiyv2h7VmtXUNmrW4gsCGpOEeNgAA\nAKANVTW1XdoOJAKBDQAAAGjDoNycLm0HEoHABgAAALRhevFw5WRntdqWk52l6cXDQ6oImYh72AAA\nAIA2NN+nRpdIhInABgAAALRjSkE+AQ2hIrABAICUw9pYADJFYIHNzLIklUmqdPcLgzouAABAS6yN\nlf4I5MA/Bdl05DuSNgV4PAAAgM/oaG0spL7mQF5ZUyvXPwN5SXll2KUBoQgksJnZ0ZL+RdJvgzge\nAABAe1gbK70RyIHWgpoSea+k/5J0aHs7mNk0SdMkaciQIQGdFkAqKy0tDeQ4kyZNCuQ4AFLDoNwc\nVbYRzlgbKz0QyIHW4h5hM7MLJW1397Ud7efus9290N0L8/Ly4j0tAADIUKyNld5YrBpoLYgpkUWS\nLjKz9yQ9Luk8M3skgOMCAAB8xpSCfM285BTl5+bIJOXn5mjmJafQlCJNEMiB1uKeEunuMyTNkCQz\nO1fSre5+ZbzHBQAAaA9rY6UvFqsGWmMdNgAAAEQKgRz4p0ADm7u/IOmFII8JAAAAAJkqyHXYAAAA\nAAABIrABAAAAQEQR2AAAAAAgoghsAAAAABBRBDYAAAAAiCgCGwAAAABEFIENAAAAACKKhbMBAMhQ\nJeWVmrW4QlU1tRqUm6PpxcNZrBgAIobABgBABiopr9SM+RtUW9cgSaqsqdWM+RskidAGABFCYAMA\nIAPNWlyxP6w1q61r0KzFFWkZ2BhNBJCqCGwAAGSgqpraLm1PZVEcTSRAAugsmo4AAJCBBuXmdGl7\nKutoNDEMzQGysqZWrn8GyJLyylDqARBtBDYAADLQ9OLhysnOarUtJztL04uHh1RR4kRtNDFqARJA\ntBHYAADIQFMK8jXzklOUn5sjk5Sfm6OZl5ySltPyojaaGLUACSDauIcNAIAMNaUgv0sBLVXvu5pe\nPLzVPWxSuKOJg3JzVNlGOEvH6agA4scIGwAACWRm75nZBjN7xczKwq6nu1L5vquojSZm0nRUAPFj\nhA0AgMQb5+4fhV1EPFJ9GYCujiYmUnMdqThaCSD5CGwAAOCguO8qWFEKkACijSmRAAAklkv6s5mt\nNbNpBz5pZtPMrMzMyqqrq0Mor3Oi1rgDADIFgQ0AgMQqcvfTJH1V0g1mdnbLJ919trsXunthXl5e\nOBV2AvddAUA4CGwAACSQu1fFvm+X9EdJo8OtqHui1rgDADIF97ABAJAgZvZ5SYe4++7Yz1+R9KOQ\ny+o27rsCgOQjsAEAkDhHSvqjmUlNn7n/z93/FG5JAIBUQmADACBB3P0dSSPDrgMAkLrivofNzAab\n2VIz22Rmr5nZd4IoDAAAAAAyXRAjbPWSbnH3dWZ2qKS1ZrbE3V8P4NgAAAAAkLHiHmFz923uvi72\n825JmyRxRzIAAAAAxCnQtv5mNlRSgaRVQR4XAAAAADJRYE1HzKyPpD9Iusndd7Xx/DRJ0yRpyJAh\nQZ0WQDeUlpaGXUKggrieSZMmBVAJAABAsAIZYTOzbDWFtUfdfX5b+7j7bHcvdPfCvLy8IE4LAAAA\nAGktiC6RJmmOpE3ufk/8JQEAAAAApGBG2IokXSXpPDN7JfZ1QQDHBQAAAICMFvc9bO7+siQLoBYA\nAAAAQAuBdokEAAAAAASHwAYAAAAAERVYW38AABCukvJKzVpcoaqaWg3KzdH04uGaUpAfdlkAgDgQ\n2AAASAMl5ZWaMX+DausaJEmVNbWaMX+DJBHaACCFMSUSAIA0MGtxxf6w1qy2rkGzFleEVBEAIAgE\nNgAA0kBVTW2XtgMAUgOBDQCANDAoN6dL2wEAqYHABgBAGphePFw52VmttuVkZ2l68fCQKgIABIGm\nIwAApIHmxiJ0iQSA9EJgAwAgTUwpyCegAUCaYUokAAAAAERUyo6wlZaWBnKcSZMmxX2MoGoBEJ4g\n/jsO4vdJUNLtegAAyFQpG9gAAEC0lZRXck8dAMSJwAYAAAJXUl6pGfM37F/Mu7KmVjPmb5AkQhsA\ndAGBDQAABG7W4or9Ya1ZbV2DZi2uaDewMSIHAJ9FYAMAAIGrqqnt0nZG5ACgbXSJBAAAgRuUm9Ol\n7R2NyAFAJiOwAQCAwE0vHq6c7KxW23KyszS9eHib+3d1RA4AMgWBDQAABG5KQb5mXnKK8nNzZJLy\nc3M085JT2p3e2NUROQDIFNzDBgAAEmJKQX6n7z+bXjy81T1sUscjcgCQKRhhAwAggcxsoplVmNlb\nZnZ72PVEVVdH5AAgUzDCBgBAgphZlqT7JU2QtFXSGjN72t1fD7eyaOrKiBwAZApG2AAASJzRkt5y\n93fcfZ+kxyVNDrkmAEAKIbABAJA4+ZI+aPF4a2wbAACdQmADACBxrI1t3moHs2lmVmZmZdXV1Ukq\nCwCQKgIJbNxQDQBAm7ZKGtzi8dGSqlru4O6z3b3Q3Qvz8vKSWhwAIPriDmwtbqj+qqSTJV1hZifH\ne1wAANLAGkknmNmxZtZT0uWSng65JgBACglihI0bqgEAaIO710u6UdJiSZskPeHur4VbFQAglQTR\n1r+tG6rHHLiTmU2TNC32cI+ZVQRw7s46QtJHSTxfFGX6n0GmX7/EnwHXH871HxPCOSPF3Z+V9Gxn\n9l27du1HZrYlgNNm0t/3TLpWietNZ5l0rVJmXW9719qpz8ggAttBb6iWmuboS5odwPm6zMzK3L0w\njHNHRab/GWT69Uv8GXD9mX39qcLdA7mJLZPe70y6VonrTWeZdK1SZl1vvNcaxJTIg95QDQAAAADo\nuiACGzdUAwAAAEACxD0l0t3rzaz5huosSXMjeEN1KFMxIybT/wwy/fol/gy4fmSSTHq/M+laJa43\nnWXStUqZdb1xXau5f+Z2MwAAAABABASycDYAAAAAIHgENgAAAACIqIwJbGY2y8w2m9l6M/ujmeWG\nXVMymdmlZvaamTWaWUa0UG1mZhPNrMLM3jKz28OuJ5nMbK6ZbTezjWHXEhYzG2xmS81sU+y/ge+E\nXVMymdnnzGy1mb0au/4fhl0TEifTft+Z2XtmtsHMXjGzsrDrCVpbv8PNrJ+ZLTGzN2Pf+4ZZY1Da\nudb/MbPK2Pv7ipldEGaNQWrvsykd398OrjUt39/2PndjDRpXxd7b38eaNXZKxgQ2SUskjXD3UyW9\nIWlGyPUk20ZJl0h6MexCksnMsiTdL+mrkk6WdIWZnRxuVUk1T9LEsIsIWb2kW9z9JEljJd2QYX8H\n9ko6z91HSholaaKZjQ25JiRABv++G+fuo9J0Pad5+uzv8NslPefuJ0h6LvY4HcxT259XP4+9v6Ni\ni9Cni/Y+m9Lx/e3oczgd39/2Pnf/r5qu9wRJOyVd29kDZkxgc/c/u3t97OFKNa0XlzHcfZO7V4Rd\nRwhGS3rL3d9x932SHpc0OeSaksbdX5T0cdh1hMndt7n7utjPuyVtkpQfblXJ4032xB5mx77oNpWe\nMvr3XTpq53f4ZEkPx35+WNKUpBaVIJn2edXBZ1Pavb+Z9jncwefueZKeim3v0nubMYHtAFMlLQq7\nCCRFvqQPWjzeqjT+JYGOmdlQSQWSVoVbSXKZWZaZvSJpu6Ql7p5R159BMvH3nUv6s5mtNbNpYReT\nJEe6+zap6X+EJQ0IuZ5EuzF2O8vcdJge2JYDPpvS+v1t43M4Ld/fAz93Jb0tqabF4FGXfj+nVWAz\ns7+Y2cY2via32OcONQ3NPhpepYnRmevPQNbGNkYXMpCZ9ZH0B0k3ufuusOtJJndvcPdRappZMNrM\nRoRdExIiE3/fFbn7aWqaBnqDmZ0ddkEI1AOSjlPTtLJtkn4WbjnBy6TPpjauNW3f3wM/dyWd1NZu\nnT1e3AtnR4m7n9/R82Z2taQLJY33NFyA7mDXn6G2Shrc4vHRkqpCqgUhMbNsNX1IPOru88OuJyzu\nXmNmL6jpPpGMbUSTxjLu9527V8W+bzezP6rpf4zS/V7tD81soLtvM7OBavoX/LTk7h82/2xmD0pa\nGGI5gWvnsykt39+2rjXd31+p1efuWEm5ZtYjNsrWpd/PaTXC1hEzmyjpNkkXufunYdeDpFkj6YRY\nZ56eki6X9HTINSGJzMwkzZG0yd3vCbueZDOzPIt1xTWzHEnnS9ocblVIkIz6fWdmnzezQ5t/lvQV\nZcY/RDwt6erYz1dLWhBiLQkVCyzNLlYavb8dfDal3fvb3rWm6/vbzufuJklLJX0ttluX3ltLw4Gm\nNpnZW5J6SdoR27TS3b8dYklJZWYXS/qFpDxJNZJecfficKtKjlib2HslZUma6+4/CbmkpDGzxySd\nK+kISR9KutPd54RaVJKZ2ZclvSRpg6TG2ObvpVE3qg6Z2alqurk5S03/SPeEu/8o3KqQKJn0+87M\nviDpj7GHPST9v3S73rZ+h0u0nBEbAAAgAElEQVQqkfSEpCGS3pd0qbunfLOOdq71XDVNl3NJ70m6\nrvn+rlTX3meTmu7tSqv3t4NrvUJp+P6297kb+531uKR+ksolXenuezt1zEwJbAAAAACQajJmSiQA\nAAAApBoCGwAAAABEFIENAAAAACKKwAYAAAAAEUVgAwAAAICIIrABAAAAQEQR2AAAAAAgoghsAAAA\nABBRBDYAAAAAiCgCGwAAAABEFIENAAAAACKKwAYAAAAAEUVgAwAAAICIIrABAAAAQEQR2AAAAAAg\noghsAAAAABBRBDYAAAAAiCgCGwAAAABEFIENAAAAACKKwAYAAAAAEUVgAwAAAICIIrABAAAAQEQR\n2AAAAAAgoghsAAAAABBRBDYAAAAAiCgCGwAAAABEFIENAAAAACKKwAYAAAAAEUVgAwAAAICIIrAB\nAAAAQEQR2AAAAAAgoghsAAAAABBRBDYAAAAAiKgeYZz0iCOO8KFDh4ZxagBAEq1du/Yjd88Luw4A\nAFJVKIFt6NChKisrC+PUAIAkMrMtYdcAAEAqY0okAAAAAEQUgQ0AAAAAIorABgAAAAARRWADAAAA\ngIgisAEAAABARBHYAAAAACCiCGwAAAAAEFEENgAAAACIKAJbAHbv3q2ampqwywAAAACQZghscdq5\nc6f69++v2bNnh10KAAAAgDRDYItTbm6uTjzxRC1ZsiTsUgAAAACkGQJbHGpqavSFL3xBn3zyiV56\n6SXV1taGXRIAAACANEJgi8OiRYv03nvv6aqrrtLevXv10ksvhV0SAAAAgDRCYIvDggULdOSRR+rW\nW29Vz549mRYJAAAAIFA9wi4gVe3bt0+LFi3SZZddpj59+mjevHkaNWpU2GUBAAAASCMEtm564YUX\ntGvXLk2ePFmSdMUVV4RcEQAAAIB0w5TIbjrqqKN03XXXafz48ZKkuro6Pfnkk1q1alXIlQEAAABI\nF+buST9pYWGhl5WVJf28idTQ0KABAwbooosu0kMPPRR2OQAQCWa21t0Lw64DAIBUxQhbN3zwwQda\nt26dWobdrKwsjR8/XkuWLFEYIRgAAABA+iGwdcODDz6o008/XTt27Gi1fcKECaqsrNTmzZtDqgwA\nAABAOiGwdcOCBQtUVFSkI444otX2CRMmSBLt/QEAAAAEgsDWRe+++67Wr1+/vztkS0OHDtXxxx+v\ndevWhVAZAAAAgHQTd1t/Mxss6XeSjpLUKGm2u98X73GjqrS0VJLaDGyStGLFCvXv3z+ZJQEAAABI\nU0Gsw1Yv6RZ3X2dmh0paa2ZL3P31AI4dOYsWLdLJJ5+s448/vs3nD5wmCQAAAADdFXdgc/dtkrbF\nft5tZpsk5UtKy8D2hz/8QVu2bGn3eXfX1KlTdeqpp+rmm29OYmUAAAAA0k2g97CZ2VBJBZLSdvXo\n3r1766STTmr3eTPT5s2b9cQTTySxKgAAAADpKLDAZmZ9JP1B0k3uvquN56eZWZmZlVVXVwd12qT6\n/ve/r1/84hcH3W/ChAlavXq1ampqklAVAAAAgHQVSGAzs2w1hbVH3X1+W/u4+2x3L3T3wry8vCBO\nm1R79+7Vfffdpw0bNhx03wkTJqixsVFLly5NQmUAAAAA0lXcgc3MTNIcSZvc/Z74S4qmpUuXas+e\nPe12h2xp7Nix6tOnD+uxAQAAAIhLECNsRZKuknSemb0S+7oggONGyoIFC/T5z39e48ePP+i+2dnZ\nuuaaa3T00UcnoTIAAAAA6SqILpEvS7IAaomsxsZGPf300youLtbnPve5Tr2mM/e6AQAAAEBHAu0S\nma5qampUUFCgSy+9tEuva2ho0I4dOxJUFQAAAIB0F8TC2WmvX79+WrhwYZdfd9ppp2nYsGF68skn\nE1AVAAAAgHTHCNtB7Nq1S++++263XvulL31Jzz33nBoaGgKuCgAAAEAmILAdxEMPPaTjjjtOb7/9\ndpdfO2HCBO3cuVPr1q1LQGUAAAAA0h2BrQPurgceeEBjxozRcccd1+XXjxs3TpL00ksvBV0aAAAA\ngAxAYOvA0qVLVVFRoeuvv75brz/qqKM0dOhQrVy5MuDKuu73v/+9brrpJrl72KUAAAAA6CSajnTg\nV7/6lfr379/l7pAt3X333RowYECAVXVNY2Ojvv/972vmzJkqKipSbW2tevfuHVo9AAAAADqPEbZ2\n7Nq1S4sWLdLUqVM7vfZaWy699FKdc845AVbWebt27dLkyZM1c+ZMfetb39Kjjz6qRx55RDt37gyl\nHgAAAABdwwhbOw477DC98847MotvTfD6+nq9+OKLGjhwoE466aSAqjs4d9dXvvIVlZWV6Ze//KWu\nv/56vfDCC7ruuus0ZMgQTZw4MWm1AAAAAOgeRtja0Hyf15FHHhn3dMbGxkZdcMEFmjNnThCldZqZ\n6fvf/76WLFmiG264QWamL33pSzIzrV69Oqm1AAAAAOgeAlsb/vjHP+rss8/Wtm3b4j5Wz549ddpp\npyWt8cgDDzygX/3qV5KkCy+8cH+nSqlp1PDEE0/UmjVrklILAAAAgPgQ2Nrwq1/9Slu2bAmsWcgZ\nZ5yhtWvXat++fYEcrz179+7VzTffrIULF7bbDXL06NFavXo13SIBAACAFEBgO0BFRYWee+45XXfd\ndcrKygrkmGPHjtU//vEPrV+/PpDjtWfdunXau3evvvWtb7V7793pp5+u7du3q6qqKqG1AAAAAIgf\nge0Av/71r5Wdna1rr702sGOOHTtWkrRixYrAjtmW5uOfccYZ7e5z5ZVXaseOHcrPz09oLQAAAADi\nR5fIFj799FPNmzdP//qv/6ojjzwysOMOHjxYa9eu1YgRIwI7ZluWL1+uoUOH6qijjmp3n8MPPzyh\nNQAAAAAIDoHtAP/7v/+rMWPGBH7c0047LfBjHqhfv3668MILD7rfvHnz9Oabb+onP/lJwmsCAAAA\n0H0WRvOJwsJCLysrS/p5w7R582b95je/0fe+9z3l5eWFWsuNN96ohx9+WDU1NYHdpwcAbTGzte5e\nGHYdAACkKu5hi1m/fr0efPBB1dbWJuT4H330ke69996E3cfW0NDQ6X1Hjx6tPXv2aPPmzQmpBQAA\nAEAwCGwxc+fO1X/8x38krPX+l770JfXo0SNh67HdfPPNKigo6FS7/tGjR0sS67EBAAAAEUdgk9TY\n2KinnnpKEydOTFhTjpycHI0aNSphgW358uXKzc1tt51/S8OGDdNhhx2m1atXJ6QWAAAAAMEgsEla\nuXKlKisrdemllyb0PGPHjtXq1atVX18f6HE//fRTvfrqqzrzzDM7tf8hhxyis846K+ELeQMAAACI\nD4FN0hNPPKFevXpp0qRJCT3P2LFj1adPH23dujXQ45aVlam+vr7D9dcOVFpaqt/+9reB1gEAAAAg\nWAQ2Se+9956++tWv6rDDDkvoeS6//HJt27ZNQ4cODfS4y5cvl/TPBbo7ozNTJwEAAACEi8AmqaSk\nRI8//njCz5OVlZWQoFRYWKjbb79dRxxxRKdfs3v3bo0dO1a/+c1vAq8HAAAAQDAyPrA1t8Pv1atX\nUs537733auLEiYEe8/zzz9fMmTO79Jo+ffro/fff18svvxxoLQAAAACCk9GBrbGxUSeeeKLuvvvu\npJ2ztrZWixcv1scffxzI8Xbu3KnNmzd3qp1/S2am0aNH09ofAAAAiLCMDmzLly/XW2+9paOPPjpp\n52y+zyyolvqlpaU66aST9Nprr3X5taeffroqKipUU1MTSC0AAAAAgpXRge3JJ59MSnfIlgoLC3XI\nIYcEth7bihUrdNhhh+nkk0/u8mubF9AuKysLpBYAAAAAwcrYwNa8WPYFF1ygQw89NGnnPfTQQzVi\nxAitWLEikOMtX75cY8aM0SGHdP2tLCws1OTJk9W7d+9AagEAAAAQrB5hFxCW5cuXq6qqKuGLZbfl\nsssuC+Qetl27dmnjxo26+OKLu/X6vn37qqSkJO46AAAAACRGxga2IUOG6L//+7914YUXJv3cd9xx\nRyDHWb16tRobG7u0YHZbduzYof79+wdSEwAAAIDgZOyUyCFDhuiHP/xhUqdDttTY2Kg9e/bEdYzC\nwkKVlJTozDPP7PYx5syZoyOOOEKVlZVx1QIAAAAgeBkZ2DZt2qSFCxeqrq4ulPO7u0444QR997vf\njes4ubm5mjx5clyhs7lZCe39AQAAgOjJyMD2wAMP6NJLL9XevXtDOb+ZadiwYXF1imxsbNQ999yj\nN954I65aRo0apR49egS2zAAAAACA4GRcYGvZHbJPnz6h1TF27Fht3LhRu3bt6tbrN2/erFtuuUXL\nly+Pq46cnBydeuqpjLABAAAAEZRxgW3ZsmXatm1bKN0hWzrjjDPk7rr//vvl7l1+fXNQi7fhiNS0\ngPaaNWvU2NgY97EAAAAABCfjAtsTTzyhz33uc6F0h2xp7NixGjhwoObMmSMzkyTdc889+sUvfqF1\n69apvr6+w9evWLFC/fr107Bhw+Ku5aqrrtLPfvazg54TAAAAQHIF0tbfzCZKuk9SlqTfuvtdQRw3\nEVavXh36dEhJOuyww/TBBx+oqqpq/7bHHntMZWVlkqQ+ffropptu0g9+8AP17NnzM69fsWKFzjjj\njP1hLx5FRUUqKiqK+zgAAAAAghV3YDOzLEn3S5ogaaukNWb2tLu/Hu+xg7Rt2zYdddRRWrFihf7+\n97+HXY4kKSsrS4MHD97/eM2aNXr//fe1bNkylZSU6Mc//rHMTD/60Y9avW737t16++239c1vfjOw\nWioqKvT3v/9do0ePDuyYAAAAAOJj3bl/qtUBzM6Q9D/uXhx7PEOS3H1me68pLCz05pGkRNq+fbue\neuop/f73v9dLL72k1atXq7CwMOHnDcrChQv15S9/Wbm5ufrb3/6mvLw8ZWVlSZJqa2u1b98+HX74\n4YGca9y4cdqzZw/NRwAEyszWunvq/OIFACBigriHLV/SBy0eb41ta8XMpplZmZmVVVdXB3Da9m3Z\nskUTJkzQwIEDdcMNN2j79u268847NXDgwISeN2gXXnihcnNzVVdXp4kTJ+qcc87RW2+9Jampu2NQ\nYU2SzjzzTJWXl+uTTz4J7JgAAAAA4hNEYGvrJqrPDNu5+2x3L3T3wry8vABO22Tbtm167LHHdN11\n1+m+++6TJA0YMEAfffSRbr/9dr366qt6/fXXdeeddyo//zM5MiX06NFDt956qzZu3KiRI0dq0qRJ\nuv/++wM9R1FRkRoaGliPDQAAAIiQIJqObJU0uMXjoyVVtbNvYG677TYtWLBAFRUVkqTDDz9c1113\nnaSm0afy8vJEl5A0ZqYrr7xS5557rqZOnaqFCxdq6NChgZ6jeXmAZcuWady4cYEeGwAAAED3BBHY\n1kg6wcyOlVQp6XJJ3wjguB2qqqrS8ccfr29961s699xzNWrUqP33d6Wro48+WosXL9aiRYt0+umn\nB3rsvn376otf/KKWLVsW6HEBAAAAdF/cTUckycwukHSvmtr6z3X3n3S0f7KajqBrXn31VQ0aNEhB\nTlkFkNloOgIAQHwCWYfN3Z+V9GwQx0J4Ro4cGXYJAAAAAFoIoukI0kRdXZ3uvvtuLVq0KOxSAAAA\nAIjAhhZ69Oihe++9V4888kjYpQAAAAAQgQ0tmJmKiopoPAIAAABEBIENrRQVFWnLli2qrKw86L7u\nrksvvVRPPPFEEioDAAAAMg+BDa0UFRVJUqdG2V599VU99dRT2rlzZ6LLAgAAADISgQ2tjBo1Srm5\nufrggw8Ouu/jjz++/zvTKAEAAIDgBdLWH+kjOztb27dvV3Z2dof7ubsef/xxjRkzRi+88IKWLVu2\nf3QOAAAAQDAYYcNnHCysSdKqVau0ZcsWXX/99TrmmGNUXl6ehMoAAACAzEJgw2e8+eabOuuss/TX\nv/61w/0mTpyoyZMnq6CggMAGAAAAJACBDZ+Rl5enZcuWdRjYxo4dq0WLFunwww9XQUGB3njjDe3Z\nsyeJVQIAAADpj8CGz8jNzdWIESPabSTywQcf6G9/+9v+x6NHj1ZhYaG2b9+erBIBAACAjEBgQ5uK\nioq0YsUKNTQ0fOa5H//4xxo+fLj27dsnqWlq5OrVq/WFL3wh2WUCAAAAaY3AhjYVFRVp9+7d2rhx\nY6vtdXV1euqpp/Qv//Iv6tmzZ0jVAQAAAJmBwIY2nXXWWbrgggtUX1/favtf/vIXffzxx7r88stb\nbf/ud7+rs88+O5klAgAAAGmPddjQpmOOOUbPPPPMZ7Y//vjjOvzww1VcXNxqe8+ePbVy5Urt27eP\nkTcAAAAgIIywoUM7d+7c/3NdXZ0WLFigSy65RL169Wq1X0FBgerq6vT6668nu0QAAAAgbRHY0K55\n8+apX79+2rp1q6SmBbU3bNigH/zgB5/Zt6CgQJJYjw0AAAAIEIEN7RoxYoQktWrvP3jwYB177LGf\n2ff4449Xnz59CGwAAABAgAhsaNfIkSPVu3dvLVu2TJ988okuvvhirVy5ss19DznkEN1www067bTT\nklwlAAAAkL4IbGhXdna2xowZo2XLlqm0tFQlJSX7115ry1133aVrrrkmeQUCAAAAaY7Ahg4VFRXp\n1Vdf1YMPPqhBgwbpy1/+cof719TU6NNPP01SdQAAAEB6I7ChQ1/72tf0k5/8RM8//7y+/vWv65BD\n2v8rs3HjRvXt21elpaVJrBAAAABIXwQ2dGjkyJEaMGCAJH1msewDDRs2TNnZ2TQeAQAAAAJCYMNB\n9e7dWxdccIFOP/30Dvfr2bOnvvjFLxLYAAAAgIAQ2HBQX//61/XMM8/IzA66b0FBgcrLy+XuSagM\nAAAASG8ENgSqoKBA1dXVqqqqCrsUAAAAIOUR2BCo4uJiPfDAA+rdu3fYpQAAAAApr0fYBSC9DBs2\nTMOGDQu7DAAAACAtMMKGwL399tt66aWXwi4DAAAASHmMsCFwd9xxh1atWqV333037FIAAACAlMYI\nGwJXUFCg9957Tx9//HHYpQAAAAApjcCGwBUUFEiSXnnllZArAQAAAFIbgQ2Baw5sLKANAAAAxIfA\nhsDl5eUpPz+fwAYAAADEiaYjSIinnnpKgwcPDrsMAAAAIKUR2JAQY8eODbsEAAAAIOUxJRIJUV1d\nrXvuuUdvvvlm2KUAAAAAKSuuETYzmyVpkqR9kt6W9O/uXhNEYUhtn3zyiW655Rb17t1bJ5xwQtjl\nAAAAACkp3hG2JZJGuPupkt6QNCP+kpAOjjnmGPXt25fGIwAAAEAc4gps7v5nd6+PPVwp6ej4S0I6\nMDONGjVKa9euDbsUAAAAIGUFeQ/bVEmL2nvSzKaZWZmZlVVXVwd4WkTVeeedp7Vr1+q9994LuxQA\nAAAgJR00sJnZX8xsYxtfk1vsc4ekekmPtnccd5/t7oXuXpiXlxdM9Yi0f/u3f1OvXr20cuXKsEsB\nAAAAUtJBm464+/kdPW9mV0u6UNJ4d/egCkPqGzJkiLZv367DDjss7FKQBiorK3XHHXfo29/+NstG\nAACAjBHXlEgzmyjpNkkXufunwZSEdNIc1urq6kKuBKlsz5492r17tx555BEtXLgw7HIAAACSJt57\n2H4p6VBJS8zsFTP7dQA1Ic1MnjxZV199ddhlIIU98sgjGjFihPr27aslS5aEXQ4AAEDSxNsl8nh3\nH+zuo2Jf3w6qMKSPIUOGaP78+dq5c2fYpSBFzZkzRyeffLKuv/56lZWV8XcpCdxdzHIHACB8QXaJ\nBNo0depU7d27V4899ljYpSAFrV+/XmVlZbr22ms1YcIENTY2aunSpWGXlRZqa2u1fv36/Y/vvvtu\nTZw4USeeeKJ69+6tjz76KMTqAACARGBDEhQUFGjUqFGaO3du2KUgBc2ZM0c9e/bUlVdeqTFjxmjU\nqFHau3dv2GWlhW9+85v68pe/vP/xO++8ox07duiUU07RjTfeGGJlAACg2UG7RAJBmDp1qv7zP/9T\n69ev16mnnhp2OUgR9fX1euyxxzRlyhT1799fklReXh5yVemhtrZWf/rTnzRmzBi5u8xMv/41tyED\nABA1BDYkxTe+8Q0dcsghGjJkSNilIIX06NFD69at0z/+8Y9W2xsbG1VfX6+ePXuGVFnq++tf/6ra\n2lrddtttMrOwywEAAO1gSiSSon///rrhhhuUm5sbdilIMUcffbSOP/74/Y+rqqo0YMAA/e53vwux\nqtT37LPPKicnR+ecc07YpQAAgA4Q2JA0+/bt0+zZs2kYgU7ZsmWLJk6cqI0bN7baPnDgQPXq1Yv2\n/nFaunSpxo0bp5ycnLBLAQAAHWBKJJImKytLP/rRjzRy5EiNGzcu7HIQcQ899JD+/Oc/7198vZmZ\nacKECVq4cKEaGxt1yCH8u1N3rFq1ii6QAACkAP5PB0mTlZWla665Rn/6059UWVkZdjmIsIaGBj30\n0EOaMGFCm/c9nn/++dqxY4deeeWVEKpLD7179+aeUgAAUgCBDUl1zTXXqLGxkfuP0KHnnntO77//\nvq699to2nz///PMliWmR3XTzzTfTERIAgBRBYENSHX/88TrnnHM0d+5cuXvY5SCifvvb36p///6a\nPHlym88fddRRuuuuu5ha2w2ffvqpHnjgAb3xxhthlwIAADqBwIakmzp1qvr377///pl9+/bphRde\n0Pe+9z2NGTNGu3btCrlChK2oqEi33367evXq1e4+t912m0aPHp3EqtLD0qVLtXfvXn31q18NuxQA\nANAJBDYk3VVXXaWVK1dq69atmjRpkvr166dx48Zp1qxZ6tWrlz788EO99tprGjdunD788MOwy0UI\nvvOd7+jWW2/tcJ/6+nq9/PLLevPNN5NUVXp49tln1bt3b5199tlhlwIAADqBwIaka16kt0ePHtq8\nebOuvvpqLViwQDt27NCLL76oE044QfX19Vq1apUuu+wy1dXVhVwxksXdVVJSotra2oPuu3fvXo0f\nP14PPvhgEipLD+6uZ599VuPHj+9w9BIAAEQHgQ2hGTFihN58803df//9uuiii1q1bx85cqRmz56t\nF198Uf/1X/8VYpVIpjVr1ujiiy/WI488ctB9P//5z+vMM8+k8UgXfPLJJxoxYoQuvvjisEsBAACd\nxDpsCE3zSFt7rrzySq1Zs0b33nuvTj/9dH3jG99IUmUIy7333qs+ffro61//eqf2nzBhgu644w5t\n375dAwYMSHB1qa9Pnz4qLS0NuwwAANAFjLAh0n7605/qrLPO0rx5/7+9Ow+rqtr/B/5ezAqiIIKa\niAKSCHkdSE2QcraEa1BmN1NzomygvqnXJn/l0LXymjenUsMnNScyvTenLMBMnCdSwClnhhARUDmA\nwlm/PxhKBQXO3mefw3m/nsdHzj57r/V25zE+7L0/6xt2laznfv/9d6xbtw4TJky4Z7Hs6lS0909I\nSFAzWr2Rl5endQQiIiKqJRZsZNJsbW3x3//+F5s3b37gFTkyb59++ilsbW3xf//3fzU+pmvXrnBx\ncWHBVgM3b95E8+bNMWfOHK2jEBERUS2wYCOT5+rqCjs7O+Tk5GDatGnQ6/VaRyKFlZaWIjk5GWPH\njkWLFi1qfJy1tTUSExOxYMECFdPVDwkJCSguLkaXLl20jkJERES1wGfYyGxs2rQJH330EUpLSzF9\n+nSt45CCrK2tsWfPHhQVFdX62A4dOqiQqP7ZunUrnJycEBwcrHUUIiIiqgVeYSOzMWrUKLz00kuY\nOXMmjh49qnUcUkheXh6uXbsGIQQaNGhQ6+Nv3bqFyZMn47vvvlMhXf1Q0c6/f//+sLOz0zoOERER\n1QILNjIbQgjMnTsXrq6umDx5MpuQ1BOfffYZvL29kZubW6fjbW1tsX79eqxatUrhZPVHSkoKLl++\njKeeekrrKERERFRLLNjIrDRp0gRTp05FfHw8tm/frnUco5NSIiUlResYisnLy8PChQsxYMAAuLi4\n1GkMIQT69++PHTt2oKSkROGE9UPLli2xePFihIWFaR2FiIiIaokFG5mdCRMmYMqUKejYsaPWUYxu\nzpw56NixIy5duqR1FEUsXLgQ169fx3vvvWfQOIMHD8b169excuVKhZLVL66uroiKikLz5s21jkJE\nRES1xIKNzI6dnR0++eQTtGzZUusoRrVw4UJ8/vnn0Ov1+PLLL7WOY7CCggLMnTsXgwcPRqdOnQwa\nKzw8HD179sQ///lP5OTkKJSwfrh+/TqWLl2Kq1evah2FiIiI6oAFG5mtpKQkPPfcc9DpdFpHMYod\nO3bA3t4eERERWLp0KQoLC7WOZJDt27cjJycH77//vsFjWVlZ4csvv8SgQYP4bONd4uLiEBUVhdTU\nVK2jEBERUR2wYCOzdePGDXz33Xf44osvtI6iOiklEhMTERISgujoaOTk5GDNmjVaxzJIZGQkTp06\nhccee0yR8Tp27IiVK1fCzc1NkfHqi61bt6Jx48aKnWciIiIyLhZsZLZ69eqFIUOGYNasWcjOztY6\njqrOnj2LrKwshISE4PHHH0dgYCDWrl2rdaw6q1hvzc/PT/Gxk5OTMX78eDYgQdmC5Js3b8bAgQNh\na2urdRwiIiKqAxZsZNY++eQT6HS6er+QdmJiIgAgJCQEQghs3LgRmzZt0jhV3ZSUlKBjx46YOXOm\nKuOfOnUKX3/9NRYsWKDK+OZk7969yMrKQmRkpNZRiIiIqI5YsJFZa9++PcaNG4evvvoKZ86c0TqO\nalq2bIl//OMf8Pf3BwD4+vrC3t7eLJ/X+u6773DmzBnVunxGRkbiySefxNSpU5Genq7KHOZi//79\ncHBw4PprREREZowFG5m9jz76CNOnT8dDDz2kdRTVDBgwAKtXr4aV1Z8f2V9++QXt2rVDWlqahslq\nLy4uDm5ubqqtCSaEwIIFC1BSUoK3335blTnMxcSJE5GWloZGjRppHYWIiIjqiAUbmb3mzZvj3Xff\nRcOGDbWOogqdToesrJW51IAAACAASURBVKx7tnt5eeHcuXP46quvNEhVd6mpqQgMDLyj+FSat7c3\n3n//fcTGxiI+Pl61eYxp+/btdVo0vWnTpiqkISIiImNhwUb1xubNm/Hiiy+a5W2C97N9+3Y0b94c\nBw8evGN727ZtER4ejsWLF1c28TB1UkqkpqYiICBA9bkmT56M2bNn14vuiHl5eRg0aBACAwNrfMzM\nmTMREREBvV6vYjIiIiJSGws2qjcuXryIVatWISkpSesoitq9ezfs7e2rfObrjTfewNWrV7Fu3ToN\nktVeSUkJpk6dapQmGPb29pg0aRIaNmxo9kW8ra1t5fOLdxfu1Vm9ejXy8/NVvZJJRERE6uP/yane\nePbZZwGUrTtVnyQmJqJbt26wt7e/572+ffvC398f8+bNM4uixNbWFpMmTUKfPn2MNufhw4cRGBho\n1g1IHB0dsW/fPjg5OWHhwoUP3P/EiRM4ceIEu0MSERHVAyzYqN7w8PBAUFBQvSrYdDodDh8+jJCQ\nkCrfF0Jg9uzZmDZtmpGT1c2lS5dw6dIloxaXxcXFSE1NxdGjR402p5JSU1OxZMkS2NjYYMSIEVi7\ndi1ycnLue8zGjRsBAE8//bQxIhIREZGKWLBRvTJ48GDs27fvgd/QmosDBw6gpKSk2oINKPszh4WF\nQQhhxGR18/HHH6Nr165Gzerj4wMAuHDhgtHmVNKiRYsQHR2NoqIiTJw4EZs2bYKLi8t9j9m4cSO6\nd++OVq1aGSklERERqYUFG9Ur4eHheOKJJ5Cdna11FEV06NABMTExCA4Ovu9+V65cwXvvvYeMjIzK\nbSUlJZVf//7777hx44ZqOWsqJSUFHTp0MOqc7u7ucHBwMMuCrbCwEKtWrUJkZCRcXV3h4+OD/v37\n3/e5NL1ej7CwMLz66qtGTEpERERqEUrcmiSEmARgNoBmUsqrD9o/KChIHjp0yOB5iajM2bNn0a5d\nO3h4eEBKievXr8PR0bGycO3fvz+cnZ3x/fffa5ZRSommTZti2LBh+PLLL406t7+/PwICArB+/Xqj\nzmuo1atXY/jw4YiLi0Pfvn0BANevX8e0adPw5JNPol+/fhonfDAhxGEpZZDWOYiIiMyVjaEDCCE8\nAfQHcMnwOETKuHbtGho3bgxra2uto9RZaWkpli9fjoEDBz5wUXAfHx/MmjULR48ehbOzMxo3bnzH\n+lt6vR7x8fEoLS3V7Jz88ccfyM3NNfoVNgDo3bs3HBwcjD6voWJiYtC2bVv07t27cluDBg2wevVq\nnDx5ssqCbdeuXQgKCkKDBg2MGZWIiIhUosQtkXMB/BOA6beoI4sQFxeHZs2aYf/+/VpHMcjx48cx\nduxY/PLLLzXaf8qUKVi7di2WLFmC2bNn45133ql8b/To0cjPz0dycrJKaR8sNTUVAIyyBtvdFi1a\nhM8//9xo812+fBkXLly447bU2ioqKoJOp8OYMWPuuAXS1tYWUVFR2LZtG86dO3fHMVlZWXj88cfx\n6aef1nleIiIiMi0GFWxCiL8DSJdS/laDfaOEEIeEEIfqy/NFZJoqmlqYe7fIxMREAECvXr0MHis0\nNBQA8Ouvvxo8Vl098sgjWLNmDbp06aJZBmMoKCiAn58f2rZtixEjRlRuf/nllzF16lTExMQgLy/v\ngeM4ODhg7969ePfdd+95LyoqClZWVvfcWvrDDz9ASomIiAjD/yBERERkEh5YsAkh4oQQyVX8GgLg\nfQD/ryYTSSmXSCmDpJRBzZo1MzQ3UbVcXFzQs2dPTQs2nU6H0aNHV15Vqotdu3bB09MTrVu3NjhP\n69at4eXlpWnB5u7ujueffx5NmjQx+tzx8fHw9PQ0yhXG9PR0FBUVYcyYMRg9ejSAsuYhP/74I/71\nr39h3Lhx6Nu3L27evFntGKWlpcjNzQWAKm9hfeihh/D0009j2bJlKCwsrNy+YcMGeHt7V7nIOhER\nEZmnBxZsUsp+UsrAu38BOAegLYDfhBAXALQCcEQI0VzdyEQPNnjwYBw9evSOronGtHDhQnzzzTdY\nvnx5nY6XUiIxMfG+7fxra968eZg8ebJi49XWpk2bcPz4cU3mdnJyQlpamlE6RVb8nRs+fDgGDBgA\noOy5s4sXL6KoqAjff/89kpKSMGzYsGpvmdy+fTtatGiBAwcOVDtPdHQ0wsLCcP36dQBAXl4e4uPj\nERkZaRZLPBAREVHN1PmWSCnlcSmlu5SyjZSyDYA0AF2klH8olo6ojp566ikAwLZt24w+d35+Pj75\n5BMAwO7du+s0RlpaGjIyMhQt2P7+97+jW7duio1XW2PGjMH8+fM1mbtNmzYAjLMWW0XB1rJly3ve\ns7W1RWRkJBYtWoR27dpVW1jFxMTA2dkZnTp1qnae0NBQLF++HB4eHgCAn376Cbdv30ZkZKQCfwoi\nIiIyFQZ3iSQyRYGBgVi0aJEmbc+PHz8OIQTmzJmD7t2712kMT09PZGVlwc7OTrFcpaWl2Lp1K9zd\n3eucq66ys7Nx9epVTRqOAMZdiy0iIgKnTp2qLBKr8vLLL1d+XVBQAEdHx8rXWVlZ+OGHH/Dmm2/W\n6L//0aNH4eTkhKFDh8LHxwedO3c2KD8RERGZFsUKtvKrbEQmQQiBCRMmaDJ3SEgILl++bHBbdXd3\nd4USlbGyssK4ceMwYMAAoxdsKSkpAKBJS3+g7O+Dl5cXLl68qPpcDRo0gJ+fX432PXv2LB5//HF8\n9tlneOGFFwAAK1euRElJCcaOHfvA4wsKChAaGopnnnkG33zzDbp27WpQdiIiIjI9SrT1JzJJhYWF\nWLVqlVGfm0pKSoJer68s1rZs2VLjtvx/9dprr2HDhg2KZhNCIDQ0VJPGIxXNV7Qq2ADgueeew6OP\nPqr6PKtWrcKKFStqtG+rVq3g6+uL0aNHY+fOnZBSIiYmBj179oS/v/8Dj3d0dMSIESOwfPlyREZG\n4tq1a4bGJyIiIhMjpDT+8mlBQUHy0KFDRp+XLEtBQQFcXV3x+uuvY86cOarPl5GRAR8fH7z11luY\nNWsWAMDf3x8+Pj7YvHlzjcfJycmBm5sbPv74Y7z33nuKZpw/fz6io6Nx4cIFeHl5KTr2/bz22mv4\n9ttvkZeXV+8bYoSGhsLKyqrGhXpubi6Cg4ORmZmJ3bt3w8bGBvn5+TUuLpOTk/HII48AAG7dugVb\nW9u6RleFEOKwlDJI6xxERETmilfYqN5ydHTEE088YbT2/jNnzkRJSQnGjx9fuS0kJAS7d++GXq+v\n8Th79uypPFZpWq3HNmPGDOzcuVPzYq2kpKRW/y3qIjMzEy1atKjx/i4uLti2bRscHBzw5JNPwtnZ\nuVZXAgMDAzF8+HBMnTrV5Io1IiIiMhwLNqrXBg8ejJMnT+LcuXOqznP+/HksXboU48ePh7e3d+X2\nkJAQ5OXl1Wo9tsTERNja2qpy+15gYCCaNGmC/fv3Kz72/bi6ut6346Ex/O9//4ODgwNOnDih2hxS\nSmRkZFTZIfJ+vLy8sGXLFvj6+tZoUe27ffvtt5g+fXqtjyMiIiLTx4KN6rWK9v5qX2WbNm0abGxs\n8MEHH9yxveIqWWJiYo3HSkxMRFBQkMFNS6pibW2N3377DfPmzVN87Ork5uZi2rRpOHXqlNHmrIqH\nhwdKS0tV7RR5/fp16HS6WhdsANClSxesX78evr6+KiQjIiIic8WCjeo1X19f+Pn5ISkpSbU5ioqK\nsH//frz++uv3fKPu7e2N5s2b4+DBgzUaS0qJhg0bVt66qIbWrVvDysp4H/3k5GR89NFHOH/+vNHm\nrIox1mLLzMwEgFrdEvlXLi4usLHhaitERET0J35nQPXe/v370aRJE9XGd3BwwPHjx1FcXHzPe0II\nHDx4sMZXXIQQ+Pnnn1V9zuratWuYMmUKhg4digEDBqg2TwWtW/pX8PDwUH0ttvbt2+PmzZuwtrZW\nbQ4iIiKyLLzCRvWemsVaWloaCgoKYGNjc8fix3/VqlWrGl/RKigoAABVr4A1atQIq1evrlXnSkOk\npqbCyckJnp6eRpmvOhVrsam9eLajoyMcHBxUnYOIiIgsBws2sgjjxo3Du+++q/i4UVFR6Nat232v\niOXl5SEqKgo//vjjfcfKycmBu7s7YmJilI55B1tbW/Ts2dNonSJTU1PRoUMHzTtEAsCrr76K8PBw\n1cbftGkTJk6ciNLSUtXmICIiIsvCgo0swtWrV7FmzRoote7gmTNnMGTIEGzbtg2jRo267xUxJycn\nrF69Glu2bLnvmBs2bIBOp0Pnzp0VyXg/oaGhOHbsGHJzc1Wf6/z585rfDlkhOjoaI0eOVG38+Ph4\nLF26lLdEEhERkWJYsJFFGDx4MC5evIhdu3YZNI5er8fEiRMREBCAHTt2YNasWXj77bfve4yNjQ0e\ne+yxB3aKXLduHdq1a2e0gk1Kid27d6s+15kzZ4zalfJ+SktLcfnyZdy+fVuV8evS0p+IiIjofliw\nkUV44YUX4OnpiTfeeAMlJSW1Pr7iypyVlRUuX76MUaNG4fTp03jnnXdq1NUvJCQEx44dQ35+fpXv\nZ2VlYceOHRg2bJhRbh3s1q0b2rdvX/nMnJqsrKzQqFEj1eepidjYWLRu3RpnzpxRZfzaLppNRERE\n9CAs2MgiODo6Yu7cuTh27BiWLFlSq2Pj4+MRFBSEkydPAgDWrFmDpUuXonnz5jUeIyQkBHq9Hvv2\n7avy/fXr10Ov1+P555+vVba6atCgAU6cOIFhw4apOs+mTZswfvx43Lx5U9V5akrt1v68wkZERERK\nY8FGFiMyMhJz586tVZGyYsUK9OvXD7m5ubh69SoA1On5pO7du8PX1xc3btyo8v2wsDAsWrQIAQEB\ntR7bEFJKVZcQSEhIwOrVq9GwYUPV5qgNtQu2oqIiFmxERESkKK7DRhZDCIG33noLQFmh8qBbDw8d\nOoSoqCj07t0bW7duNahVu5OT031vw/Py8sKECRPqPH5dJCUlYdCgQVi1ahX69u2ryhypqanw9/c3\n6kLd9+Ph4QF7e3vVCrb09HRVC2AiIiKyPKbxXRSREZ07dw7du3fHnj17qt0nOzsbkZGR8PDwwLp1\n6xRbV0tKeU+nys2bNyM2NlaxDpY15e3tjezsbFXb+1e09DcVVlZWqq/FZirFKREREdUP/M6CLI67\nuzsyMzPx2muvVbtelrOzM4YMGYKNGzeiWbNmisy7d+9etGzZEgcOHLhj+4wZM/Dpp58afZ0yZ2dn\ndO7cWbWCLT8/H2lpaSZVsAHAhx9+iDFjxig+7sGDBzFs2DCcO3dO8bGJiIjIcrFgI4vj5OSEOXPm\nICkpCV999dU97+t0Otjb22P+/Pno0qWLYvO2adMGf/zxxx3t/c+dO4cDBw4YrdnI3UJDQ7Fv3z4U\nFxcrPnZWVhZ8fX0RGBio+NiGeOGFFzBo0CDFx01NTUVsbCxviSQiIiJFsWAjizR06FD06dMHH3zw\nAbKzsyu3f/PNNwgMDMSlS5cUn7NFixbw8fG5o2CLjY0FADz33HOKz1cToaGhKCoqwqFDhxQf28/P\nD2fOnEFYWJjiYxsiPz8fe/bsUbxIzczMBAC29SciIiJFsWAjiySEwIIFC3Dz5k18/vnnAMqajLzy\nyito27atap3+QkJCkJiYWPm82tq1a9GjRw94eXmpMt+D9OrVC2+++SaaNm2qyfxa2Lp1K4KDg3H2\n7FlFx83IyEDjxo3h6Oio6LhERERk2ViwkcXy9/fHTz/9hGnTpuHKlSuIiIiAh4cH1q5dW6PFsOsi\nJCQEV69exenTp5GXlwedTqfZ7ZAA0LRpU/znP/9B+/btFR977NixiI6OVnxcQ6nV2p9rsBEREZEa\n2NafLFrv3r1RWlqKiIgIXLlyBXv37lWsyUhV+vTpg+joaNjZ2aFJkyY4deoUSkpKVJuvJgoLC3H6\n9Gn87W9/U3TcuLg4hISEKDqmEtQq2Bo2bGhyDVaIiIjI/LFgI4t35coVZGZmIiYmRtEmI1Xx9vbG\nF198ASklbt26BTs7O9ja2qo654PMnz8fU6ZMwbVr1+Di4qLImDdu3MClS5dMsoBRay22FStWKDoe\nEREREcBbIonQokULHDt2DC+++KJR5rt9+zZWrlwJDw8P7Nixwyhz3k9FF8eUlBTFxjx58iQAmGTB\nZoy12IiIiIiUwoKNCGWt/o1l3rx5GDVqFPLy8hAQEGC0eatTUbAlJycrNmZqaioAmMSfryoLFizA\nO++8o9h4165dQ3BwMLZs2aLYmEREREQAb4kkMrqePXtWfu3u7q5hkjKenp5o1KiRogWbs7Mz+vbt\nC29vb8XGVFL//v0VHS89PR179uyBTqdTdFwiIiIiXmEjMrKuXbsiNDTUZK7GCCEQEBCgaMEWERGB\nuLg41bptGiotLQ3r1q1DUVGRIuNlZGQAALtEEhERkeJM87sponrMzs4OO3fu1DrGHaZPnw57e3tF\nxkpPT0fjxo2Neptpbf36668YPnw4UlNT4e/vb/B4LNiIiIhILbzCRkTo378/QkNDFRlr0qRJCAgI\ngF6vV2Q8NSjd2r+iYGvRooUi4xERERFVYMFGRNDpdNi8eTPOnz9v0Di5ubnYuHEjhgwZAisr0/3n\nRemCzcXFBb169YKDg4Mi4xERERFVMN3vqIjIaG7cuIHw8HD88MMPBo2zZs0aFBcXY/To0QolU0fz\n5s1hZ2enWMH26quv4tdff1VkLCIiIqK/YsFGRHB3d4ebm5vBjUeWLVuGTp06oXPnzgolUwfXYiMi\nIiJzwaYjRAQhBAIDAw0q2E6fPo3Dhw/jiy++UDCZemJjY+Hm5qbIWD179sTAgQPx4YcfKjIeERER\nUQVeYSMiAKgs2KSUdTrez88Pv/32G0aMGKFwMnV06tQJrVq1MngcvV6PQ4cOKbZEABEREdFfsWAj\nIgBlBdvNmzdx6dKlOo/RsWNHuLi4KJhKPSdOnMC///1vFBYWGjROTk4Obt++zZb+REREpAoWbEQE\nAIiMjERKSgoeeuihWh+7efNmjBgxAteuXVMhmTqOHj2KyZMnG/wcG9dgIyIiIjWxYCMiAECzZs3Q\noUMH2NjU/tHWxYsXIyEhAc7OziokU4dSrf1ZsBEREZGaDC7YhBBvCCFOCSFShBCfKRGKiLSxZs0a\nrFixolbHZGZmYuvWrRg5cmSdij2tKFWwOTs7IywsDF5eXoaHIiIiIrqLQd9dCSF6AxgCoKOUslgI\n4a5MLCLSwvLly5GVlYWRI0fW+JiVK1dCr9eb/Nprd1NqLbbg4GBs2rRJmVBEREREdzH0CtsEAJ9I\nKYsBQEp5xfBIRKSVwMBAnDhxAqWlpTXaX0qJZcuWITg4GH5+fiqnU1bFWmznz583aJy6dtUkIiIi\nqglD71/yA9BLCPExgCIAk6SUB6vaUQgRBSAKAFq3bm3gtESkhsDAQBQXF+Ps2bM1KsCKi4sRHh6O\nRx991AjplPfLL7+gadOmBo0xdOhQ5OXlIS4uTqFURERERH96YMEmhIgD0LyKt94vP94FQA8AjwKI\nFUJ4yyp+5CylXAJgCQAEBQXxR9JEJigwMBAAkJycXKOCzcHBAbNnz1Y7lmqUaBRy+fJlNGnSRIE0\nRERERPd64C2RUsp+UsrAKn79D0AagA2yzAEAegBuaocmInX4+/tDCIFz5849cN+CggL89NNPNb59\n0hQdOHAAb775JnQ6XZ3HyMjIYIdIIiIiUo2hz7D9F0AfABBC+AGwA3DV0FBEpA1HR0fk5+dj0qRJ\nD9z3+++/x8CBA7F3714jJFPH77//jnnz5uHixYt1Ol6v1yMzM5MFGxEREanG0IJtGQBvIUQygLUA\nRlV1OyQRmY9GjRrVaL+vv/4aPj4+CA4OVjmRenx9fQEAR44cqdPx2dnZKC0tZcFGREREqjGoYJNS\n3pJSvlh+i2QXKWWCUsGISBvx8fF45plnUFxcXO0+qamp2LVrF6KioiCEMGI6ZQUFBaFNmzZYtmxZ\nnceYMGECunbtqmAqIiIioj8ZvHA2EdUv2dnZ2LBhA06fPl3tPkuWLIGtrS1eeukl4wVTgZWVFcaN\nG4eEhAScPXu21sd7eHhg0aJF6NGjhwrpiIiIiFiwEdFdAgICAJR1iqyKlBIJCQmIjIyEu7u7MaOp\nYvTo0fD19a3Tc2yFhYUoKSlRIRURERFRGUPXYSOieubhhx+GjY1NtQWbEAJHjhxBfn6+kZOpo2XL\nljh9+nSdbu2cPXs2pk+fjsLCQtja2qqQjoiIiCwdr7AR0R3s7Ozg5+eHlJSUKt8vLS2FjY2NwQtO\nmxIhBG7duoX09PRaHZeRkQFXV1cWa0RERKQaFmxEdI8ePXrAzs7unu0pKSnw9PTE7t27NUilrsce\newzjxo2r1TFcg42IiIjUxlsiiegeMTExVW5fvHgxcnJy8PDDDxs5kfrCwsIwY8YMXLx4EV5eXjU6\nhgUbERERqY1X2IioRnQ6HVasWIFnn30Wbm5uWsdR3JgxYwCgVi3+uWg2ERERqY0FGxHdIzs7G927\nd8eaNWsqt8XGxiI/Px9RUVEaJlOPl5cXBg4ciGXLlqG0tLRGx0RHR+Ppp59WORkRERFZMhZsRHQP\nV1dXHDt2DIcPH67ctnjxYrRv3x6hoaEaJlPX+PHjkZaWhoSEhBrtP2XKFISFhamcioiIiCwZn2Ej\nontYW1ujQ4cOd7T2nzFjBoqLi+vU/t5chIeHY+fOnejVq9cD9y0oKEBubi5atGgBa2trI6QjIiIi\nS8QrbERUpYCAgDsKtn79+mHw4MEaJlKfra0tQkNDa1SUJiQkwNPTE0eOHDFCMiIiIrJULNiIqEqB\ngYFIT09Heno6pkyZgosXL2odySj0ej3eeOMNzJs37777ZWRkAACbjhAREZGqWLARUZV69OiBZ555\nBl9//TU+++wzXL58WetIRmFlZYXU1FTMnTsXer2+2v0yMjIghICHh4cR0xEREZGlYcFGRFUKDQ3F\n+vXrsXXrVnTo0AHBwcFaRzKa8ePH48KFC4iLi6t2n8zMTLi7u8PGho8CExERkXpYsBFRtZKSknDg\nwAFERUXV62Yjd4uIiEDTpk2xdOnSavfhotlERERkDPzRMBFVq3PnzgCAkSNHapzEuOzt7TFy5EjM\nnz8feXl5aNKkyT37TJgwATqdToN0REREZElYsBFRtbZs2YLs7Gy4uLhoHcXoXnnlFaSkpKBx48YA\ngKVLl+KRRx5Bt27dYGVlVe87ZhIREZFpEFJKo08aFBQkDx06ZPR5iYhq49atW7Czs0NhYSHc3Nyg\n0+nQsmVLhIeHw8fHB2PHjoWrq6vWMU2aEOKwlDJI6xxERETmilfYiIiqYWdnBwBo0KAB0tPTsWXL\nFmzYsAFLliyBlBLu7u4YNWqUximJiIioPuMVNiKiWtLpdDhy5Ai6detWWdRR1XiFjYiIyDC8wkZE\nVEsNGzZESEiI1jGIiIjIArCtPxERERERkYliwUZERERERGSiWLARERERERGZKBZsREREREREJooF\nGxERERERkYliwUZERERERGSiWLARERERERGZKBZsREREREREJooFGxERERERkYkSUkrjTypENoCL\nBg7jBuCqAnHqI56bqvG8VI/npno8N1Wr6XnxklI2UzsMERFRfaVJwaYEIcQhKWWQ1jlMEc9N1Xhe\nqsdzUz2em6rxvBARERkHb4kkIiIiIiIyUSzYiIiIiIiITJQ5F2xLtA5gwnhuqsbzUj2em+rx3FSN\n54WIiMgIzPYZNiIiIiIiovrOnK+wERERERER1WtmWbAJIQYJIU4JIX4XQryjdR4tCSGWCSGuCCGS\n/7LNVQjxsxDiTPnvLlpm1IIQwlMIsUMIcUIIkSKEeLN8u0WfGyGEgxDigBDit/LzMq18e1shxP7y\n87JOCGGndVatCCGshRBHhRCby1/z3AAQQlwQQhwXQiQJIQ6Vb7PozxMREZExmF3BJoSwBrAQwJMA\nOgD4hxCig7apNPUNgEF3bXsHQLyUsh2A+PLXlqYEwEQppT+AHgBeK/97YunnphhAHynl3wB0AjBI\nCNEDwKcA5pafl1wAYzXMqLU3AZz4y2uemz/1llJ2+ks7f0v/PBEREanO7Ao2AN0A/C6lPCelvAVg\nLYAhGmfSjJTyVwDX7to8BMDy8q+XA3jaqKFMgJQyU0p5pPzrGyj7BvwhWPi5kWVulr+0Lf8lAfQB\nsL58u8WdlwpCiFYABgP4uvy1AM/N/Vj054mIiMgYzLFgewjA5b+8TivfRn/ykFJmAmWFCwB3jfNo\nSgjRBkBnAPvBc1Nxy18SgCsAfgZwFkCelLKkfBdL/kz9B8A/AejLXzcFz00FCeAnIcRhIURU+TaL\n/zwRERGpzUbrAHUgqtjGVpdUJSGEE4DvAbwlpbxedsHEskkpSwF0EkI0AbARgH9Vuxk3lfaEEGEA\nrkgpDwshnqjYXMWuFnduygVLKTOEEO4AfhZCnNQ6EBERkSUwxytsaQA8//K6FYAMjbKYqiwhRAsA\nKP/9isZ5NCGEsEVZsbZKSrmhfDPPTTkpZR6AX1D2jF8TIUTFD3As9TMVDODvQogLKLvVug/Krrjx\n3ACQUmaU/34FZYV+N/DzREREpDpzLNgOAmhX3rnNDsDzAH7QOJOp+QHAqPKvRwH4n4ZZNFH+7FEM\ngBNSys//8pZFnxshRLPyK2sQQjQA0A9lz/ftAPBs+W4Wd14AQEr5rpSylZSyDcr+XUmQUg4Hzw2E\nEI5CiEYVXwMYACAZFv55IiIiMgazXDhbCPEUyn7ybQ1gmZTyY40jaUYIsQbAEwDcAGQB+BDAfwHE\nAmgN4BKAoVLKuxuT1GtCiBAAuwAcx5/PI72HsufYLPbcCCE6oqw5hDXKfmATK6WcLoTwRtlVJVcA\nRwG8KKUs1i6ptspviZwkpQzjuQHKz8HG8pc2AFZLKT8WQjSFBX+eiIiIjMEsCzYiIiIiIiJLYI63\nRBIREREREVkEwaG34QAAAEpJREFUFmxEREREREQmigUbERERERGRiWLBRkREREREZKJYsBERERER\nEZkoFmxEREREREQmigUbERERERGRiWLBRkREREREZKL+P+PY6wHjo3TKAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["from numpy.random import randn\n", "\n", "fig = plt.figure(figsize=(15,10))\n", "ax1 = fig.add_subplot(2,2,1)\n", "ax2 = fig.add_subplot(2,2,2)\n", "ax3 = fig.add_subplot(2,2,3)\n", "\n", "# On peut compl\u00e9ter les instances de sous graphiques par leur contenu.\n", "# Au passage, quelques autres exemples de graphes\n", "ax1.hist(randn(100),bins=20,color='k',alpha=0.3)\n", "ax2.scatter(np.arange(30),np.arange(30)+3*randn(30))\n", "ax3.plot(randn(50).cumsum(),'k--')"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Pour explorer l'ensemble des cat\u00e9gories de graphiques possibles : [Gallery](http://matplotlib.org/gallery.html). Les plus utiles pour l'analyse de donn\u00e9es : [scatter](http://matplotlib.org/examples/lines_bars_and_markers/scatter_with_legend.html), [scatterhist](http://matplotlib.org/examples/axes_grid/scatter_hist.html), [barchart](http://matplotlib.org/examples/pylab_examples/barchart_demo.html), [stackplot](http://matplotlib.org/examples/pylab_examples/stackplot_demo.html), [histogram](http://matplotlib.org/examples/statistics/histogram_demo_features.html), [cumulative distribution function](http://matplotlib.org/examples/statistics/histogram_demo_cumulative.html), [boxplot](http://matplotlib.org/examples/statistics/boxplot_vs_violin_demo.html), , [radarchart](http://matplotlib.org/examples/api/radar_chart.html)."]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Ajuster les espaces entre les graphes"]}, {"cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\n"]}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEINJREFUeJzt3V+opPV9x/H3NxtFwRSrezSLuj1e\nSFGkVTosghcVtcS2Ur2IEktlSw1zkwSllnabXGQDudhSMA00NAxRckolukTLLmJI7WIIXtT4rBqD\nbq1Gtmbr4p6got4kbPLtxXmWbtc5Z57588yf37xfIGfmmWfOfM+c3378Pd/ze56JzESStPg+NusC\nJEmTYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCvHxab7Y9u3bc3V1dZovKTVy\n9OhRHJuaV4cPH/55Zq4M2m+qgb66ukpVVdN8SamRTqfj2NTcioj/brKfLRdJKoSBLkmFMNAlqRAD\nAz0izomIH0XEjyPi5Yj4Sr398oh4NiJei4hHI+Ls9suVJG2myR9FfwHcmJkfRsRZwDMR8T3gL4Gv\nZeYjEfFN4B7gn1qstTh79+7te1uSRjFwhp4bPqzvnlX/l8CNwHfr7WvA7a1UKElqpFEPPSK2RcSL\nwAngKeCnwHuZebLe5RhwSTslSpKaaBTomfmrzLwGuBTYBVzZb7d+z42IbkRUEVGtr6+PXqk0Yb1e\nj06nQ6fTwbGpEgy1yiUz3wN+AFwHnB8Rp3rwlwJvbfKcXmZ2MrOzsjLwRCdparrdLlVVUVUVjk2V\noMkql5WIOL++fS5wM3AEeBr4dL3bbuBAW0VKkgZrssplB7AWEdvY+B/A/sx8IiJeAR6JiK8CLwAP\ntlinJGmAgYGemS8B1/bZ/gYb/XRJ0hzwTFFJKoSBLkmFmOrlc0s07Nmem+3jWaOSxuUMXZIKYaBL\nUiFsubTEFoqkaXOGLkmFMNAlqRCR2feaWq3odDpZ2gfxtt1O2er729aZHD8kejSnxp3jr10RcTgz\nO4P2c4YuSYUw0CWpEAa6JBXCZYsLxD6lZmmrfrl/z5kPztAlqRAGuiQVwpaLpE3ZPlksztAlqRAG\nuiQVwpaLVLh+q1PGWZViG2Z+OUOXpEIY6JJUCANdkgphD33O2a+U1JQzdEkqhIEuSYUY2HKJiMuA\nfwY+Cfwa6GXm1yPiAuBRYBU4CtyZme+2V6qa8kJJ0nJqMkM/CdyfmVcC1wGfi4irgD3Aocy8AjhU\n35ckzcjAQM/M45n5fH37A+AIcAlwG7BW77YG3N5WkZKkwYbqoUfEKnAt8CxwcWYeh43QBy7a5Dnd\niKgiolpfXx+vWmmCer0enU6HTqeDY1MlaBzoEXEe8BhwX2a+3/R5mdnLzE5mdlZWVkapUWpFt9ul\nqiqqqsKxqRI0CvSIOIuNMH84Mx+vN78dETvqx3cAJ9opUZLUxMBAj4gAHgSOZOYDpz10ENhd394N\nHJh8eZKkppqcKXo9cDfwk4h4sd72RWAfsD8i7gHeBO5op8T5MO9LAeexJi2GrT4rdJqvP8saSjEw\n0DPzGSA2efimyZYjSRqVZ4pKUiEMdEkTtXfvXlsnM2KgS1IhDHRJKoTXQ5f0EbZMFpMzdEkqhIEu\nSYUw0CWpEPbQpSUxqC/eZt+839mo9uknzxm6JBXCQJekQthykRZIv5aFbQyd4gxdkgphoEtSIWy5\njMDDWk3bsGNuHsboPNSwbJyhS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEK4bLFwmy0dc0mZ5lG/\ns1/VnDN0SSqEgS5JhRjYcomIh4BbgROZeXW97QLgUWAVOArcmZnvtldmu5b94kbL/vNLpWgyQ/82\ncMsZ2/YAhzLzCuBQfV+SNEMDAz0zfwi8c8bm24C1+vYacPuE65IkDWnUHvrFmXkcoP560eRKkiSN\novVlixHRBboAO3fubPvlJsp+ctl6vR69Xg+A9fX1GVfzUbP8DNC2LGLNi2TUGfrbEbEDoP56YrMd\nM7OXmZ3M7KysrIz4ctLkdbtdqqqiqiocmyrBqIF+ENhd394NHJhMOZKkUTVZtvgd4AZge0QcA74M\n7AP2R8Q9wJvAHW0WKS0T2xIa1cBAz8y7NnnopgnXIkkag2eKSlIhluriXE0OZZflcHdZfk4tpn5n\nL3tG82DO0CWpEAa6JBXCQJekQhTfQ7fXpmXieF9uztAlqRAGuiQVIjJzai/W6XSyqqqpvR54CDqO\nZXrvOp0O0x6bp1um93qSBi1vLEVEHM7MzqD9nKFLUiEMdEkqRPGrXDQZmx3Glnh4q3KU3Ibpxxm6\nJBXCQJekQhjoklQIA12SCmGgS1IhDHRJKsTCLVtscpH7ZVmi1DbfR807x+j/5wxdkgphoEtSIeay\n5XLmYZSHVfNrWT+ndVDrb6ufucT3Y54s8/vrDF2SCmGgS1Ihxgr0iLglIl6NiNcjYs+kipIkDW/k\nHnpEbAO+AfwBcAx4LiIOZuYro3y/UfpeTZYwavZm2WefxhgZ9op+jtXpazoOBn1gxrz/7saZoe8C\nXs/MNzLzl8AjwG2TKUuSNKxxAv0S4Gen3T9Wb5MkzcDInykaEXcAn8rMz9b37wZ2ZeYXztivC3QB\nLrzwwt9bXV0dq2CpDUePHsWxqXl1+PDhzMyBE/Bx1qEfAy477f6lwFtn7pSZPaAHs/mQaKmJWX9I\ntLSViHi+yX7jtFyeA66IiMsj4mzgM8DBMb6fJGkMI8/QM/NkRHwe+D6wDXgoM1+eWGWSpKGMdep/\nZj4JPDmhWiRJYxjYcomIcyLiRxHx44h4OSK+Um+/PCKejYjXIuLRuu0iSZqRJj30XwA3ZubvAtcA\nt0TEdcDfAV/LzCuAd4F72itTkjTIwEDPDR/Wd8+q/0vgRuC79fY14PZWKpQkNdJolUtEbIuIF4ET\nwFPAT4H3MvNkvYsnFUnSjDUK9Mz8VWZew8Za813Alf126/fciOhGRBUR1fr6+uiVShPW6/XodDp0\nOh0cmyrBUOvQM/M94AfAdcD5EXFqlUzfk4rq5/Qys5OZnZWVlXFqlSaq2+1SVRVVVeHYVAmarHJZ\niYjz69vnAjcDR4CngU/Xu+0GDrRVpCRpsCbr0HcAa/Xlcj8G7M/MJyLiFeCRiPgq8ALwYIt1SpIG\nGBjomfkScG2f7W+w0U+XJM0BP4JOkgphoEtSIQx0SSqEgS5JhTDQJakQY10+V5JO2bt3b9/bmh5n\n6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAjPFG2ZZ89JmhZn6JJUCANd\nkgphy2VOnGrH2JZR2wa1AR2Li8sZuiQVwkCXpELYcpkhD2m1qFy9NZ+coUtSIQx0SSrEwECPiMsi\n4umIOBIRL0fEvfX2CyLiqYh4rf76m+2XK0naTJMe+kng/sx8PiI+ARyOiKeAPwcOZea+iNgD7AH+\npr1SJZ0yjR62ffLFM3CGnpnHM/P5+vYHwBHgEuA2YK3ebQ24va0iJUmDDdVDj4hV4FrgWeDizDwO\nG6EPXDTp4iRJzTVethgR5wGPAfdl5vsR0fR5XaALsHPnzlFqnHuTPBz1MHd6er0evV4PgPX19RlX\nM7ppntnpmJxvjWboEXEWG2H+cGY+Xm9+OyJ21I/vAE70e25m9jKzk5mdlZWVSdQsTUS326WqKqqq\nwrGpEjRZ5RLAg8CRzHzgtIcOArvr27uBA5MvT5LUVJOWy/XA3cBPIuLFetsXgX3A/oi4B3gTuKOd\nEssx7OGqF0nSMGzXaWCgZ+YzwGYN85smW44kaVSeKSpJhTDQJakQXm2xYPZUpeXiDF2SCmGgS1Ih\nbLlIBeq35HUaF/HSbDlDl6RCGOiSVAhbLkNahJUj81qXlsewZzkvwr+rReAMXZIKYaBLUiEMdEkq\nhD30PhbhKoeLUKMWx6BxNOo4szc+Xc7QJakQBrokFcKWywLwUFWjcuwsF2foklQIA12SCmHLZQuL\n8Bf6RahR82uex4xje3jO0CWpEAa6JBXCQJekQthDb6hfD2/e+nrzVo8mo7Recgk/w7xyhi5JhTDQ\nJakQA1suEfEQcCtwIjOvrrddADwKrAJHgTsz8932ypQEtiu0tSYz9G8Dt5yxbQ9wKDOvAA7V9yVJ\nMzQw0DPzh8A7Z2y+DVirb68Bt0+4LknSkEZd5XJxZh4HyMzjEXHRZjtGRBfoAuzcuXPEl9OklLZi\nYhy9Xo9erwfA+vr6jKv5qGX//Wh4rf9RNDN7mdnJzM7KykrbLyc11u12qaqKqqpwbKoEowb62xGx\nA6D+emJyJUmSRjFqoB8Edte3dwMHJlOOJGlUTZYtfge4AdgeEceALwP7gP0RcQ/wJnBHm0VqfFv1\nY/180tnzd/B/fA9GNzDQM/OuTR66acK1SJLG4JmiklSIpbo4V78ley7j25rvjybF8dM+Z+iSVAgD\nXZIKsVQtl9MtwvXN27ZsP69UOmfoklQIA12SCmGgS1IhlqKHbq9YKoPLaLfmDF2SCmGgS1IhFrrl\n4tLD6fICUpoVx1wzztAlqRAGuiQVYqFbLoN4mDacSawgcBWC5sGyjkNn6JJUCANdkgphoEtSIYrr\noS9Tv0yLY9CHq/TbT1sb9v1bhr66M3RJKoSBLkmFmPuWi4els9HkPR60zzKcWTpofDp+p6vpe7vV\n72WRWzPO0CWpEAa6JBVirJZLRNwCfB3YBnwrM/eN8/0W+VBnmQz7uyml9TLO4bxmZ5l+HyPP0CNi\nG/AN4A+Bq4C7IuKqSRUmSRrOOC2XXcDrmflGZv4SeAS4bTJlSZKGNU6gXwL87LT7x+ptkqQZiMwc\n7YkRdwCfyszP1vfvBnZl5hfO2K8LdOu7vw28Onq5jW0Hfj6F15mURasXFq/mfvVuB1bq2+cCz8+w\nlnlmve1qUu9vZebKgH3G+qPoMeCy0+5fCrx15k6Z2QN6Y7zO0CKiyszONF9zHItWLyxezfNU7zzV\n0oT1tmuS9Y7TcnkOuCIiLo+Is4HPAAcnUZQkaXgjz9Az82REfB74PhvLFh/KzJcnVpkkaShjrUPP\nzCeBJydUyyRNtcUzAYtWLyxezfNU7zzV0oT1tmti9Y78R1FJ0nzx1H9JKkSxgR4Rfx8R/xkRL0XE\nv0bE+bOuqZ+IuCUiXo2I1yNiz6zr2UpEXBYRT0fEkYh4OSLunXVNTUTEtoh4ISKemHUt4Nhsi+Oz\n4EAHngKuzszfAf4L+NsZ1/MRC3j5hJPA/Zl5JXAd8Lk5r/eUe4Ejsy7iNI7Ndiz9+Cw20DPz3zLz\nZH33P9hYJz9vFuryCZl5PDOfr29/wMYgnOuzgyPiUuCPgW/NupZTHJvtcHwWHOhn+Avge7Muoo+F\nvXxCRKwC1wLPzraSgf4B+Gvg17MuZBOOzRYs6/ic+08s2kpE/DvwyT4PfSkzD9T7fImNQ7GHp1lb\nQ9Fn29wvO4qI84DHgPsy8/1Z17OZiLgVOJGZhyPihim/tmNzRpZ5fC50oGfmzVs9HhG7gVuBm3I+\n12c2unzCPImIs9j4x/JwZj4+63oGuB74k4j4I+Ac4Dci4l8y88/afmHH5mws+/gsdh16/eEbDwC/\nn5nrs66nn4j4OBt/FLsJ+B82Lqfwp/N6xm1EBLAGvJOZ9826nmHUM6C/ysxb56AWx2YLHJ9l99D/\nEfgE8FREvBgR35x1QWeq/zB26vIJR4D98/wPho0Zxd3AjfV7+mI9u9BwHJvtWPrxWewMXZKWTckz\ndElaKga6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmF+F8fD4RrE+MOfAAAAABJRU5ErkJg\ngg==\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["fig,axes = plt.subplots(2,2,sharex=True,sharey=True)\n", "# Sharex et sharey portent bien leurs noms : si True, ils indiquent que les sous-graphiques\n", "# ont des axes param\u00e9tr\u00e9s de la m\u00eame mani\u00e8re\n", "for i in range(2):\n", " for j in range(2):\n", " axes[i,j].hist(randn(500),bins=50,color='k',alpha=0.5)\n", "# L'objet \"axes\" est un 2darray, simple \u00e0 indicer et parcourir avec une boucle\n", "print(type(axes))\n", "\n", "# N'h'\u00e9sitez pas \u00e0 faire varier les param\u00e8tres qui vous posent question. Par exemple, \u00e0 quoi sert alpha ?\n", "plt.subplots_adjust(wspace=0,hspace=0)\n", "# Cette derni\u00e8re m\u00e9thode permet de supprimer les espaces entres les sous graphes."]}, {"cell_type": "markdown", "metadata": {}, "source": ["Pas d'autres choix que de param\u00e9trer \u00e0 la main pour corriger les chiffres qui se superposent."]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Couleurs, Marqueurs et styles de ligne"]}, {"cell_type": "markdown", "metadata": {}, "source": ["MatplotLib offre la possibilit\u00e9 d'adopter deux types d'\u00e9criture : cha\u00eene de caract\u00e8re condens\u00e9e ou param\u00e9trage explicite via un syst\u00e8me cl\u00e9-valeur."]}, {"cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [{"data": {"text/plain": ["[]"]}, "execution_count": 11, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAFpCAYAAABJdYvCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XlclNX+B/DPmWHYEQSGTdmURRFU\nFDUzcyE1NVPTyqTlamW2WLbdFrq3e2/RZotttzRb74/KNjXL3LBMrcwVwS1R2ZcBBGTf5vz+oJlA\nGJjleeZ5Zub77uUfPsyc88WU75zn+X7PYZxzEEIIIUQeFFIHQAghhJC/UGImhBBCZIQSMyGEECIj\nlJgJIYQQGaHETAghhMgIJWZCCCFERigxE0IIITJCiZkQQgiREUrMhBBCiIxQYiaEEEJkxEmKSf39\n/XlERIQUUxNCCCFWd+jQoQrOudqY10qSmCMiInDw4EEppiaEEEKsjjGWZ+xr6VY2IYQQIiOUmAkh\nhBAZocRMCCGEyAglZkIIIURGBEnMjLGrGWOnGWM5jLHHhRiTEEIIcUQWJ2bGmBLA2wBmAogDcBNj\nLM7ScQkhhBBHJMSKeSyAHM75Oc55C4DPAcwVYFxCCCHE4QiRmAcAKOj0+8I/rxFCCCHEREIkZtbD\nNd7tRYwtY4wdZIwdLC8vF2BaQgghxP4IkZgLAYR2+v1AAMWXvohzvpZznsQ5T1KrjdqVjBAiofSs\ndESsjoDi3wpErI5Aela61CER4hCE2JLzAIBoxlgkgCIAiwAsFmBcQohE0rPSsWzzMjS0NgAA8mry\nsGzzMgBASkKKlKERYvcsXjFzztsA3AdgG4CTAL7gnB+3dFxCiHRSM1L1SVmnobUBqRmpEkVEiOMQ\n5BALzvkWAFuEGIsQIr38mnyTrhNChEM7fxFCugnzDjPpOiFEOJSYCSHdpCWnwVnp3OWau8odaclp\nEkVEiOOgxNwHqkwljiglIQXXxFwDAGBgCPIMwto5a6nwixArEOQZs72iylTiyJIjk1HTVIN+Lv3w\ne9HvWDRskdQhEeIQbHrFLPZqlipTiSO7Z8w92HnrTixOWIyi2iJknM+QOiRCHILNJmbdajavJg8c\nXL+aFTI5U2UqIcCcmDnwdfPFh0c/lDoUQhyCzSZmMVezxzXHsWrfKqpMJQ5t9NrReGb3M3BxcsHi\n+MXYcHIDqhqrpA6LELtns4lZqNVs59vh4a+FY/7n85G4JhEv/fISHr/icbir3Lu8nipTiSNo07bh\naOlRtGpbAQBLEpegub0Z285ukzgyQuyfzRZ/hXmHIa8mr8frxrq0uCv/Yj7yL+ZjQugEbLhxA9Qe\nani5eOGJnU+g4GIB/Nz88PrM16nwi9g9Tb0GWq5FiFcIACAxKBEn7jmBoeqhEkdGiP2z2cSclpzW\nJakCgIvSxaTVbE+3wwGg8GIh1B4dB22kJKQgJSEFnHMw1tNBWoTYn+LajnNodImZMUZJmRArsdlb\n2SkJKVg7Zy3CvcPBwKBSqODt4o2FQxcaPYYpt8MpKRNHcmliBgDOOZZuWoqnf3xaqrAIcQg2m5iB\njuScuzIX2qe12HzTZmgaNCZVjgZ7Bfd4vafb4V+f+Brj1o1Dc1uz2fESYiv6u/bHvCHzuvxbYIzh\nQuMFrD28Fm3aNgmjI8S+2XRi7mxG1Ax8ef2XWJq41KjXt2vb4aHy6HbdUHFXq7YVvxf9jlMVpyyO\nlRC5mxg+ERtu3IAAj4Au15eMXILSulJszdkqUWSE2D+7ScwAsDBuIZyVzkZ9mn9p30s4c+EM7k66\nW387PNw73OC2g/EB8QCAbE224HET66EtVo3DOe/x+qzoWVC7q6mnmRAR2WzxlyG/FvyKm76+CT+k\n/GCwWOVIyRH886d/4oZhN+DtWW8b9fw41i8WKoUKWZosoUMmVkJbrBpvzmdz0Kptxbabu7ZHqZQq\n3Dz8Zrz1+1uoaKiAv7u/RBESYr/sasUMAFG+UahqqsIjOx7p8evt2nbcsuEWqN3VeGf2O0YXdamU\nKgzxH0IrZhtGW6war/BiIVyULj1+bWniUjww7gFoudbKURHiGOxuxaz2UOOpiU/h7zv/ju1nt2P6\n4Oldvq5UKPH61a+DMQZfN1+Txp4ZNbPH9ipiG2iLVeMV1xbjsoGX9fi1+IB4rJq+ysoREeI47G7F\nDAD3j7sfkT6ReHj7w12eN9e31AMAkgclY2rkVJPHfXHai3hz1puCxUmsi7ZYNU5LewvKG8q7tEpd\nql3bju1ntyPnQo4VIyPEMdhlYnZxcsFL015CtiYbm09vBgBUNVZh2H+H4a3f37J4fLqFZ5vSktO6\n3Z6lLVa7K60rBYBeE3NNcw1mpc/CqDWjqJCOEIHZZWIGgAVDF2DXrbvQ0NqAiNUR8H3JF3k1eahq\nMn8Tfk29BsGvBGPd4XUCRkqsJSUhBYsTFut/r1KoDFbhOzKVQoX7xtyHxKBEg6/5IecHAEBtS61o\np7sR4qjsNjEzxlBcV4xl3y3rsqf2C3tfMPuHh7+7P+pa6qgAzIa9f+37yFuZh39N+hfatG2YFTVL\n6pBkJ9grGG/OehOjQ0YbfE1qRiraeXuXa1RIR4gw7DYxA8JX4SqYAvEB8dQyZcMYYwjzDsOUyCng\n4NiTv0fqkGSnvqUeLe0tvb6GCukIEY9dJ2YxfnjEq+ORVZZlcAMGIl+cc9z93d3YcXYHxg4YC1cn\nV/x4/kepw5Kd5/Y8B8/nPHutpaBCOkLEY9eJWYwfHgmBCahsrERZfZnZYxBplNaV4t1D7+J05Wm4\nOrli/MDx+CnvJ6nDkp2i2iIEegZCwQz/eEhLTqOzygkRiV0nZjF+eEwMm0ibK9go3SMI3faqq69e\njU2LNkkZkiwV1xZjgNeAXl9z6eluvW1nSwgxjd1tMNKZ7odEakYq8mvyEeYdhrTkNIt+eCQGJyIx\n2HC1KpEvXdHeMPUwAMDwwOFShiNbxbXFiPGL6fN1KQkpGBMyBi/sfQGPXv4onddMiEDsOjEDHT88\nhP4U39zWjIqGCgzo1/uqgshLtiYbgR6BUHuo9dc+OPIBlEyJ20beJmFk8lJcW4zJEZONem1Lews+\nPPohpg2aRomZEIHYfWIWwzWfXYOaphr8fufvUodCTFDfWo+RQSO7XPs061NUNFRQYv4T5xyPX/F4\nrz3MnQ3uPxgAcObCGTHDIsShUGI2wzD1MLx3+D1oubbXAhkiL+sXru9WTT85YjL+8eM/UNlQCT93\nP4kikw/GGP4+4e9Gv95N5YbQfqGUmAkREGUVM8QHxKOhtQHnq85LHQox0aWniU2JmAIA+DnvZynC\nkZ2LzReRW51r1JnmOtF+0ThTSYmZEKFQYjZDQkACANAOYDZkx9kdmPa/ad162McMGAN3lTt+yv1J\nmsBkZmvOVkS+HolTFaeMfo+umI4QIgy6lW2GYQEdP4iyNFmYO2SuxNEQY/xe9Dt2ntuJ/q79u1x3\nVjpjYthElNaXShSZvBTXFgPo/QCLS70x8w2xwiHEIVFiNoOnsyfemf0Oxg0YJ3UoAID0rHRBW8Ls\nUXZ5NiJ8IuDl4tXta98t/g5OCvqnAHQkZhelS7cPMIQQ67HoVjZj7HrG2HHGmJYxliRUULZgedJy\nWfQzp2elY9nmjoM66JQfw7I12fqNRS5FSfkvxbXFCPEK6fYsvjdldWWY/r/p+iNWCSGWsfQZczaA\n6wA4XOXMhcYL2Jqztc/N/sUm9EEd9qilvQWnKk4hXt1zYgaAhV8sxOM7H7diVPKkS8ym8Hb1xs5z\nO3Go5JBIURHiWCxKzJzzk5zz00IFY0u2n92OmekzTSqSEQOd8tO36qZqTI6YjHEDDT96qG2pxXd/\nfGfFqOTp4fEPm9QuBQCuTq4I8w5DzoUckaIixLFQVbaZdLdFpa7MplN++hbgEYAdt+zAvCHzDL5m\nSsQUHC8/Dk29xoqRyc/smNm4NvZak98X7RdNvcyECKTPxMwY28kYy+7hl0nlyIyxZYyxg4yxg+Xl\n5eZHLBOxfrFQKVTIKpP2bOaeDupwUbrQKT+dGHNEp24Lyt25u0WORr6a25qxJ28PLjReMPm90b7U\ny0yIUPpMzJzzqzjn8T38MulYHs75Ws55Euc8Sa1W9/0GmVMpVRjiP0R/YpFUdKf8eDl3VBsrmALD\n1MOoKruTG766Add+1vsqcHTwaHioPBy6nzmvJg9XfnQltpzZYvJ7k0KSkBiciMbWRhEiI8Sx0K1s\nC8QHxEt+KxvoSM4zo2ci2jcaT17xJI6UHqHVSydHSo7A1cm119eolCrcO+Zeg5XbjsCcHmadpYlL\nkXFrBtxUbkKHRYjDsbRdaj5jrBDAeADfM8a2CROWbXjqyqew+SZ5tIiU1JYg2CsY9469FyqlCqt/\nWy11SLJQ31KPc1XnjEq4L057EXePudsKUcmTJYmZECIcS6uyN3DOB3LOXTjngZzzGUIFZgvi1HFI\nCEyQOgwAQFl9GUK8QhDkGYS/jfgbmtqapA5JFk5WnAQHN3olXN9Sj7K6MpGjkidLErOWaxH/33ik\n/Uy1DYRYinZWsEBreys+yfwEceo4jA8dL2ksJ+45gca2jud7717zrkkbRNgzXXGeMYlZy7UIWx2G\nG+JuwDvXvCN2aLJTXFsMD5WHvl7BFAqmQENrA46XHxchMkIcCz1jtoBSocTKbSvxWfZnUocCpUIJ\nT2dPAH+doJStyUZzW7OUYUkusn8kloxcoj83uDcKpsC4AePwU95P4gcmQ3eMugOfLfjM7A91Ub5R\n1DJFiAAoMVtAwRSyKAArqCnAXZvv6tK6daj4EBLeScCnWZ9KGJn0JkdMxgdzP4BSoTTq9VMipuBU\nxSmU1jneoRZx6jjMiZ1j9vt1LVPGtKcRQgyjxGyheHU8sjRZkv4wyrmQg7WH16K84a/+8FHBozA8\ncDhe/e1Vh/5BWXSxyKTvX/dsPuSVEESsjnCoPce/Pf0tTpSfMPv90X7RqGmuQUVDhYBREeJ4KDFb\nKD4gHhUNFZLuGFVSVwKga9EOYwwPXfYQsjXZ2H52u1ShSepC4wUMfG0gXvvtNaNen56Vjhf2vQAA\nDncgCOcci75ahA+OfGD2GOMGjMNtI26TfP94QmwdJWYL6aqyT1aclCyGktqOxBzsGdzl+k0JNyHY\nMxiv/PqKFGF1k56VjojVEVD8W2GV1ehxTUchUpw6zqjXO/KBIDXNNWhsa7SoVWp86Hh8NO8jDOg3\nQMDICHE8lJgtNCF0AioerdBv6SiF4tpiuDm5oZ9Lvy7XnZXOWDF2BX4p+EXyFiApjqfU7cpmbKuU\nIx8IIlQPM+e824cbQohpKDFb6KuTX2H02tFWWwX2pLm9GeE+4T1W09479l4UPFiAQM/AXscQezUr\nxWo0W5MNbxdvDPAybgXnyAeCCJWYR64ZiSWblggREiEOi/qYLaBbBeoSjm4VCMCqe1W/NestgwVO\nulU05xyt2lY4K527vcYa34cUq9FsTTbiA+KNbv9JS07r8ucAAO4qd4c4EESoxBziFULbwRJiIVox\nW0BOzyR7Sz4t7S0Y/MZgqFepu62IS2pL8MAPD4j6fTS1NRncq1rM1ehD4x/CI5c/YvTrdQeChHuH\nAwAYGP47678OcSDINTHXYO+SvRb//4j27Tj+0ZE7AQixFK2YLSCXZ5ILv1iIhXELsSh+UY9f//LE\nl8ivyUc7bwfQsSK+89s7AXT0QFc2Vvb4PiG+j4vNFzH387lobGuESqFCq7a1y9eTI5MtnsOQ3s5f\nNiQlIQUpCSn47o/vMOezOQ5TyOTr5osJYRMsHifaNxp1LXXQ1Gv6fHxCCOkZrZgtIIdnkvUt9fj6\n5NfIq84z+JrUjFR9UtZpbGtEakYqbh1xa7dqbh1Lv4+W9hZM/Xgq9ubvxafXfYoP532IcO9wMDCE\n9QvDiMAR+ODoB1hzcI1F8/Sk8GIh9hfuR2t7a98v7sGUiClwUbqYdQSiLdp0ahO+/+N7i8eJ8o0C\nANoBjBALUGK2QFpyGtxV7l2uuTm5WfWZpK6HOdir5+QK9L6yD/EKwarpq7p9H0I8W3VWOiMlIQWb\nFm3CTQk3ISUhBbkrc6F9Wou8B/Ow/479mB09G8u/X45vTn5j0VyX+uL4F7js/ctQ01xj1vs9nD0w\nOWIyMssyBY1Lrl7c96LR/d69GRE0AqkTUxHkGSRAVIQ4JkrMFuj8TJKBwUXpgqcnPW3VZ5K6oh1D\nq16g75X9pd9HiGcIXp3+qsnfR+fK7qCXg5CelY4Hxz+IWdGzeny9i5MLvr7hazxxxRO4atBVglaG\nZ2myEOQZBH93f7PHWL9wPXbestPs99uS4tpiQY57DPEKwbNTn9WvnAkhpqNnzBbSPZOUin5zkV5W\nzMZUG+u+j3NV5zD4jcEmHxt5aWV3WX2ZUZXdLk4ueC75OaRnpePOb+/Un5BlaWW4riLbEt6u3ha9\n31ZwzgVLzABQ3VSNyoZKDPbt++AQQkh3tGIWWFldGY6WHrXafBwc4d7hva6YL10Rh3uHY+2ctT0m\nvEH9ByEhIAFfnfzKpDgsrVBPzUjVJ2Vz3t+ZlmtxXHMc8WrLEjMA/GPXP3DrhlstHkfOKhsr0apt\nFSwxp3yTggVfLBBkLEIcESVmgc3+dDaWbFpitXaRRfGLkLsyF37ufr2+rvPz3dyVub2uQq+Pux77\n8vfpb5Mbw9IKdSEr3M9XnUdjW6PFK2YAqGupwxfHv7Dr3ayE6mHWifaNRs6FHGqZIsRMlJgFdtfo\nu3C09Cj25O+ROhSzXT/senBwfH3ia6PfM7DfwB6vG1vZbeh1ujOmAeN3JwvxCsHuv+02+GzbFLOi\nZ6G5vRm7zu+yeCy5ilPHIfeBXMwYPEOQ8aJ9o1HfWu+QR2cSIgRKzAJLGZ4CXzdfvL7/davMt/y7\n5Xh428OCjjnEfwjiA+Kx4dQGo9/zzJRnuu0qZkpld08V7q5Orkib2vH+p3Y9hVs33GrUXttuKjdc\nGX5lr8/djXVl+JXwUHnYdduUk8IJ4T7h8HLxEmS8aL9oANQyRYi5KDELzF3ljmWjlmHjqY3Irc4V\nfb49+XuQWyP8PJ9e9yk23Gh8Yr5t5G34YO4HRj3H7klPz8HXXbsOK8atAACsObQGWq7t8p6G1gY8\nmfFkl2vpWek97nBmLhcnF1w16CpsObPFbm/Nbj+7HS/ufVGw70/fy0xbcxJiFqrKFsG9Y+/Fq7+9\nil3nd2Fp4lJR5yquLcaUiCmCj6s7ztIY+/L34WDxQSwbvcyiCvXeKtwrG3renaygpgAA8PC2h/Fb\n4W84UHxAv7uYUHt+pySkYGC/gWhqa4Kbys3sceRq46mN+OL4F3jsiscEGS/cOxzvzn4XkyImCTIe\nIY6GVswiGNhvIAofLBQ9KTe2NqK6qbrXimxLpB9Lx4otK/p83fN7n8dze5+Dgon316mvXuz61nrs\nL9rfbctPIfb8vn7Y9Xhr1lt2mZQB4XqYdZQKJe5Kuot6mQkxEyVmkag91AA6kqdYdMU1QjxL7cmZ\nC2fw9oG39b3SPfmj8g98f+Z73JN0D1ycXESJA+j5GXTnZ9jvXvNut1vdOkLs+d2ubceJ8hMWjyNH\nQidmoKMyfsfZHYKOSSwj9tGuRDiUmEX0+M7HMWrtKIMJw1Kt2lZMCJ0g2srk+riO6uzetst8/bfX\n4ax0xvKk5aLEoGNML7aYe5f/Z/d/MOLdEahpMm+LTzkTIzG/+fubmPv5XNH+7hPT6DYAMqZ4kkiP\nErOIhgcOx6mKU9iWs02U8WP8YrB36V5cGX6lKOMPCxiGof5D8eWJL3v8elVjFT7K/AiLExZb5SSh\nvnqx+1pVW+KqQVehTduGnefsa4tOLddCU68RPDFH+0ajsa3RpF54Ih45HVFL+kaJWUQL4xYi2DMY\nq/evljoUs10fdz1+zvu5x55UTb0GSSFJeGDcAxJE1p0pO5yZanzoeHi7eNtd25SCKVD/ZD2euOIJ\nQcfVtUzlXMgRdFxiHrkcUUuMQ4lZRM5KZ9wz5h5sP7sdJ8tPCj7+c3uew6g1o0Rt47lh2A2YHDEZ\nFQ0V3b4W6x+L3X/bjZFBI0Wb31Sm7HBmCieFE2ZEzcCWHPtrm1IpVfBw9hB0TGqZkhc5HFErBEd5\nTk6JWWR3jb4LSqbE2HVjBf/L9EflHyhvKAdjTJDxejIsYBh23bar2/aW2Zpsh9vZaVbULJTWlVp1\nL3SxHSw+iPu23NdrgZ85QvuFwlnpTJuMyERachpUClWXa0I95rEWR3pOTolZZNvPbYeTwgl1LXWC\n/2UqqSsRrVXqUuX15bjYfFH/++XfLcfUj6fa3eqxN3Ni52DbzdsQp46TOhTBHC45jLcPvI123i7o\nuEqFEttv3o77x90v6LjEPCkJKXjk8kfg5ewFBobQfqGCPeaxFkd6Tk6JWWSpGalobm/uck2ov0zF\ntcWitUp1dr7qPIJfCUb6sY4PEweKDmBfwT7cNfouUVfrcuPr5ovpg6eL2hZmbcW1xWBgCPQQvnhv\nUsQkg3uoE+t7Lvk55D+YD09nT9w/7n6bSsqAYz0np8QsMjH/MpXUliDEU9hq2p5E+EQgyjdKX539\n+v7X4eXshSWJS0SfW25yq3ORmpFqcCcyW1NcW4wAjwColKq+X2yik+Un8cb+N6hlSibK68vhonRB\nsFcwfsr9SZIYLHlGHOQZ1ON1W3tObgxKzCITq+iCc47pg6djfOh4i8YxBmMM18ddj915u3G09CjW\nH1+P2xNvRz+XfqLPLTeaeg2e2/sctp0VpwUOsG6Bixg9zDo/5/2MB7Y+gMKLhaKMT0wz69NZWPDF\nAkyJmII9+XvQpm2z6vyWPCM+e+GswaNXbxh2g9ChSo4Ss8jE6q1ljOHTBZ/i1hG3WjSOsdyd3aHl\nWiSuSUSbtg1hPvb3KdUYSSFJ8FJ54c7Nd4qSOK1d4NLS3iLa7WZqmZIXTb0GAR4BmBwxGRebL+JI\nyRGrzm/uM+LCi4VI/iQZSoUSLyS/oG+HDO0XirB+YXjn4Ds4XHJYzNCtzqLEzBhbxRg7xRg7xhjb\nwBjzESowe6HrrdWtkF2dXAUpurBm0VV6Vjqe/fnZLtee2vWUXVZD9uWz7M/Q0NaAhtYGURKntQtc\ntt+yHZsWbRJlbGqZkg/OuT4xTwrvOFzE2rezzXmsV1ZXhuRPknGh8QK23bwNj13xmL4dMv/BfPx2\nx28I8w5DeX25WGFLwtIV8w4A8Zzz4QD+ACDsLgV2IiUhBXkr8/D4hMfRpm3DzKiZFo+58dRG+Lzg\ng+Oa4wJE2DtHqobsS2pGarcKZiH/LKQocBGrgO/nvJ8BAMu/X27XPae2oK6lDk1tTQjwCECwVzBe\nnf4qrhp0lVVjMPT4LtQ71OB7ci7koLqpGt8v/h5JIUndvh7sFYxjy49hRtQMALCbegaLEjPnfDvn\nXPeg4jcAVILZiwVxC5AQkCDIM7eSuhLUNNfAz91PgMh650jVkH0R+8/CmhtBlNaVYt7n87A3f6/g\nY6dnpeOu7+7S/96ee05tQXlDx4pS7d5xuM6D4x9EYnCiVWNIS06Dq5Nrl2vOSmc8l/wcOOf4rfC3\nbvUVuTW5OHf/OUwMn2hwXKVCCQBYe2gtkj9JRlNbk6jfhzUI+Yx5KYAfBBzP7iSFJOHwXYcxPHC4\nxWOV1JZAwRT6f2hispddg4Qg9p+FmPt9d5aelY7ENYnYdHoTrlt/neAJk+6ymEbsgr9+Lv2watoq\njBs4DgDQ3NaMned2Iq86T9B5epOSkIJ1167rsmXuB3M/QEpCCrac2YLx74/HrRtu7VZfsfH0RqPG\n93H1wU+5P8HvRT+b3xmsz8TMGNvJGMvu4dfcTq9JBdAGwOCfAmNsGWPsIGPsYHm5fT0PMFV9S73F\nn+qKa4sR6BGo/7QoJmslC1sg9p/Fpft9h3mHIW1qmqA9p7oCM93ObeUN5YKvZukui/GsUfDn7+6P\nRy5/BEP8hwAAqpqqMO1/0/DF8S8Em6MvxzXHEeQRhJz7c7ptmZs8KBn9Xft3uxVtyoe5Vm0rVAoV\nGtrEqf+wpj4TM+f8Ks55fA+/NgEAY+w2ANcASOG9VCRxztdyzpM450lqtfirPLk6VXEK6lVqbDi5\nwaJxSupKRGtzuZSYh0PYGt2fha6nMtgzWPA/i877fcf6xeJ/x/4n2NiAdVazdJfFeNb4/6Gp1yDn\nQo4+8QV5BmGI/xD8mPujYHP05Z2D7+Daz69Fu7b7LnOuTq6obqru8X3GfphLzUhFq7a1yzVbvUtj\naVX21QAeA3At57znJjPSRYxfDLxdvfHNKcNnHBtj+uDpuCn+JoGi6ptYh0PYopSEFOy/Yz8A4LEJ\njwn+Z/G/zP9h0keTUN1UjasGXYXDJYcFveVojdUs3WUxnjX+f7x/+H1EvxmN5ra/diGcHD7Zav3M\nnHP8kPMDpkZONbhznqUf5uzpLo2lz5jfAuAFYAdj7Chj7F0BYrJrCqbA/CHzseXMFoMN88ZYedlK\nPHz5wwJGRkwR5h2GMO8w7C0QvnDql4JfkFmaCW8Xb8wfMh9ARxW+UKyxmu18lwUA3JzcHPYuS1+s\n8f9DU6+Bl7MX3FRu+mtTIqegrqXOKj3AZy6cwbmqc712pFj6Yc6e7tJYWpUdxTkP5ZyP/PPXcqEC\ns2cLhi5AQ2sDtuWYt3uUlmtR11IncFTEVBPDJmJP3h7Be8ozyzIxPHA4GGOI9otGfEC8xXdYOrPW\nalZ3lyUlIQU+rj5YHL9Y0PHtRVpyGpyVzl2uCf3/Q9PQ0cPcma6feXfubsHmMeSHMx11wb0lZksf\nmdnTXRra+UsCkyImwc/ND1+f/Nqs95fUlsDreS+sO7xO4MiIKSaGTURZfZmgO1tpuRZZmiyMCByh\nvzZ/yHzszd8ryCYKnHOcu3AOz0551mo1A+MGjENJXQltzWlASkIKXpvxGgLcA0T7/1FeXw61R9fa\nnkDPQGQuz8SD4x8UbB5Dfs7/GbF+sYjsH9nr6yx5ZHbpXRpnpTPWXLPGJu/SOEkdgCNyUjjhvTnv\nYbDvYLPeX1LXcXbupZ+AiXVNiZyCRfGLBH1Gd77qPOpa6jAi6K/EfHvi7Zg+eDp83XwtHn/T6U34\n50//xCvTX0HuylyLxzPGuIHDP/RmAAAgAElEQVTjoHZXI68mr9fNJBzZPWPuwT1j7sGBogPI0mQJ\nnkw09RqE+4R3uy5E66Yx1i9cj+LaYtHnSUlIQUpCCt479B6WfbcMl4deLvqcYqDELJH5Q+eb/V7d\nX3BrncVMehbjF4PPFnwm6JhNbU2YGTUTY0LG6K+F+4T3+EPVVPUt9Xhg6wOID4jHirErLB7PWGNC\nxqDskTKHOiLUVOnH0jHYdzA+y/oM7x1+DzfF39TlebCl/j353/B09ux2vfBiIV7c+yLuHH2nqEna\nSeFk1We9uu8lqywLg/oPstq8QqFb2RLaeW4nPjr6kcnvK6ntWDFbq12KGMY5F/QW7bCAYdiSsqXL\nihkA/qj8Ayu3rsTF5otmj522Jw35Nfn476z/inLMoyGMMUrKfVjxwwp8kvkJro66Go1tjfrtTIUy\nd8hcJA9K7nZdpVDhrQNv6Z8Bi+H5Pc/jyYwnRRu/J8MChgEAjpUds+q8QqHELKEPj36IR7Y/YvKt\n0JK6ko7D7T2FP9yemOadg+8g9LVQ/YclS7W2t/Z4XVOvwev7Xzf7B+jpitN4+ZeXccvwW3rd3lAs\n6cfSMeLdEQa/P0dW1ViFqqYqDOo/CJMjJsPVyRVbc7YKNn5TWxN25+5GRUNFt68FegYiTh2Hn/J+\nEmy+zjjnWHdkHbI0WaKMb4insycG9x9s9XmFQolZQguGLkBlY6XJVZETwybi6UlPw0lBTyKkpttY\nf0/+HkHGG/r2UNz/w/3dro8fOB4BHgFmV2cHegbi/nH3Y9W0VZaGaBalQoljZceQrcmWZH45O199\nHgAwqP8guKncMCl8En7IEW4Fm1edh8kfTzbYBTI5fDL25O0R5UOTMW1SYpkbOxeRPr0Xm8kVJWYJ\nXR11NdxV7vjmpGk/bJMHJePpyU+LFBUxRWJQItxV7tiTZ3livth8EWerzup3FetMqVBiXuw8bDmz\nxaztXH1cffDy9Jclu8sybkDHHs37i/ZLMr+cna/qSMy6JDIzaiZK6kp6XOGaQ1OvAWC4WHRyxGTU\nt9bjUMkhQebrzJg2KbG8MuMVvDjtRavPKwRKzBJyV7ljZtRMbDi1waTjynKrc1HbXCtiZMRYKqUK\n4weOF2TFrHseZqgIZ/7Q+ahrqUPGuQyjx6xrqcPM9Jk4UHTA4vgsEeETAbW7mhJzD85VnQMAfZHS\nnaPvRMWjFfB39xdkfN3JUoYS86SISQjxCkFZXZkg83X2Q84PRrVJiYVz3uMWoHJHiVli1w29Dowx\nk7aNm/DBBKzculLEqIgprgi7AsfKjhnc69dYmaWZANClh7mzqZFTEekTqV8B9UZ3WpHX817YmrMV\n35/53qLYLMUYw2UDL8Nvhb9JGocc3Tf2Ppy45wS8Xb0BdHxgF7I4r68Vc4BHAAofLMTcIXN7/Lol\nwrzDsDhBmo1lCi8WQr1KLfhe89ZADykldsOwG7AofhEUzLjPSO3adpTWlSLYi1ql5OLGYTci1i+2\n2+5Npsosy0R/1/4Y2K/nY82dlc44e//ZPiucdacVdd7yddUvqxDtFy3pZgtzY+fi18JfoeVao/++\nOwI3lRuGqod2ufbNyW/w3J7nsG/pPoN7SxtLl5h7W4EzxvQ72AlZQb92zlrBxjJVsGcw6lvrkVVm\newVg9K9DYk4KJ3yW/RnCV4cbdYZoeUM5tFxLrVIyMlQ9FDcl3NRtO0BTTR88HU9c8USvPxh1P0B7\ne84s17OQbx91O9Zdu46S8iWe3/N8t8IslUKFQyWHsDff8r3Yb4q/CRtv3NjrKvxA0QFEvB4h6KOG\nioYKwberNYVSocQw9TAc09heyxT9C5FYelY67th0B/Jr8o06Q1TXlkObi8jLqYpTFp9tuzBuIR6d\n8Givr9FyLYa/OxyP7XjM4GvkfMoO5xw1TTVShyEb7dp2/Gv3v7Dr/K4u16dEToGz0lmQtqlov+g+\nb1OH+4QjvyYfP54X7hjIy9Zdhtu/vV2w8cwxPHA4rZiJ6VIzUtHU3nX109vqRr/rF93KlpV1h9fh\nlg23mFUxDXRUZHc+L9cQBVNgUP9B2HBqQ4+rkbqWOlmfsnPFh1cg5Rvb27tYLMW1xWhpb+m2O5Wn\nsycmhk0UpG1q57mdOFh8sNfXBHgEYJh6mGD9zGcqz+Bs1VmMDh4tyHjmSghIQFl9mVF1GXJCiVli\npq5u4tRxeHPmm4jxixEzLGKiiWET0dLeYnb187acbYh+MxpHSo70+dr5Q+aj4GJBl/YWLdfinz/+\nEyPfHYknrnhCtqfsxPrFYn/RfklvccrJpRXZnc2Mmonj5cdRUFNg0RwPbH0Az+99vs/XhXiGYMfZ\nHUY9UuuL7gPFzGjrt0l1NjliMh4Z/4hJXS9yQIlZYqaubiL7R+K+sfcJcqABEc4VYVcAMH+jkcyy\nTCiZUr+VYG/mxMyBkimx4eQGAB13WG786kY88/MzmBQ+CUsSl1h0fJ6YLht4GSoaKvQJydHpNhfp\nqZ1odsxsLIpfZPZdGJ3y+nKo3dW9viY9Kx2783eD//lfX4/U+vJDzg+I8YuRfJ/qxOBErJq+qse9\nAeSMqrIllpac1q2CtrfVzemK0wCAWP9Yq8RHjOPn7oc4dZzZiflY2THE+sfC1cnVqLli/WLx0i8v\n4fm9z0OlUKFF24JXpr+CBy97EIwx/Sk7ctN5oxFzT1ezJ0UXi6Bgih4/iA/xH2LxISnt2nZUNFT0\neRJdakYqWtpbulzTPVIz9e9RY2sjfsr9CXeNvsvkeMXQ2NqI8oZyWTzKMRatmCV26RmigR6Bva5u\nHs94HAu/XGjNEImRJoZNxP7C/WbdNsssyzTYv3yp9Kx0nK06izZtGzg4WrQtcFG6INAzUPaHRQwL\nGAZ3lTv2F9JGIwCQemUqah6v6bXVLudCjtnbZVY2VoKD95mYhSwYVDAFPpn3CZYmLjX5vWKY+/lc\nXLf+OqnDMAklZhnQHQ7On+YofaS010+oxbXFVJEtU09PehrnHzhvcjtQVWMV8mvyjU7MqRmpaG5v\n7nKtub1Z8nYoYzgpnPDK9Fdw3VDb+kEppp6OY9TZcmYLot+Mxi8Fv5g1dnl9x65ffd3KFqJgULep\njVuaGx7d8ahsDpBICEjA8fLjNrUDGCVmmTlRfgJv/f6Wwa+X1JZQD7NMBXsF63dvMoWLkwu+uv4r\no8/olnM7lDGWJy3HpIhJUochC8s2L8PXJ742+PUJoRPgpHAyu20qsn8kfrv9tx6PfOwsLTnNooJB\n3aY2eTV5gjyjFlJCYAKa2pqQcyFH6lCMRolZZjac3IAVP6zQb2zfmZZrO3b9ohWzbL39+9tI+9m0\n6md3lTsWxC0wutJezu1Qxmhpb8G+/H0oulgkdSiSamhtwHuH38PJipMGX+Pt6o3LQy83u23KXeWO\ncQPH9bnvtu6Rmu5Dv6+br0kFg3Ld1AboWDEDkM0K3hiUmGXmlhG3gIHhk8xPun2tsqESrdpW6mGW\nsV8Lf8VbB94yqR1o1/ldJj1ztXR1I7WKhgpc8eEV+OrEV1KHIqnc6lwAPbdKdTYzaiYyyzL1exiY\n4nDJYXx09COjnlGnJKSg8MFCBHgEYHb0bJOKvuR8FydOHQcFU9jURiOUmGUmzDsMUyOn4uPMj7sV\nEXk4e2DDjRswO3q2RNGRvkwMm4jSulKcrTpr9Hse2/kYUncZv7LoXDAot3YoY4R4hWBgv4EOf9KU\n7q5YX4n56qirAcDgecq92XhqI5ZuWmp03QNjDBNCJ2BfwT6T5pHzXRw3lRvWzVlnU3UNlJhl6G8j\n/4bz1ee77ZPrrnLHvCHzqM1ExiaGTwQAo89nbtO2IVuTbfCoR0N0BYPap7XIXZlrM0lZZ9yAcQ6f\nmHW93LpzmA0ZETgCXyz8wqzTnzT1Gvi7+0OpUBr9ngmhE3Cu6hxK60qNfo/c7+IsSVyCEUHGFVfK\nASVmGZo/ZD6CPINwpvJMl+tnKs9gW862bv2GRD6G+A+Br5uv0f3MZyrPoKmtyeiKbHtx2cDLcK7q\nnL5q2BE1tTUh2DO4z1YmxhhatC0YtWaUybtyaeo1fY5/qQVxC7Bl8RZ4uxhfyJiSkIJ/XvnPjnhl\neBensqESm09v7vYcXK5ogxEZ8nD2QMGDBXBSdP3f8+WJL5G6KxUNTzYAxn8AJlakYArMGDwDHMY9\nY84s+/MMZhv6NC+EzhuNXBNzjcTRSOPRCY/2eWgJ0FHxfOe3d6KxrREA9BXPAPpMfOUN5VB79N4q\ndakInwhE+ESY9B4AeOyKx3DPmHvgpHCCm8rN5PeLaW/+XsxbPw+/3v4rLht4mdTh9IlWzDKlS8q1\nzbX6ayW1JfBx9ZHdX3rS1eyY2fjx/I9GrW4ySzPhpHDCUP+hBl9jj5JCkrBnyR4kR/bexkM6Kp51\nSVnH2Ipnc1bMQEfR2PuH3zf5fV4uXrL8+ZQQ+Gdlto0UgFFilrH56+dj/vq/eltL6kqoVUrmTO3n\nTL0yFQfuPAAXJxcrRyotN5Ubrgi7QpY/xK2Bc47kT5Lxv8z/9flaSyqed926Cy9Pe9nk+L48/iWW\nf7/c6Fu/Da0NmPrxVOw4u8PkuawhwicCns6eNtMyRYlZxkYGjsSu87v0/wCLa4upVUrmTO3n9HT2\nxMigkdYITXaOlBzBU7ue6nULU91uUkKceCQnFQ0V2HV+Fy40XujztZZUPA/oNwCh3qEmxzchbALa\ntG1Gn5a2N38vfsz9Ee1cnrtrKZgC8QHxOFZ2TOpQjEKJWcZuHXErOLj+U3VJHe36JXemrG6qGqvw\nZMaTOFlueIMJe3a09CjS9qThVMWpHr8u592kLNXbcY+XMrfiuaqxCmk/p+FE+QmT47s89HIAMLpt\nKuNcBlQKFSaGTTR5LmsZHjAcWZosmzhylBKzjEX2j8TkiMn4KPMjcM7xzQ3f4IkrnpA6LNILU1Y3\nR0uP4vm9z6PgomXn7doqXRGOoc1VHtvxmGx3k7JUb8c9XkrXt67b7zrYM9ioiue8mjw89eNTBj/4\n9MbXzRdD/YcanZh3nt+J8aHj4eHsYfJc1vLohEexd8nevl8oA5SYZe62Ebch50IOfin4BYnBiYhT\nx0kdEulFT6sbAJgTO6fbNX1FtoO1SukcKjkEBoal3y7V36bmnOPH8z/ihi9vQFFtz1t2ymE3KUsZ\n28Osk5KQgoIHC9CU2oTih4uNakPS1GsAwKziL6Cjn/lo6dE+V5iVDZU4UnIEV0VeZdY81hLlG4Wh\n6qGyP4ENoHYp2VsYtxAKpkCIVwjWHV6HWdGz6Ha2jOl+YKZmpCK/Jh8D+w3EwH4DsXz08m6vzSzL\nRKBHIAI9A60dpuTSs9Jx13d36dvK8mrysHTTUvx9+99RXFeM/q794eXshdqW2m7vlcNuUpbycvbC\nleFXmrTCNLVA0NiTpQx54aoX8Pbst/tMZBcaL2D64OmYETXDrHmshXOONYfWYHD/wZg2eJrU4fSK\nErPMeTp7QqlQ4rL3L4OmXoNAj0C8MuMV2TTuk+5SElJ6/P/DOUdRbREG9hsIoKNVytH6l3V6KpJr\naW9BRWMFPpr7EW4YdgO+OfUNlm1e1uV1ctpNyhIrxq3AinErTH7f83ueBwA8MbHvR1qWrpj93P2M\nel20XzS23mze6VfWxBjDsz8/iymRU2SfmC26lc0Ye4YxdowxdpQxtp0xRks5gaVnpWPZt8v0/8jK\n6svspgDG0Ty/93mMeHcETpSfgJZrUVRbhOEBpm3FaS8M3Y5ubW/FbSNvg5vKTf9stZ9LPwAdK2U5\n7SYlhb0Fe7H++HqjXqup18BJ4QQfVx+z53v252fx7M/P9vqa6qZqs8e3tuGBw22iMtvSZ8yrOOfD\nOecjAXwH4J8CxEQ6Sc1IRUObfRbAOJpF8YvgrHTGhPcnIOy1MJTXl2P98fUO+SHL2CK5lIQUvDnz\nTQDA9pu320VSbm1vRcTqCKw7vM7k98b6xeKPyj96bTHTeWbqMyh6qMiiZ6q606kMyavOg++Lvvi/\nY/9n9hzWlBCQgJPlJ406bUtKFiVmzvnFTr/1AIzch5AYTc7HqRHTDOo/CPePux/VzdUoqi0CB0fB\nxQKHvANiSguQ7pzqPyr/sEpsYiu4WIC8mjyjT3zqLNYvFo1tjSio6buS30nhZPZtbJ0JoRNwtuos\nyurKevx6xvkMcHAkBiVaNI+1DA8cjlZtK05XnpY6lF5ZXJXNGEtjjBUASAGtmAUn5+PUiOnWHFzT\n7Zoj3gEx5ejKof5D8fK0lzFUbR/blprSw3ypWP9YADAqsby490WjdhbrzYSwCQAM9zPvPLcTQZ5B\nNtMtotuaU+4f8vpMzIyxnYyx7B5+zQUAznkq5zwUQDqA+3oZZxlj7CBj7GB5ueOeKGMquR+nRkxD\nd0D+YuzRld6u3nj48ocR5Rtl5QjFoTuH2dhWqc5i/WIR5BnUZQ99Q9YcWoNtZ00/w7mzUcGj4Ork\nin353RMz5xwZ5zOQHJlsEy1IADBMPQxVj1XJ/mzmPquyOefGNqd9CuB7AE8bGGctgLUAkJSURLe8\njXRp+02YdxjSktPs4lmbIwrzDkNeTV6P14lhRReLUFxbjDEDxkgdisXOVZ2Dk8JJX51vimCvYJQ8\nXGLUa8sbys1uldJxVjpjVvQsOCudu30tW5MNTb0GVw2Sd/9yZ0qF0qJiOGuxqF2KMRbNOdcdGnwt\nANO3mCF9MtR+Q2xPWnKa3bYAiempH5/CjrM7UPhQodShWCzaLxq3DL8FSoV4Z7c2tDagrqXO4mfM\nAPD1DV/3eD3IMwhvzXwLMwbLu3/5Ul+d+Apbc7Zi3bWmF99Zi6XPmF/487b2MQDTATwgQEyE2C1T\nnq2Sv8T4xqCotgh1LXVSh2KxpYlL8cHcD8x+/xv738BVn/S+StVtLiJEYta5tBJc7aHGvWPvtbmD\ndb48/iXeP/K+rA9GsWjFzDlfIFQghDgKugNiOl1l9pnKM0gMto0KYEPatG3689bNcbH5IjLOZ6C+\npd7gzmFVTVVwUjhB7WHZrWwAaGprwvB3hmPJyCX6jU1a21vxWfZnmBk1U5A5rCU9Kx2bTm8CgC4H\nowCQ1b9J2iubECJ79tIyVdtcC9dnXfHOgXfMHiPWr6Myu7c/i5FBI9H8VDNmR882ex4dVydXKBXK\nLpXZ+4v247aNt+HnvJ8tHt+aUjNS0dze3OWaHLsiKDETQmRvsO9gALafmM9Xn0c7b4e/u7/ZYxjb\nMqVgCsGeY08InYBfCn7R387OOJcBBoYpkVMEGd9abKUrghIzIUT23FXu2HjjRtw8/GapQ7GIJT3M\nOtG+0WBgOF1hODFvOLkBd3x7h2A7XE0InYCqpir9EZI7z+/E6JDR8HXzFWR8a7GVfSEoMRNCbMLc\nIXONOr9YzvQ9zBZ8H24qN8yJndPrs91fCn5Bela6Rc+yO9NvNJK/D3Utdfit8DckRyYLMrY12cq+\nEHS6FCHEJpypPIN9Bftw24jbbGZDi0udqzoHbxdv9Hftb9E4mxZt6vXrmgYNAjwCBPtzivaNxoqx\nKzDEfwh+L/odbdo2m+pf1rGVfSEoMRNCbMKWM1uwcttKzI6ebVOVwJ1NipgkWMLkvGOfpp7G0tRr\nBG2VYozhjZlv6H+fvzJf0PGtKSUhBfNi52HKx1Pwt5F/k11SBuhWNiHERthDZfbCuIX4x6R/WDzO\nl8e/RP8X+6O4trjHr5fXW77r16U45zhZfhK1zbUI9Q6Fi5OLoONbk4ezB4priw3uAS41SsyEEJtg\n64mZc46CmgKjjmzsS3+3/qhprjFYma1SqhDaL9TieTr7z+7/IO6/cej3Qj8EvxIsy405TDFmwBgc\nKDogdRg9osRMCLEJ4T7hUClUNpuYS+tKEbY6DO8efNfisXS9zIYqs3+9/VesmdP9JDNzpWel46V9\nL+l/X1pXavPHlY4NGYszF86gqrFK6lC6ocRMCLEJTgonDPYdjD8u2GZiFqJVSmdAvwFwV7lb7Vzh\n1IxUNLQ1dLkmx405TKE7EOVg8UGJI+mOEjMhxGZsuHED1l6zVuowzCJkYlYwBWL8YnpMzAU1BZiZ\nPhN78/daPI+OrWzMYYqkkCRcN/Q6eDp7Sh1KN1SVTQixGUP8h0gdgtnOV5/XH1wihFuG36KvzO6s\n8GIhtuZsxf1j7xdkHsA+jyv1cfUxeHKW1GjFTAixGWcvnMW/f/o3yurKpA7FZOeqzmFAvwGCVTM/\nNP4hPHz5w92ua+o1AIQ9WcpWNuYwR0VDhdQhdEOJmRBiMwovFuJfu/+FY2XHpA7FZDcPvxnPTnlW\n0DFrm2vR2NrY5Vp5Q8eRj0L2etvrcaXvHXoP6lVqg21nUqFb2YQQm9G5ZWra4GkSR2MaoXfKyizN\nxMg1I/Hl9V9iYdxC/XXdilnoPmZ7PK50WMAwAMCBogOYO2SuxNH8hVbMhBCbEeQZBE9nT5tqmUrP\nSkf46nAo/q1A2GthgrUY6U7curRlyl3ljhGBI+CmchNkHnuWGJQIJVPi96LfpQ6lC0rMhBCbwRhD\njF+MzbRMpWelY9nmZcivyQcHR8HFAsH6fz2dPTHAa0C3yuyVl63E0eVHLR7fEbip3JAQmIADxfLa\naIQSMyHEpsT4xSCvunuFsBylZqSioVW8/t9Y/1ir9TLbqzEhY3Cg+ECPFe5SoWfMhBCbsvaatfBw\n9pA6DKOI3f8b6xeLT7M+Bedcf5jF9V9ejyF+Q/DM1GcEmcPe3TbiNowfOB5t2jaolCqpwwFAiZkQ\nYmO8XLykDsFoYvf/3jjsRgxTD0M7b4cT6/hxvjd/L3xcfAQZ3xFMCJugP29aLuhWNiHEppTVleGO\nb+/Anrw9UofSJ7H7fydFTMK9Y++Fk6IjKWu5FhUNFTZ7LKZUTpSfkFUBGCVmQohNcXVyxftH3sev\nhb9KHUqfdP2/wZ7BovT/arkWJ8tP6p+5VzdVo03bZrNnJUvlzs134qFtD0kdhh7dyiaE2BRvV28E\negTaTMuUmP2/nHMkrknEfWPvw8vTXxZl1y9HMDZkLNYcWoM2bZv+7oOUaMVMCLE5MX4xNpOYW9tb\nsT57PQpqCgQfW6lQdjnMgnOOSeGTEOkTKfhc9mzMgDFobGvEcc1xqUMBQImZEGKDYvxicObCGanD\nMEp+TT4Wfb0IO87tEGX8WP9Y/SYjQ9VD8dPffsL40PGizGWvxoR0HAEpl35mSsyEEJsTp46Dp7Mn\nmtqapA6lT7rWKKFOlbpUrF8szlWdQ0t7iyjjO4Io3yj4uPrgQBElZkIIMctD4x/CmRVn4OrkKnUo\nfdK1S4X7iJeY23k7zlWdwyu/vIK4t+PQrm0XZS57xRjD1pSteHaqsIeMmEv6p9yEEGLHdBXTof1C\nRRk/eVAyNt64ESFeIThffR6ldaVQKpSizGXPxg0cJ3UIerRiJoTYHC3XYlb6LLy5/02pQ+lTXk0e\ngj2DBTuH+VIhXiGYO2Qu+rn0g6ZeQxXZZiqvL8cLe1/AqYpTUodCK2ZCiO1RMAVOVZyCj6sPVoxb\nIXU4vXpmyjO4Z8w9os6xJ28PWtpbKDFboFXbiicynoC7yh1D/IdIGgslZkKITbKVlqkB/QZgQL8B\nos7x1I9PoU3bhqrGKsSp40Sdy16FeIUgxCtEFpXZdCubEGKTdIlZTqcCXUrLtXj111dxrOyYqPPE\n+nW0TE2OmIwrw68UdS57NiZkjCy25qTETAixSTF+MahtqUVZfZnUoRhUVleGh7c/jL35e0WdJ9Yv\nFpWNlXhmyjO4f9z9os5lz8aEjMEflX+guqla0jgEScyMsUcYY5wx5i/EeIQQ0pcRgSMwJWIK6lrq\npA7FIF2rlFCnSRmieyZKZzNbZuyAsXBWOus3bJGKxYmZMRYKYBoAYQ4YJYQQI0wMn4hdt+1ClG+U\n1KEYpGuVEmtzEZ1Y/1gAwIQPJuC7P74TdS57NjliMmqfqJW8dUqIFfNrAP4OQL4PegghRAJiby6i\nE+kTiVXTVgEAPJ09RZ3LnqmUKjgrnaUOw7LEzBi7FkAR5zxToHgIIcRo89fPx41f3Sh1GAbl1+TD\nx9UH/Vz6iTrP58c/x4t7XwQALP56MdKz0kWdz57937H/w/z18yWNoc92KcbYTgBBPXwpFcCTAKYb\nMxFjbBmAZQAQFibu8xZCiGNgYMgqy5I6DINemf4KHpvwmKhzpGelY9nmZWhobQAAlNSVYNnmZQAg\n2nGT9qyioQIbT21ESW0Jgr2CJYmhzxUz5/wqznn8pb8AnAMQCSCTMZYLYCCAw4yxnpI4OOdrOedJ\nnPMktVot5PdACHFQMX4xyLmQI9u9oV2cXBDqLc5WnDqpGan6pKzT0NqA1IxUUee1V1WNVQCAAa8O\nQMTqCEnuPph9K5tznsU5D+CcR3DOIwAUAhjFOS8VLDpCCOlFjF8MWrWtyK3OlTqUHj26/VH8eP5H\nUefQnV5l7HViWHpWOlb90vGsnoMjryYPyzYvs3pypj5mQojNivGLAQBZ7gBW3VSNl399GYdLDos6\nj6FWLLFbtOxRakYqGtsau1yT4u6DYIn5z5VzhVDjEUJIX7I12fBQeWD2p7Mlu+1oiL5VSuSK7LTk\nNLir3Ltcc1e5Iy05TdR57ZFc7j7QipkQYpPSs9Lx8PaHUd9aL+ltR0P0rVIi9zCnJKRg7Zy1CPcO\nBwNDuHc41s5ZS4VfZpDL3QdKzIQQmyT3oifditkaP9RTElKQuzIX2qe1yF2ZS0nZTHK5+0CJmRBi\nk+Ry29GQioYKuDm50TGMNkQudx+YFCezJCUl8YMHD1p9XkKI/YhYHaG/XdxZuHc4clfmWj+gHjS3\nNcPFyUXqMIgMMMYOcc6TjHktrZgJITZJLrcde0NJmZiDEjMhxCbpbjsGegQCANTualkVPS3dtBRf\nHP9C6jCIDaLETAixWSkJKci6u2NLzqeufEo2SbmprQkfHv1Q8uMDiW2ixEwIsWn+7v7455X/xNgB\nY6UORa+gpgCA+D3MxFgyzc8AABNgSURBVD71eYgFIYTIGWMM/57yb6nD6MJaPczEPtGKmRBi8y42\nX5TVKVPW2vWL2CdKzIQQm/fi3hcxau0otLa3Sh0KAKClvQUBHgEY4DVA6lCIDaLETAixeVG+UWjT\ntslmc5G7x9yNskfKoFKqpA6F2CBKzIQQmxflGwUAyLmQI3EkhFiOEjMhxObJLTHP+3we3tj/htRh\nEBtFiZkQYvOCPIPgrnKXRWJu17bj+zPfo7SuVOpQiI2idilCiM1jjOGDaz9AjF+M1KGguLYYbdo2\napUiZqPETAixCzfG3yh1CAA69TBTqxQxE93KJoTYheLaYmw8tRHt2nZJ49BVhtOKmZiLEjMhxC58\n/8f3mL9+PopqiySNw0XpgsSgRIR5h0kaB7FdlJgJIXZBLpXZC+IW4PBdh+Hh7CFpHMR2UWImhNgF\nuSRmQixFiZkQYhcG9BsAF6WL5Il56sdT8fjOxyWNgdg2SsyEELugYAoM9h0saWLmnOP3ot/R3NYs\nWQzE9lG7FCHEbnw872P4uvlKNv+Fxguob62nViliEUrMhBC7kRSSJOn8udW5AEAV2cQidCubEGI3\n8mvy8eb+N1HZUCnJ/PrNRaiHmViAEjMhxG6crjiN+7fej2xNtiTz+7r54trYaxHZP1KS+Yl9oMRM\nCLEbUrdMTY6YjE2LNkn6nJvYPkrMhBC7EeodCpVCJVli1nKtJPMS+0KJmRBiN5wUTojsH4mcKmkS\n87h145DyTYokcxP7QYmZEGJXonyjcKbyjCRz51bnwsvZS5K5if2gdilCiF1ZN2cdvFysnxzrW+pR\n0VBBFdnEYpSYCSF2JdgrWJJ59cc90uYixEIW3cpmjP2LMVbEGDv6569ZQgVGCCHmKLxYiMd2PIYT\n5SesOi/1MBOhCPGM+TXO+cg/f20RYDxCCDFbY2sjXvrlJRwoOmDVeYM9g3HvmHsR7Rdt1XmJ/aFb\n2YQQuxLuEw4lU1q9ZWpE0Ai8Nestq85J7JMQK+b7GGPHGGMfMMb6CzAeIYSYzVnpjHCfcKu3TFU0\nVKC1vdWqcxL71GdiZoztZIxl9/BrLoB3AAwGMBJACYBXehlnGWPsIGPsYHl5uWDfACGEXCrKN8rq\nK+Z5n8/DtP9Ns+qcxD71eSubc36VMQMxxt4D8F0v46wFsBYAkpKSuLEBEkKIqaL6R+GHyh+sOmde\nTR6mREyx6pzEPllald25L2E+AGl2jieEkE5WX70a5x44Z7X5WttbUVxbTBXZRBCWFn+9xBgbCYAD\nyAVwl8UREUKIhVRKlVXnK6otgpZrqYeZCMKiFTPn/BbOeQLnfDjn/FrOeYlQgRFCiLkqGyqx+OvF\n2JazzSrz5VVTDzMRDu2VTQixOx7OHvg8+3P8Vvib6HOlZ6Vj8TeLAQBLNi1Bela66HMS+0Z9zIQQ\nu+Pq5IpQ71DRW6bSs9KxbPMyNLQ2AOi4pb1s8zIAQEoCnTJFzEMrZkKIXbJGy1RqRqo+Kes0tDYg\nNSNV1HmJfaPETAixS9G+0aInZt3BFcZeJ8QYlJgJIXYpPiAeIV4haGxtFG2OMO8wk64TYgxKzIQQ\nu3Tf2PuQuTwTbio30eZIS06Du8q9yzV3lTvSktNEm5PYP0rMhBBippSEFLwz+x3978O9w7F2zloq\n/CIWocRMCLFLbdo2XPnhlXhz/5uizjM1cioA4N3Z7yJ3ZS4lZWIxapcihNglJ4UTzladxaGSQ6LO\n4+3ijfTr0jF2wFhR5yGOgxIzIcRuWaNlysvFC4sTFos6B3EsdCubEGK3ovqLn5jPXjiLPXl70K5t\nF3Ue4jgoMRNC7FaUbxTK6stQ21wr2hwfZ36MyR9PBgedZkuEQYmZEGK3RgWPwuzo2ahtES8xl9SW\nIMAjAE4KejJIhEF/kwghdmtG1AzMiJoh6hzFdcUI8QoRdQ7iWGjFTAixe5yLd5u5pLYEwZ7Boo1P\nHA8lZkKI3UrPSofLsy5Q/EeBiNURohzJWFxLK2YiLLqVTQixS7ojGVvaWwAAeTV5ohzJ+NUNX8HH\n1Uew8QhhYt7iMSQpKYkfPHjQ6vMSQhxHxOoI5NXkdbse7h2O3JW51g+IODTG2CHOeZIxr6Vb2YQQ\nu2SNIxlLakvwadanqGioEGxMQigxE0LskjWOZDxQfAAp36QgtzpXsDEJocRMCLFL1jiSsbi2GACo\nKpsIihIzIcQupSSkYO2ctQj3DgcDE+VIxpLaEjAwBHoGCjYmIVSVTQixWykJKUhJSIGWa5FXnYfI\n/pGCjl9cW0y7fhHB0YqZEGL3/rP7P4h6MwoNrQ2CjltSV0I9zERw9DGPEGL3RgSOgJZrkVWWhXED\nxwk27rvXvIuLzRcFG48QgFbMhBAHMCp4FADgcMlhQccd2G8g4tRxgo5JCCVmQojdC/MOg6+bL46U\nHhFszDZtG17a9xIySzMFG5MQgBIzIcQBMMYwKniUoCtmTb0Gj+18DL8W/irYmIQA9IyZEOIgHr38\nUbS2two2nq6HmYq/iNAoMRNCHML0wdMFHY82FyFioVvZhBCH0K5tx+7c3cjWZAsyXkltCQBaMRPh\nUWImhDgExhjmfDYH7xx4R5DximuLadcvIgpKzIQQh6BgCiQGJ+JwqTAFYE9OfBJ5K/No1y8iOIsT\nM2NsBWPsNGPsOGPsJSGCIoQQMYwKGoXM0ky0adssHsvFyQWh3qECREVIVxYlZsbYFABzAQznnA8D\n8LIgURFCiAhGh4xGY1sjTlectnisVftW4cvjXwoQFSFdWbpivhvAC5zzZgDgnGssD4kQQsQh5A5g\nr/72KrbmbLV4HEIuZWlijgEwkTG2nzG2mzE2RoigCCFEDLF+sdh/x34sjFto0Tjt2nZo6jVUkU1E\n0WfVAmNsJ4CgHr6U+uf7+wO4DMAYAF8wxgZxznkP4ywDsAwAwsLCLImZEELMolQoMXbAWIvH0dRr\noOVaSsxEFH2umDnnV3HO43v4tQlAIYBveIffAWgB+BsYZy3nPIlznqRWq4X9LgghxEgHiw/iiZ1P\nQMu1Zo+h31zEizYXIcKz9Fb2RgBTAYAxFgPAGUCFpUERQohYjpUdwwv7XsDZC2fNHqOioQIMjFbM\nRBSWNuB9AOADxlg2gBYAt/V0G5sQQuSicwFYtF+0WWPMiJqB5qeaoWC0FQQRnkV/qzjnLZzzm/+8\ntT2Kc75LqMAIIUQMceo4OCudLa7MVilVUCqUAkVFyF/o4x4hxKE4K52REJBg0Q5gaw6uwZMZTwoY\nFSF/ocRMCHE4o4JHIa86z+z3f3/me2w5s0XAiAj5C23ySghxOK9f/TpcnVzNfn9JXQlVZBPR0IqZ\nEOJw3FRuYIyZ/f7i2mKEeFJFNhEHJWZCiMPhnOP2Tbfj7d/fNvm97dp2lNaV0oqZiIYSMyHE4TDG\ncKD4ALbkmP6cuLqpGgEeARjYb6AIkRFCz5gJIQ5qVPAobDu7zeT3+bn7oeThEhEiIqQDrZgJIQ5p\nVPAolNaVoqSWkiyRF0rMhBCHZO4RkJtObcLcz+eiuqlajLAIocRMCHFMI4NGIj4gHq3aVpPel1mW\niW9Pfwt3lbtIkRFHR8+YCSEOydPZE1l3Z5n8vuLaYqjd1XBWOosQFSG0YiaEODhTz92hzUWI2Cgx\nE0Ic1hfHv4B6lRoVDcafVltcW0zHPRJRUWImhDgsf3d/VDZW4kjJEaPfE+QZhHh1vIhREUdHz5gJ\nIQ4rMSgRAHCo5BCmDZ5m1Hs237RZzJAIoRUzIcRx9Xfrj0ifSIvPZiZESJSYCSEOzd/dHxtObYDi\n3wpErI5Aela6wddma7Ixeu1o/FrwqxUjJI6GbmUTQhxWelY6Mssy0aZtAwDk1eRh2eZlAICUhJRu\nr8+rzsPhksMWnUxFSF9oxUwIcVipGaloaW/pcu3/27vf2KruOo7j7w//ZB1Qxj8hZZSpi1CHYCC4\nhJFMIIKOOdm6wVaTmZiRJT4YRmNAHhhN+sAH4rLEjBBEZwI4YM7hHslwRh9Nyzb+zwzNKFtrqUOg\nDMYG/frgnmqBduttz+25p/fzSpre87uH22++4fRzf+ec++vFDy+ycf/GHvdvvVBYvtN3ZVspOZjN\nrGI1n2suarylowUo3JltVioOZjOrWDOqZxQ13trRyqSqSV71y0rKwWxmFatxaeMNa15XjayicWlj\nj/vXjq9l+aeXD0ZpVsF885eZVayuG7w2vLSBU+dPMXbUWJ5e+XSPN34BrL9r/WCWZxXKM2Yzq2gN\ncxpo/k4z99x+D7fcdAuP3PFI1iVZhXMwm5kB9XX1NJ9r5kDrgR6f74xOajbV8NQrTw1yZVZpfCrb\nzAxYNWsVdZPrmD9tfo/Pt7/XTktHC8Pk+YyVloPZzAyoHl3NwpqFvT7f9RnmaWP8Jx+ttPzWz8ws\n8c75d3j8xcc5+K+DNzzX2uHFRWxweMZsZpYYPWI0W1/dyoSbJjB36txrnutaXGTaWM+YrbQ8YzYz\nS0ysmsiS25aw+9huIuKa56aPm059Xb1X/bKSczCbmXVTX1fPiTMnONR26Jrx5Z9Zzu4HdzN6xOiM\nKrNK4WA2M+tm1axVDNMw9hzbc8341c6rGVVklcbBbGbWzeSbJ/PQ5x66YWa8aNsiHtj1QEZVWSUZ\n0M1fkp4FPptsjgfORsS8AVdlZpahnQ/svGGspaOFWZNmZVCNVZoBBXNErO56LOmnwLkBV2RmVgYi\ngrb32pg6Ziqd0UnrhVZ/htkGRSqnsiUJeAi48W2mmVkOrXluDct+vQyAdy++y5XOK/4Msw2KtK4x\nLwbaIuLNlF7PzCxTi2cs5mj7UY63H/dnmG1QfWwwS3pJ0pEevu7rttvDfMxsWdJaSU2Smtrb2wda\nt5lZSd0/+36E2HNsD+M+MY51X1zHnClzsi7LKoCu/xB90S8gjQDeAeZHxNt9+TcLFiyIpqamAf1c\nM7NSW/zLxZy/fJ6Dj9+4RKdZMSQdiIgFfdk3jVPZy4A3+hrKZmZ5UT+7nkNth2hqaeL9K+9nXY5V\niDSCeQ2+6cvMhqDVd6zmhTUvsLlpMzWbarIuxyrEgIM5Ir4ZEZvTKMbMrJxMHTOVjg862HF4B2cu\nnWHmkzPZfnh71mXZEOeVv8zMerH98HYe2/sYl65cAuDkuZOs/f1ah7OVlIPZzKwXG/dv/F8od7n4\n4UU27t+YUUVWCRzMZma9aD7XXNS4WRoczGZmvZhRPaOocbM0OJjNzHrRuLSRqpFV14xVjayicWlj\nRhVZJXAwm5n1omFOA1vu3UJtdS1C1FbXsuXeLTTMaci6NBvCBrzyV3945S8zM6skg73yl5mZmaXE\nwWxmZlZGHMxmZmZlxMFsZmZWRhzMZmZmZcTBbGZmVkYczGZmZmXEwWxmZlZGHMxmZmZlxMFsZmZW\nRjJZklNSO3AyxZecBPw7xderZO5letzL9LiX6XEv01FsH2sjYnJfdswkmNMmqamva5DaR3Mv0+Ne\npse9TI97mY5S9tGnss3MzMqIg9nMzKyMDJVg3pJ1AUOIe5ke9zI97mV63Mt0lKyPQ+Ias5mZ2VAx\nVGbMZmZmQ0Lug1nSCkl/l3RC0vqs68kTSdsknZZ0pNvYBEn7JL2ZfL8lyxrzQNKtkl6WdFzSUUlP\nJOPuZZEkjZb0V0kHk17+KBm/TdIrSS+flTQq61rzQtJwSa9JejHZdi/7QdJbkg5Lel1SUzJWkmM8\n18EsaTjwc+ArQB3wsKS6bKvKlV8BK64bWw/sj4jbgf3Jtn20K8B3I2I2cCfw7eT/oXtZvMvAkoiY\nC8wDVki6E/gJ8LOkl/8BvpVhjXnzBHC827Z72X9fioh53T4mVZJjPNfBDCwETkTEPyPiA+A3wH0Z\n15QbEfFn4Mx1w/cBzySPnwG+PqhF5VBEtEbEq8njDgq/BGtwL4sWBReSzZHJVwBLgD3JuHvZR5Km\nA/cAW5Nt4V6mqSTHeN6DuQY41W377WTM+u+TEdEKhcABpmRcT65Imgl8AXgF97JfklOvrwOngX3A\nP4CzEXEl2cXHed89CXwf6Ey2J+Je9lcAf5B0QNLaZKwkx/iINF4kQ+phzLeZWyYkjQGeA9ZFxPnC\n5MSKFRFXgXmSxgPPA7N72m1wq8ofSSuB0xFxQNLdXcM97Ope9s2iiGiRNAXYJ+mNUv2gvM+Y3wZu\n7bY9HWjJqJahok3SNIDk++mM68kFSSMphPL2iPhtMuxeDkBEnAX+ROG6/XhJXRMJH+d9swj4mqS3\nKFzmW0JhBu1e9kNEtCTfT1N4w7iQEh3jeQ/mvwG3J3cZjgLWAHszrinv9gKPJo8fBV7IsJZcSK7b\n/QI4HhGbuj3lXhZJ0uRkpoykm4BlFK7ZvwzUJ7u5l30QERsiYnpEzKTwu/GPEdGAe1k0STdLGtv1\nGPgycIQSHeO5X2BE0lcpvAscDmyLiMaMS8oNSTuBuyn8lZQ24IfA74BdwAygGXgwIq6/Qcy6kXQX\n8BfgMP+/lvcDCteZ3csiSPo8hZtohlOYOOyKiB9L+hSFWd8E4DXgGxFxObtK8yU5lf29iFjpXhYv\n6dnzyeYIYEdENEqaSAmO8dwHs5mZ2VCS91PZZmZmQ4qD2czMrIw4mM3MzMqIg9nMzKyMOJjNzMzK\niIPZzMysjDiYzczMyoiD2czMrIz8F8CpSrcsiw1hAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["from numpy.random import randn\n", "\n", "fig = plt.figure(figsize=(8,6))\n", "ax1 = fig.add_subplot(111)\n", "ax1.plot(randn(50).cumsum(),color='g',marker='o',linestyle='dashed')\n", "# plt.show()"]}, {"cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [{"data": {"text/plain": ["[]"]}, "execution_count": 12, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAFpCAYAAABJdYvCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4FOX2B/DvbEnb9N4TAkmAJJQQ\nijSVoILAVREUDVdRNIoFFbvx2vhFLqiIXr0oXsXrJSqoFEEUBKQGkU4CpJDeINndkLabstn5/RF3\nTUjbMrszuzmf5/F5zO7MOwdIcvaded9zGJZlQQghhBBhEPEdACGEEEL+QomZEEIIERBKzIQQQoiA\nUGImhBBCBIQSMyGEECIglJgJIYQQAaHETAghhAgIJWZCCCFEQCgxE0IIIQJCiZkQQggREAkfF/X1\n9WUjIyP5uDQhhBBidSdPnpSzLOtnyLG8JObIyEicOHGCj0sTQgghVscwTImhx9KtbEIIIURAKDET\nQgghAkKJmRBCCBEQSsyEEEKIgFBiJoQQQgSEEjMhhBAiIJSYCSGEEAGhxEwIIYQICCVmQgghREAo\nMRPOZGRlIHJNJERvihC5JhIZWRl8h0QIITaHl5KcxP5kZGUgdXsqVG0qAEBJXQlSt6cCAFISUvgM\njRBCbArNmAkn0vam6ZOyjqpNhbS9aTxFRAghtokSM+FEaV2pUa8TQgjpGSVmwolwj3CjXieEENIz\nSsyEE+nJ6XAUO3Z5zUXqgvTkdJ4iIoQQ20SJmXAiJSEFL056Ec4SZzBgEOERgXVz1tHCL0IIMRLD\nsqzVL5qUlMSeOHHC6tclhBBC+MAwzEmWZZMMOZZmzIRTP+f/jMB3A5GnyOM7FEIIsUmUmAlnlv68\nFLd+fSuuNF1BrjyX73AIIcQmUWImnKloqECQaxAAIFdBiZkQQkxBlb8IZ+QqOaJ9otGmbaMZMyGE\nmIhmzIQzcpUcvi6+iPWJpRkzIYSYiGbMhDMKlQK+zr6YGj4VV5uv8h0OIYTYJErMhDN3DrsTk8In\n4d6Ee/kOhRBCbBYlZsKZj2d9rP//Fk0LWLBwkjjxGBEhhNgeesZMOKFltdCyWgBAgbIALm+74Lvz\n3/EcFSGE2B5KzIQTxyuOQ7pcit0FuxHmEQYGDC0AI4QQE1BiJpyQq+TQslp4OnnCQeyAKK8oSsyE\nEGICSsyEE3KVHADg6+ILAIj1jaW9zIQQYgJKzIQT3RKzTyzylfn6586EEEIMQ6uyCSfkKjkkIgnc\nHNwAALfF3oYg1yC0tbfBUeLYz9mEEEJ0KDETTkwMm4jn8BwYhgEATImYgikRU3iOihBCbA8lZsKJ\nObFzMCd2jv5rlmVRUlcCESNCuEc4j5ERQohtoWfMhBNKtRKt7a1dXhv5yUisPLySp4gIIcQ2UWIm\nnJj0xSSkbE7Rf80wDDWzIIQQE1BiJpyQq+Twdfbt8lqsbyzyFHk8RUQIIbaJEjMxm5bVQqlW6rdK\n6cT6xKKsvgxNrU08RUYIIbaHEjMx29Xmq9CyWvi4+HR5PdYnFgCQr8znIyxCCLFJlJiJ2a4tLqIz\nJWIKNs7bSKuyCSHECLRdipjN08kTK5JXYEzQmC6vB7oG4q64u3iKihBCbBMlZmI2f5k/Xpr8Uo/v\nnag8gcbWRtwQeYN1gyKEEBtFiZmYTaFSoKG1AeEe4RAxXZ+OpO1Lg1KtxPGHj/MUHSGE2BaznzEz\nDBPGMMxvDMNcZBjmPMMwT3ERGLEdX5z+AoM+GARVm6rbezHeMciV54JlWR4iI4QQ28PF4i8NgGdZ\nlh0GYAKAxxmGGc7BuMRGyFVyOIodIZPKur0X6xuLhtYGXG68zENkhBBie8xOzCzLVrEse+rP/28A\ncBFAiLnjEtshV8nh6+Krb2DRmW7LFFUAI4QQw3C6XYphmEgAowEc43JcImxytbzbVimdWN8/E7Oc\nEjMhhBiCs8VfDMO4AvgBwNMsy9b38H4qgFQACA+nfa32RK6SdysuohPqHoojDx5BnF+claMihBDb\nxEliZhhGio6knMGy7OaejmFZdh2AdQCQlJREK4HsyAsTX4BYJO7xPREjwsSwiVaOiBBCbJfZiZnp\neLD4OYCLLMuuNj8kYmtuG3pbn+8fKT2C45XH8fSEp60UESGE2C4unjFPAvB3ANMYhjnz53+3cjAu\nsQFaVovMskzUNNX0esyugl14dvezaNG0WDEyQgixTVysyj7MsizDsuwIlmVH/fnfTi6CI8KnVCsx\n6YtJ+Cb7m16PifWJhZbVoqC2wIqREUKIbaImFsQsvTWw6IxWZhNCiOEoMROzGJKYY3xiANBeZkII\nMQQlZmIWhUoBoO/E7O7ojkDXQFxSXrJWWIQQYrOoiQUxiyEzZgA4++jZfo8hhBBCM2abkJGVgcg1\nkRC9KULkmkhkZGXwHZJeclQyNs7biABZQJ/H+cv8u3WeIoQQ0h39phS4jKwMpG5PRUldCViwKKkr\nQer2VMEk50jPSNwVdxccJY59Hnei8gQWb1sMpVpppcgIIcQ2UWIWuLS9ad3aKaraVEjbm8ZTRF0d\nrziOo2VH+z3uSuMVfHHmC+TIc6wQFSGE2C5KzAJXWldq1OvWtvzgcjy+8/F+j6MtU4QQYhhKzAIX\n7tFzw4/eXre2vhpYdBbpGQmpSEpbpgghpB+UmAUuPTkdLlKXbq/fFtt3fWpr0fVi7o9EJMEQ7yGU\nmAkhpB+UmAUuJSEF6+asg1QkBQCEuYdhsNdg/Of0f1BYW8hzdH8mZmfDtkHF+cehWdNs4YgIIcS2\n0T5mG5CSkIK0vWmYGjEVX93xFS43Xsam85swyHMQr3FptBrUNtcadCsbADbN24SOZmSEEEJ6Q4nZ\nRijUCvg4dyTAQNdALB2/FABQVFuEYLfgfrcrWQIDBgcXHUSIe4hhx1NSJoSQftGtbBvQ2t6KxtbG\nbjNTuUqOpM+SsOSnJWBZ1upxiUViTImYgiivKIOOX/P7GjinOwuyUAohhAgFJWYboGpTYULoBAz2\nGtzldV8XXzw+9nGsP7MePqt8rJ7wyuvLseHcBn297L5kZGXglb2voFnTLMhCKYQQIhSUmG2Ap5Mn\nji4+insS7un2XoxPDMSMGLXNtVZPeH9U/IG/b/k7yurL+j02bW8a1Bp1l9eEVCiFEEKEghKzjXt1\n36toZ9u7vGathGdIZykdoRdKIYQQoaDEbAN2XdqFEWtHIF+R3+09PhOerrOUblFaX4ReKIUQQoSC\nErMNKK8vR1Z1Vo8rr/lMeHKVHDKpDM5S536P7alQiovUBenJ6ZYKjxBCbBIlZhugUHfcMvZ29u72\nHp8JT6FWGNxjWVcoJcIjAgwYRHhEYN2cdUhJSLFwlIQQYltoH7MNUKgUcBA7QCaVdXtPl9jS9qah\npK4ELlIXqyW8t5PfNqqNY0pCij4ulmVpXzMhhPSAErMNUKqV8HH26TWR6RLe1PVTIWJEVpuFBrsF\nI9gt2OjzUjanQK6SY9fCXRaIihBCbBvdyrYBMT4xuGXILf0eF+oeivL6citE1OHTE59if/F+o89z\nlbrij4o/eCmKQgghQkeJ2QY8P+l5rL9tfb/H6RKztRLei3texJaLW4w+b3TQaFxtvoqSuhILREUI\nIbaNErMdCXUPRUt7i34bkyW1tbehrqXO4MVfnSUGJQIATled5josQgixeZSYbUDC2gSDCobcFHUT\nPv/b53CSOFk8Jt1KcVMSc4J/AsSMGKeqTnEdFiGE2Dxa/CVwLMsiT5EHjVbT77HD/IZhmN8wK0TV\nqbiIgS0fO3OWOmPZdcv0M2dCCCF/ocQscE1tTWhtbzUoAWpZLU5XnYaPiw8iPSMtGpcuMZsyYwaA\nVTet4jIcQgixG3QrW+B09agNKXvJsiwmfD4Bn538zNJhYVLYJJQ/U47rQq8z6XyWZVFeXw5Vm4rj\nyAghxLZRYhY4XQEPQ2bMYpEYwW7BBnV7MpdULEWIe4hB5Th7crj0MMLeD8OB4gMcR0YIIbaNErPA\nuUhdcG/Cvd16MfcmzD3MKnuZdxfsxvIDy03emjUiYAQA4PRlWplNCCGdUWIWuFjfWGTMzUBCQIJB\nx1uryMjP+T9jVeYqk8tqejh5YLDXYFqZTQgh16DELHDGzkitVWRErpabvPBLZ3TQaJoxE0LINSgx\nC1z6oXS4rXBDW3ubQcc/MOoBbF2wFSwsm5gVKsM7S/UmMTARhbWFuNp8laOoCCHE9tF2KYHTrcqW\niqUGHR/nH4c4/zhLhgSgY7uUuYn59qG3I8IzAlKRYX82QggZCCgxC5xCrTBoq5ROY2sj9hTuwciA\nkRjkNciiccX6xpo1hjULohBCiK2gW9kCp1QrjaqudbX5Ku7YeAd2F+y2YFRA7hO5+GTWJ2aPc/by\nWfxW9BsHERFCiH2gGbPAKdQKeDt7G3x8oGsgRIzI4iuzJSIJJA7mf/uk7UtD8dViZD+WzUFUhBBi\n+2jGLHBzh87FncPuNPh4iUhi8SIjCpUCj+54FH9U/GH2WIlBibgov0gVwAgh5E+UmAXu+UnP49Gk\nR406x9J7mSsbKvHpyU9RWldq9lijA0dDy2qRdSWLg8gIIcT2UWIWMJZl0dDSYPJeZksxt4FFZ/re\nzLSfmRBCAFBiFrTa5lq4/9MdHx770Kjz0qelY9uCbRaKitvEHO4RDi8nL6oARgghf6LFXwKm28Ns\nzOIvAIjxibFEOHr6XsxGbOPqDcMw2HvfXou3qSSEEFtBM2YBM6azVGcV9RX417F/obKh0hJhQa1R\nQyqSGh1Xb0YHjYaXsxcnYxFCiK3jJDEzDPMFwzDVDMPQnhcOKdSmzZhL6kqw9JelOHv5rCXCwrLr\nlqHl1RY4iB04Ga+ivgJvHXgLhbWFnIxHCCG2jKsZ85cAZnA0FvmT7la2sbeMQ91DAcCiC8BM7SrV\nk/qWery+/3UcKjnE2ZiEEGKrOEnMLMseBKDkYizylzj/OKRNSUOga6BR5wW5BoEBY7HE/Mb+N/B/\nB/+Ps/FifGLgInWhldmEEAIrLv5iGCYVQCoAhIeHW+uyNi0xKFG/ncgYUrEUQW5BFisysj1vu9Ef\nFvoiFokxMmAkrcwmhBBYcfEXy7LrWJZNYlk2yc/Pz1qXtWnVTdX6FdDGsuReZi5aPl5rdOBonLl8\nBlpWy+m4hBBia2hVtoAt/XkpJn4+0aRzN9+1GT/c9QPHEXWQq+TwdeY2MScGJUKj1VhsJblORlYG\nItdEQvSmCJFrIpGRlWHR6xFCiLFoH7OAKdQKk7ckhbiHcBxNB3WbGk1tTZzPmBeOWIhFoxZBLBJz\nOm5nGVkZSN2eqq/LXVJXgtTtqQCAlIQUi12XEEKMwdV2qW8AHAUQyzBMOcMwi7kYd6BTqpUmF/E4\nVXUKL/76IhpbGzmNqaG1AZGekQh2C+Z0XEeJo0WTMgCk7U3r1ixD1aZC2t40i16XEEKMwcmMmWXZ\ne7gYh3SlUCkQ5xdn0rl5ijysylyF+0behzh/08boib/MH0VPFXE2XmcrD69EVWMV1sxYY5Hxe2u6\nwUUzDkII4Qo9YxYwhVph8ozZGnuZuZanyENGVobRTTsMFe7R826A3l4nhBA+UGIWKJZlsWr6Kswd\nNtek8y2VmH8t+BW3bLgFFfUVnI4LdJTmlKvkqGjgfmwASE9Oh1Qk7fKai9QF6cnpFrkeIYSYghZ/\nCRTDMFgydonJ5we7BVukyEieIg+7C3ZDKpb2f7CR9C0gq07rP1hwSbfA66U9L6GivgLhHuFIT06n\nhV+EEEGhGbNANbY24uzls2hqbTLpfAexAwJcA1DdVM1pXLp91cbW7zZEjjwHAPC3b/9msa1MKQkp\n2HffPkR6RuLDmR9SUiaECA4lZoE6VXUKoz4dhaPlR00eo3BpIT6e9TGHUXUkZk8nT0hE3N5sycjK\nwJM/P6n/WreVicvkvProasz/bj7cHd1RdLUIxVeLORubEEK4QolZoPQtH83oeewsdeYqHD25Ws75\nHmbAOluZvs3+FuX15fCX+cNR7GhTC+MIIQMHJWaB0nWWMueW8bacbXhw24NchQQACJAFYEzQGE7H\nBCy/lely42UcrzyO2dGzwTCMRUuWEkKIOSgxC5SuF7Oplb+Ajme268+sR0NLA1dhYc2MNfh23rec\njadj6a1MO/N3AgBmx8wGYNla4oQQYg5KzAKlUCngIHaATCozeYwwjzAAsNj2Iy6lJ6fDRerS5TUu\ntzLtyNuBUPdQjAgYAQC4NfpWTAqbxMnYfKCa34TYL9ouJVAL4hdgZOBIMAxj8hid9zIP9R3KSVxj\nPxuLB0Y9gMfGPsbJeDq61dFpe9NQUlcCZ4kz1s1Zx9mq6aTgJIwLGaf/+3xh0gucjMsHqvlNiH2j\nGbNAjQ4ajXsT7jVrDK6LjKjaVDhReQL1LfWcjHetlIQUFD9djIUjFsLL2YvTJPPKlFfw0uSXurym\nZbU22WaSan4TYt8oMQvUsfJjuFhz0awxQtxC4OnkCXWbmpOYdAvSLLEqu7OxwWNR2VDJWQvIXHku\nWjQtXV7bXbAbzunOOF11mpNrWBPV/CbEvlFiFqiHtj+EV/a9YtYYjhJH1L5Ya1YFMZ2MrAyM/894\nAMAre1+x6DPN6yOux2NJj6Fd2272WCzL4pYNtyBlc9fZt4+zD1rbW21yARjV/CbEvlFiFiiFyvQG\nFlzTPdOsaqwCANSoajgv/tHZyMCR+HjWx/rFa+Y4X3MeJXUluGXwLV1e193mL6svM/sa1paenA4G\nXdceUM1vQuwHJWYBYlnWrM5Snb2X+R4WbV1k1hh8PNPUaDUouVpi9jg78nYA6FiF3ZmfzA9SkdQm\nZ8yJgYlg8VcHrnCPcE4XyhFC+EWJWYBUbSq0trdyUo+6sLYQP+b+aNYYfDzTXLJjCcZ+NtbsFpDb\n87YjMSgRIe4hXV4XMSKb3cu88fxGMGDw/MTnAQCnUk9RUibEjlBiFiAuiovohLqHora51uRmGAA/\nzzRHB41GjarGrFvNcpUcR8uOYk7MnB7ff2TMI5geNd3k8fnAsiy+zf4WN0TegCnhUwAAl5SXeI6K\nEMIl2scsQL4uvvg55WfE+cWZPVbnIiMxPjEmjZGenN5l3yxg+WeaScFJAIATlSdM/gDg5eSFzMWZ\nCHIN6vH9Fye/aHJ8fGlqa0KcfxzmxMzBEO8hYMDYRAEZQojhKDELkIvUBTOGzOBkrM57mU1NzLrb\npIu2LoJGq0GER4TF+xiPCBgBiUiCE5UnMHfYXJPGEIvEmBA6odf3tawWNU018Jf5m1XIxZpcHVzx\nw10/AOiIX52mhqPEkeeoCCFcolvZAlRUW4StOVu7LbgyRYRHBOL9480upHFP/D0QM2I8P/F5FD9d\nbPFnmk4SJ4wIGIHjlcdNOr+tvQ3P/PIMsq5k9XrMR398hMD3AvU9poWOZdkurSpFjIiSMiF2iBKz\nAP1y6RfcsfEO1DXXmT3WIK9ByFqSZfaz1MqGSrS0tyDKK8rsmAz15g1v4uXJL5t07qHSQ1hzbA0K\nawt7PYbrymiWdrzyOAZ9MAhbc7bqX1t7fC2e3fUsj1FZFtUEJwMRJWYB4nLxF1d0Cc6aiXl2zGxM\nGzTNpHN35O2Ao9gRyVHJvR5ja4l5Y/ZGSEVS3BB5g/61M5fP4KtzX/EXlAXp9s+X1JWABauvCU7J\nmdg7SswCpFAp4OrgCgexAyfjLd62GA//+LBZY7g7umPhiIUY5juMk5gModFqsKdwDy7UXDD63B15\nO3DjoBvh6uDa6zFh7h0L42yhyIiW1WLj+Y2YMWQGPJ089a9H+0RDrpLjavNVHqOzDKoJTgYqSswC\nxFVxEZ1qVbXJz2p1RgWOwv/u+B8n1bgMxbIsZn89G+tPrzf4nIysDIS8F4J8ZT6OlR/rc3blL/OH\nRCSxiRlzZlkmKhoqsCB+QZfXh3gPAQAUKAv4CMuiqCY4GagoMQuQUq3k9DZ2qJv5hTSaWpvMLvZh\nLKlYilGBo3Ci6oRBx+tufVY2djS/qG2u7fPWp1gkxsrpK7uV6xSijdkb4SRx6rYnW5eY7XEvM9UE\nJwMVJWYBev+W9/H53z7nbLxQ91Ao1AqzukxN/990zPmm50IdlpQUnISTlScNWlVuyq3PZdctw/WR\n15sdp6W9ccMb+HHBj3BzdOvyepRXFIJcg6DWcNNBTEjSk9O7Pc6hmuBkIKDELEDRPtEYFTiKs/F0\ni5zMKURRWFvYa6EOS0oKTkJDawPyFfn9HmvKrU+lWtnnliqh8HHxwU2Db+r2uovUBZXPVmLRqEXW\nD8rCUhJSsHL6Sng7e4MBgwiPCKoJTgYESswC9Pmpz3Gy8iRn4w31HYqZQ2aa3EaxoaUB1U3VGOw9\nmLOYDNW5Alh/TLn1+fahtzH+P+OtfpveGKuPrjbqObs9eXrC08h5PAfv3PQOdi3cRUmZDAiUmAVG\ny2qRuiO1y15Vc40PHY+dKTsR6xtr0vlFV4sAWHerlM5Q36E4mXoS8+Pm93vsWze+ZXQ7xFD3UKg1\naijVSrNjtYS29jakH0rHnqI9vR6z9vhaTPuvadvKhO5Y+TEcrzyO5359DvuL9/MdDiFWQSU5Baau\nuQ5aVjvg9zDrSEQSJAYlGnSsq4MrWLDwc/GDXCVHuEd4v6VDO+9lFtLfuc6ewj1QqpW4O+7uXo+p\na6nDb8W/oaGlodszaFv3+M7H4eviC1cHV5yvOc93OIRYBc2YBUZXXISLlo+dJX6aiGd+ecakcwd7\nDcYrk19BtHc0pzEZ6kTlCTy761lotJo+j1t7Yi3CPcJR9WwVtK9rDSodqtvLLNQtUxvPb4SHo0ef\nK8f1W6Zq7W/LVFl9GcI9whHvH4/s6my+wyHEKigxC4xC9WfVLw73MQNAO9uOwqu9l6fsS0JAAtKT\n0+Hh5MFpTIbKledi9e+rkSPP6fWYPEUe9hTuQWpiKsQiscFjC7n6V7OmGVtytmDusLl91sS21y1T\nzZpmVDdVI8w9DPF+lJjJwEGJWWAsVY4z1N30vcwFygJO6nabSrcA7HhF70VSBnsNxrYF2/BQ4kNG\njR3oGojP//a5yaU/Lely42XE+8d3KypyrcFeHYvy7C0x675fdTNmpVqp/+BKiD2jxCwwN0beiJzH\nczAyYCSn45pTZGTW17Ow+MfFnMZjjGifaLg5uPW5MlssEuNvsX9DgGuAUWOLRWI8OPpBRPvwc5u+\nJ7rGDVEfRKGivgI1qpo+j3dzdMMtg2/h/PEH38rqOkqlhnmE4aHEh9D0SpMg1wEQwjVa/CUwzlJn\nk1dP9yXUPRTVTdVo0bQY1SpQy2pRdLUIt8XexnlMhhIxIowJHtNrBbDvzn+Hs1fO4h9T/2FSG8SL\nNRehUCswOXyyuaGaTVe9TFcoRde4AUCfz8t/WfiLVeKzplGBo7Br4S4kBiVC5iDjOxxCrIZmzFZg\nTOu6vYV78cHvH3Aew4TQCUhNTEWzptmo8yrqK9Da3srLiuzOkoKScKXxSo8VwFZlrsLWnK0mN/14\nbf9reOhH426BWwo1bviLl7MXbh58s75px5v737TIzwYhQkOJ2cKMbV23+eJmvHXwLc7jqFZVY1fB\nLnit9DKqry2fW6U6S09OR9FTRRAxXb9lj1ccx4nKE1iStAQMw/Rydt/C3MNQXl8uiCIjpjZu+PzU\n5/Bd5dstqduy34p+w65Lu/Rf7y/Zj43nN/IYESHWQYnZwoydASmblZyvyDanr60uMfNR9aszB7FD\nj4n33yf+DZlUhr+P/LvJY4e6h6KprQl1LfwtcNMxtXGDzEEGhVqh//eyB+9kvoNX9r2i/1q3MlsI\nH6AIsSRKzBZm7AxIoVJwvojHnNujk8MnY+2stfr9vnx67KfH8Mb+N/RfK9VKfJv9LRaOWAh3R3eT\nxxXSlqn05HS4SF26vGZI4wZ73DJVWlfa5QNJvH88GlobbKJ/NiHmoMRsYcbOgBRqBecrT83paxvt\nE41Hkx6FVCzlNCZTXFJewva87fqvG1oaMCdmDpYkLTFrXF1i1q0C5lNKQgr+Pevf+q8Nbdxgj1um\nyurLunwgjPePBwDaz0zsHq3KtrD05HTcv+V+tLN/NZDoawakVCsx3G84pzGEe4SjpK6kx9f7c7Dk\nIELdQ3l/xgx07Gd+J/MdNGua4SRxQoRnBDbN32T2uAn+Cdi9cDfGBI/hIErzzR8+H7XqWkwInYAJ\noRMMOsfL2Qs+zj52k5jrmutQ31LfJTHH+cchQBbA6556QqyBErOFpSSkYOnOpahvrYdGq4G3szc+\nnPlhrzOgrCVZaGtv4zSG9OT0LltwAMP72s7bNA+3D70d6+as4zQmUyQFJ0Gj1eDclXNwdXCFiBFh\nqO9Qs8d1c3TrsaUiX1ykLnh6wtNGn7d49GL9LW1bp7tdHebxV2L2dPLE5ecu8xUSIVZDidnCyurK\noGxWYs0ta/BO5jsYHzq+z9uSrg6unMegu96yXctQ3VQNf5k/Vt+yut/bow0tDahR1ehvk/KtcwvI\nPYV7cLj0MCqWVXBym33XpV2QiCRIjko2eyxz5Sny4CB2QKRnpFHnrbxppWUC4kGMTwwuPHYBga6B\nfIdCiNVx8oyZYZgZDMPkMgxziWGYl7gY014cLT8KAJgUPgkzh8zEvqJ9vfZFvtp8Fc/tfo7TXsw6\nKQkpyH8yH8tvXI4jDx4xqK8tn+0eexLmHoYbIm+AQqXAttxteHD0g5w9+35t/2tYlbmKk7HM9dKe\nlzAzY6ZJ5za1Npncd1tIHMQOGOY3DF7OXl1e33BuAxI/TbSLPyMhvTE7MTMMIwbwMYCZAIYDuIdh\nGG4fktqwzLJMOEucMTJgJP5x/T+Q+0Rur00WKhsq8d7R95CvzLdILO6O7nh16qsG3+4sUHZ0KxJK\nYv46+2sU1Rbhtf2vQctqOZ1NmVNLnGvZ1dmI84sz+rxN5zfBdYWrxb5/rGnXpV1Ye3xtt9fbte04\nffm0XXbS4psxhZCIZXExYx4H4BLLsoUsy7YC+BYAf/UbBWbZdcuw5e4tkIqlCPcIh7/Mv9djLdVZ\nqrO65jr8WvCrQXtBhVJcBOi6F1snbV8aZ788Qt1CBbEqW92mxiXlJf0KZGPoFvPZwwKwr7O/xorD\nK7q9TiuzLcOcWgeEe1wk5hCUTlcBAAAgAElEQVQAnX+jlf/5GkHHL8tbhvzVS3fLxS147KfHejzW\nUp2lOtt0fhNu3nCzQb+8F8QvwI57dnS7ncgHS5eqDHUPRUNrA+pb6jkZz1Q58hywYE1KzMbsZRb6\n7KisrqzLwi+dYX7DwIChxMwxKgUrLFwk5p7qIHabjjEMk8owzAmGYU7U1PTdLcdeXKi5gE9OfNJl\ne0e+Mh9rT6xFRX1Ft+OtMWMeHzoeAPB7+e/9HhviHoJZMbMsFosxzNmLbQhdEuD7drYu4ZiSmH2c\nfeDh6IF8Rd+3sm1hdlRaV9pjURsXqQuivKIoMXPM0j9fxDhcJOZyAJ1/gkIBVF57EMuy61iWTWJZ\nNsnPz4+DywrftpxtWPLTEmi0Gv1rM4d0LOr55VL3bkC62ZolZ8xxfnGQSWU4VnGs32M3nNuA01Wn\nLRaLMUwtVWmoWwbfgouPX+R9u9H0qOnYNG+TSXEwDIMh3kNwqbbvGbPQZ0csy6K8vrzXf9vbh96O\naG/htOm0B5b++SLG4SIxHwcQzTDMIIZhHAAsAPAjB+PavMzyTAz1Hdol0cb7xyPELQQ/X/q52/HP\nXPcMWl5tgUxquRZ3YpEYY0PG9jtjbte2Y/GPi/Ft9rcWi8UYppaqNJSXsxeG+g41uUMVV4LcgjA/\nbj4kItN2Mj4x7gksTFjY5zFCnx3JVXK0tLf0Wgb23Zvf5ezfnXRIT06Ho7hry1Quf76IccxOzCzL\nagA8AWAXgIsANrEse97ccW0dy7LILMvExNCJXV5nGAYzh8zEr4W/9lhIpLdmDVyaEDIBZ6+chbpN\n3esxFQ0d7R75bl6hk5KQgnVz1iHCIwIMGINLVRrjoz8+wq8Fv3I2nin+e+a/yJHnmHz+olGL+m3o\nIfTZkZ/MD/Uv1eOB0Q/0egzLsrRlikMpCSm4fejt+q8t8fNFDMfJPmaWZXeyLBvDsuxglmXpIxY6\nikQo1UpMDJvY7b3ZMbMR5xeHy41dqxit+X0NVhzqvhKVa6ljUnH84eN9zg6FtCJbJyUhBcVPF0P7\nuhbFTxdz/kvj/w7+HzadN7/Ep6nqW+qxaNsibM3ZavIYbe1tyJXnorG1sddjLH33gQtujm69Ftsp\nrC2E9ypvagHJMd33hJ+Ln0V+vojhqImFhWRVZwFAj4n5tqG3IXNxZrdVp1tztuKXgu7Pnrk2yGsQ\nRgWO6nU/NSDMxGxpoe6hKG/gb/HX+eqOG02mLPzS+aPiDwz9eCgOlx7u9ZiUhBTMGDID3k4dXcx8\nXXwFNTvadWkXXvj1BbRoWnp8P9Q9FI2tjbQAjGO6OzVylZzuRvCMErOFzBs+D8oXlIj1je31mGsX\n4CjU3Ld87M323O344vQXvb5fWFsIMSMWRLtHawnzCON1VbY5K7J1DNkylSvPxeaLm/W3vFckrxBM\nUgaAPYV78OGxD3u9o+MgdkCsTywlZo5NCZ+CKK8osGChVCv5DmdAo8RsQV7OXhAxPf8Vf5P1DbxW\nenXZNqVQKSy6VaqzjKwMvHngzV7ff2nySzj76FlBtHu0Fr6LjGRXZ0MmlZn1rNdf5g9XB9c+E/Nn\npz6DRCTBS5NfQsurLXgo8SGTr2cJZfUde5j7WmsR7x9PiZljK29aid/u/w1779sLN0c3vsMZ0Cgx\nW4BSrcSsr2fhSOmRXo+J949Ha3urftsUy3Z8SrVWYh4fMh6ldaWoaqjq8X1XB1fE+RtfFtKWhbqH\noq6lrs/ns5Z0vuY84vzjev0wZwj9lqleEnOzphlfnvkStw+9HYGugbyvQu9Jb3uYO4v3j0fR1SLe\n/q3sTYumBRqtBuEe4Zg2aBqcJE58hzSgUWK2gN/Lf8fO/J1o0/bevvHabVMt7S1wc3SDn8w6e7x1\nfX5728/85v43cajkkFViEYrHxj6GhpcbLNLhyxDf3/U9vp77tdnj9JWYt1zcAoVagUfGPAIA+Ofh\nf+KdI++YfU0uldWX9XvXYHrUdLw8+WW0trdaKSr79tXZryB7W4Y8RR42nd/Ub5EaYlnU9tECMssy\nIWbEGBs8ttdjdNumNl3YhLb2NjhJnFDzvPUqoo0OGg2pSIpj5ce6bJMAOlYHv3HgDThLnTElYorV\nYuIb37fvPJ084enkafY4S8ctRV1LXY/vNWuaMSlsEqYNmgag43muqk2F5yc9b/Z1uaBltVC3qfud\nMU8InaD/cEnMl6vIhYgRwd3RHXd/fzf+NfNfiPahIi58oRmzBWSWZWJU4CjIHPouFDIzeibqW+r1\nrSGtyUnihFGBo3qsElVUK6x2j9bS0NKAF359AQeKD1j92llXsvCPff/AlcYrZo81JWIKZsfM7vG9\nB0Y/gMMPHtbfLg9wDcCVJvOvyRURI4L8BTneuOGNfo9taGkQROMRe5Ajz0GMTwz8XPzAgEF1UzXf\nIQ1olJg5ptFqcKziWI/bpK41PWo6ViSvwCDPQThVdQp3broTeYo8K0TZYe99e/Hd/O+6va5rqTfQ\nErNULMU7me/gUKn1b+EfKDmA/zv0f2hnzd+mom5TY0/hnm5J62LNxW7bYAJlgd320wtBX1v5dKZ9\nNQ2Lf1xshWjsX448B0N9h0IsEsPXxZcSM88oMXNMrpIjKTgJN0Te0O+x7o7ueGnySwjzCMMl5SVs\nvrjZqs/Mert1OxD3MAMddxH8XPx42TKVXZ0NLycvBLkGmT2WUq3ETf+7CTvyduhfa9Y0Y/L6yVjy\n05Iuxwa4BkDVphLMIqp9Rftw7w/3GpQYaGU2N1o0LSi6WoRYn46tnX4yP9SoBkajIaGixMyxQNdA\nHFh0AHOHzTXo+MbWRvxw4Qf95n5rrcrWXXvB9wu6Vbsqry+Hl5MXJ887bU2oeyjK6q1/ezS7Ohvx\n/vGclGMNcguCs8S5ywKwzRc3Q6lW4q64u7ocG+wWjABZAGrVtWZflwsnK0/im+xvDFoVHO8Xj6rG\nKn1XNmKaNm0blt+4HDOGzADQseWOZsz8osVfHGvXtht0G06nqLYI876bh0GegwDAagVGAEAmlWFP\n4R7IpLIuv7Dfv+V9vHXjW1aLQ0jCPMJQfLXYqtdkWRbZ1dm4N+FeTsYTMSIM9h7cZf3Apyc/RZRX\nlH7Rl87CEQuxcETfTS+sqbSuFB6OHnB3dO/3WF0hlvM15zE1YqqlQ7Nbrg6ueGXKK/qv185a262h\nBbEumjFzbOjHQ/HK3lf6P/BPum1TRVeLIJPK4Cix3g8EwzAYHzq+25YphmEM+sVoj0LdQq1+W1eu\nkqOdbTer4te1Om+ZypHn4GDJQaQmppq1R9oadMVFDKH7+6Lb2eYpqyvrss5gqO9QDPIaxGNERNg/\npTamvL4cl5SXECALMPgchmH0vWWb2poQuSbSqg3rJ4RMwIWaC/pe0O3advx9y9+xu2C31WIQkg9n\nfoiCpQVWvaaumxKXFbiivaNRoCyAltXim6xvIBFJsGjUom7HNbQ04PZvb8eWi1s4u7Y5yurLDC4D\nG+wWjH/f+m8kD0q2cFT2LW1fGsZ+9tfWzqwrWXj/6Ps9dr8j1kGJmUNHyzq2PRmyIlsnIyujy3ap\nkroSpG5PtVpyHh86HixYHK84DqDjw8WGcxtQcrXEKtcXGmMeQ3CJYRhOq3A9MuYRHHmwo/Lca9e/\nhj8e+gMBrt0/MDpLnfFj7o84e+UsZ9c2h5uDG4b5DjPoWIZhsGTskj7r0ZP+6VZk6xwpO4Jlu5dB\nrpLzGNXARomZQ5llmXCWOGNU4CiDz0nbm4aW9q5ddFRtKqTtTeM6vB6NCxmH0YGj9avBB+qKbJ0C\nZQHu+eEenKw8abVrph9Mx/O7uS3wMdh7MMYEj4GIEUEsEmN00Ogej5OIJPBx8eFk/zQX9i/aj/du\nec/g46saqrA1ZytYlrVgVPaLZVnkKnIx1OevxOwv8wcAWgDGI0rMHMosz8S4kHFGNX4orSs16nWu\neTp54tQjpzAzeiYASsxaVotvs7/F+ZrzVrvmttxtOHPlDKdj/vfsf+G7yhfMmwy8V3r3eQcm0DVQ\nUEVGjLH54mbcsfEOVDX2XPOd9O1y42XUt9R3uevg59JRFpi2TPGHEjOH7o2/Fw8nPmzUOb3VBDan\nw5Ap2rXtYFn2r3aPBi7AsTeh7qEAYLW9zFpWi/M15xHvx93Cr4ysDDz202NQqDu2EdU21/b5eCRA\nFiCIIiNHy45iyvopuFBzweBzdAk5dHWo1ddn2APdNs3Ot7Jpxsw/SswcemrCU0gZYVxf2/TkdLhI\nXbq85iJ1QXpyOpeh9enH3B/htdILRVeL0NreiuF+wyERDcyddM5SZ/g4+1gtMRdfLYaqTcXpiuy0\nvWnden339Xgkzi9O/8uYT7mKXBwuPWzwVp2MrAysProaAMCCtfr6DHswzG8YvrztSyQGJepfo8TM\nv4H529cC8hX5cHd073GBTV90DerT9qahtK4U4R7hSE9Ot2rj+nCPcDS0NuBY+TG8c/M7eAfC6jZk\nbaHuoVZLzLqtPlwmZmMfj3ww8wPOrm0OXQlR3V2L/qTtTYNao+7ymu4DiDV/fmxZoGsg7h91f5fX\nPJ08Ubi0EIGugTxFRWjGzJFndz+L67+83qRzUxJSUPx0MbSva1H8dLHVf6nE+8fDReqC38t/t+p1\nhSgjKwP5ynxsz9tulVujbe1tiPWJxXC/4ZyNKZTHI8Yqqy+Dv8zf4L38fK/PsAf7ivZ1e3TAMAwG\neQ2Cs9SZp6gIJWYzZWRlIGJNBLbnbUd5fblN3kaTiCRICk7C7sLdmLp+Knbm7+Q7JF5kZGUgdXuq\n/jawNW6N3jn8TuQ8kcNpy0ljH4/sKdyDpHVJvG+R090xMpStfgARkge3PYj0Q92/L/575r/44vQX\nPEREABtPzBlZGYhcEwnRmyJeFn7ofpHrPqE3tTXZ7DOuCSETkCPPwaHSQ1C3qfs/wQ4Z+2xWqFIS\nUrBuzjpEeESAAYMIjwism7Ou1zsxbe1tOFl1EhUNFVaOtKtBnoMwOWyywccLYX2GLVO1qVBSV6Jv\nXtHZhqwN+OzUZzxERQAbfsbc2+wGgNVuBff1i9zWnnE5SZwgFUnRpm3Dkz8/ieb2Zpv7M5jL2rdG\n29rbEPtRLNKmpGFxIrftC1MSUgz+99M9S+R7L/Pa2WuNOl7353tu93O43HgZER4RVl+fYcvyFfkA\nuq7I1vGX+ev7shPrs9kZsxBmN/byjCsjKwPvHn0XbdqOEnxVjVU2O/M3h7VvjeYr81F0tciq9dF7\noluwaIt7mVMSUpCamAoGDAqfKqSkbISetkrp+Ln40apsHtlsYhZCUrSXZ1xC+JAjBD3dGnWWOBt9\na9TQRyznqzuKmHC5ItsUuoISfO5lPl99HpFrIrG3cK/R53o4eYAFi4aWBgtEZr9yFblg8Fet/s78\nZf5oaG1As6aZh8iIzSZmISTFRaMW2cUzLiF8yBGCa5/NAsDMITONmoXpHrGU1JX0u7c2uzobIkbU\n44zFmqRiKW4efLNRzVe4VlJXgpK6km4/T4bQ9Q2/2nyV67Ds2pKkJTiw6ECPq6/11b+aqPoXH2w2\nMfO98GN3wW68eeBNLIhbYPAiG6ESwoccoei8dW161HScunwKWlZr8PnG3H3IrslGtHc0nCROZsdt\nrl0Ld2HJ2CW8XV+3h9mUinOUmE3jJ/PDlIgpPb5338j70JzWPGArAPLNZhd/6ZLfK3tf0TdX/3jW\nx1ZJigqVAou2LsJwv+H46NaPbH6/X3pyepeFdIBtzvy59uKkF1F8tRjt2naIxIZ9hjXm7kNSUBJG\n+I8wK0Z7UVZfBjEjRpBrkNHnejh6AKDEbAwtq8W7me9ixpAZGBHQ/XuQ73UPA53NJmbgr5WnUR9E\nYXzoeKskZZZl8ehPj0KukmNnyk6bT8qAMKqPCdH0qOlGnxPuEY6Suu77gXuqovTylJdNissSXt7z\nMvaX7MfRxUf7P9gCSutKEeIeYlLbzQmhE5DzeM6AvMNjqor6Cry450W4O7r3mJivNl/Fa7+9hnnD\n52FqxFQeIhzYbDox67w0+SX9MxFL+9+5/+H7C9/jn8n/NKq9o9AZs71mIKlV12LDuQ24b+R98HDy\n6Pf4nu4+OEmc8M7NHWVO/3PqP9BoNXj70Nsory8XzIegZk0zsq5k8Xb9UYGjTK7XLXOQUU9mI/W1\nIhsARIwI//rjXwj3CKfEzAO7SMypY1Ktdq1A10DcFXcXnpv4nNWuSfiTr8zH0l+WwknihIfH9N85\nrKm1CatvXo0Vh1d0u/tQVFuE1O2pYPFX72A+9t/3JNA1EE1tTWhqbYLMQWb16y+7bpnJ57a2t+Kj\nPz7CxLCJmBA6gcOo7FeuIhdA74nZzcENjmJH2jLFE5td/NVZi6YFWVeyui264cK1W19qVDXYOG+j\nSbfciO0ZGzwWw/2G44sz/ZcnPFB8AI/seAQt7S091j4f5DWox1vaQtiaxudeZpZljVpgdy0RI8Kz\nu5/F7oLdHEZl33LkOfBw9Oh1JT7DMPCX+VNi5oldJOa9RXsx4pMROF11mtNxjdn6QuwTwzB4YNQD\n+L38d1ysudjnsW8dfAsBsoA+e3L3tleY761pul/QfOxlrm6qhuP/OWL96fUmnS8RSeDq4EqLv4yQ\np8hDrG8sGIbp9Rg/mR9qVLRdig92kZhjfGIAdNx25BIV3iAA8PcRf4eYEePLM1/2eszh0sPYV7QP\nL0x6oc8FgULdmjbYezDuHHYnZFLr38Yuqy+DRquBt7O3yWN4OnlSYjbCT/f+hB8X/NjnMYGugWht\nb7VSRKQzu3jGHOkZCYlIgjxFHqfjUuENAnTc5p0dMxvFdcW9HrP84HL4y/zxaNKjfY4l1K1pMT4x\n+P6u73m5tu7nyZw9s55OnqhrqeMqJLsnFUv77R2/454dfc6oieXYxYxZIpJgkOcgzmfMQp3dEOvb\nNH8TNs7b2ON7zZpmOEuc8fzE5/utXGVs5ydrY1m2/4M4pisuYs7PlYejB82YDZQrz8UTO59AYW1h\nn8dRUuaPXSRmAIj2idZ3S+EK39XFiHA4iB0AAI2tjd3ec5I4YeuCrXj2umcNGqtzdbHOi8P4NvSj\noXjy5yetft2y+jI4SZzg4+xj8hhb7t6CrXdv5TAq+3Wi8gQ+Pv5xv3Wwdxfsxp2b7uzxe55Ylt0k\n5hcmvoB3bnqH0zF1sxt3R3dBzm6IdX155ksEvBvQpX5wniJP/4HQ1mcYYpEYVY1VVr/uxLCJWDZh\nmVl/f34yP7g5unEYlf3KVeRCxIgw2Gtwn8dVNlRi88XNtDKbB3bxjBkAro+83iLjUuENojM2eCxU\nbSpsOLcBz1z3DICOXsC/l/+OsmfKbL6MYYAsgJeezHOHzcXcYXPNGmPXpV04UnYEb934FkdR2a8c\neQ6ivKL6/X7VFXypaapBlFeUNUIjf7KbGXNTaxN25u/UP6/iSmt7q0X2RxPbE+cfh3Eh47D+zHqw\nLItTVaewPW87lo5favNJGehY5MbHdqkrjVfM2scMAIdKD+HtQ2/z8ozc1uTIcwzqaKarpkgzZuuz\nm8Rc3VSNWV/Pwq6CXZyOu794P2Rvy3Ck9Ain4xLb9MCoB5BVnYVTVaew/OByeDh64Mlx1n8uawkB\nsgCrFhjJyMpAxJoIBL4XCO+V3mbVB/B08kQ7246mtiYOI7Q/LMuiWdOMoT79J2bdjJkSs/XZza3s\ncI9wOIgdOF8AVtlQCaDnJgRk4FkQvwBP7nwSk76YhJb2Fng4emBH/g67eNxxY+SNYFkW7dp2i1e2\n0xXv0d2NqmupM6s0aefWj64OrtwFamcYhkHek3kG3aHwl/mb1O2LmM9uErNYJEaUVxTnW6Z0iTnI\njb5BCfBT/k8QiURoaW8BYH5CEZLbht6G24beZpVr9VW8x9zEHOoeykmM9kzE9H+z1FnqjMpnK60Q\nDbmW3dzKBoBo72jOE3NVQxU8nTz73Z9KBoa0vWndqiHZUzW4Fk2LVao9cV28R9eTua6Zioz05X9n\n/4fbv729361ShF9mJWaGYeYzDHOeYRgtwzBJXAVlqmjvaFxSXjJ7IUlnlY2VdDuH6NlzNbgzl8/A\nKd0JO/N3WvxaXBfvuXHQjWh5tQWTwieZE5bdO1J2BIdLD8NJ4mTQ8c/vfh5P/fyUhaMi1zJ3xpwN\nYC6AgxzEYrbHxz2O3xf/zumY84fPx1Pj6RuTdLDnanC6VbiW3jLV2t7KefEeiUiiLwJDepcjzzGq\nd3WuIhcHSwXx631AMSsxsyx7kWXZXK6CMVeUVxRGBo406PmJoRbEL8AjSY9wNh6xbfZcDU63CteS\nK7PPXj6LoR8NRZh7GKelSVVtKjyx8wn8WvArxxHbj4ysDBwqPYTMskxErok0aBW8n4tfl4I6xDrs\nZvEX0PFJ/MszX2JEwAhOGqazLItLyksIdQ/ts2MQGTh0iSNtbxpK60oR7hGO9OR0m1/4BXQ0NvB2\n9rbYXuYDxQfwt2//BndHd/i6+GJqxFTO/t4kIgk+Pv4xAl0DcdPgmzgZ055kZGXg4R8f1j/m07Ww\nBfpetKjrycyyrM1XtrMl/U4tGYbZwzBMdg//GbV8k2GYVIZhTjAMc6KmxjKfwCQiCZ765Sl8f4Gb\nLjlKtRIxH8Vg3cl1nIxH7INQa11zgcu9zBlZGYhcEwnRmyL4v+OP5K+SEeIWgswHMzHcbzgn19Bx\nEDvARepCi796kbY3DWqNustrhixa9Jf5o03bRp27rKzfGTPLstO5uBDLsusArAOApKQki5Tn0dV/\n5Wpltm6rVLBbMCfjESJ0T457Ur/1yBzX7lOuUdVAxIjw1PinzGrv2Bfqydw7UxctRnlF6UvRcvF9\nQQxjV9ulAG67TNEeZjLQLBm7BPck3GP2OD3tU9ayWqw4vMLssXvj6eSJqy2UmHti6qLF24behj8e\n/oMmJ1Zm7napOxiGKQdwHYCfGIbhth6mCWK8Y1BQW4B2bbvZY+k67dA3JRko1G3qfvv0GoKPbWW+\nLr6c/Nzbo/TkdIiZrtXc7GXRoj0yd1X2FpZlQ1mWdWRZNoBl2Vu4CsxU0T7RaG1vRVm9+c0s9DNm\n2sdMBogPjn2AwR8ONrtxCx/byg4sOoDNd2+22Pi2LCUhBQGuAXCWOBu1Cl6hUiDx00R8nfW1lSK1\nvM5rHwxdnW5tdrUqGwDujrsbc4fNhbezt9ljzRgyA55OnrQimwwYAbIAAB17mQd5DTJ5nPTkdNy/\n5X60s3/NYGmGxh+NVoOaphosu24Z/jn9nwaf5+rgitOXT3NyF0UIrl37YOjqdGuzu2fMbo5unCRl\nAEgMSsRjYx/jZCxCbEGA65+J2cyV2ZPDJqOdbYeHowcn+5QNseHcBizaushi49uy4qvFaNO2IdbH\n8OIiAOAocYSHo4fddJjqq0a7kNjdjBkAVhxagRD3ENw38j6zxjlReQJ+Ln6I8IzgKDJChK3zjNkc\n/zn1HzBgcPbRs1b7+blQcwEZWRlYf9t62nN7jRx5DgAY1If5Wrq9zPbAVkrq2t2MGQA2nt+Ijec3\nmj3OvE3z8I/f/sFBRITYBi5mzBqtBp+f/hy3Rt9q1Q+1nk6e0Gg13fbrEsDLyQvzh88f8InZVkrq\n2uWMOdonGmcvnzVrDJZlUdVYRQu/yIASIAvA6ptXY2LYRJPHkIgk2P333VZfId259SN1g+tqUvgk\nkxt8XB9xPZramjiOiB/pyeldnjEDwlz7YJ+J2TsaW3O2QqPVQCIy7Y+oVCvR2t5KW6XIgCIVS/HM\ndc+YPU68fzwH0Rinc2Kmn9uumlqbIHOQmXSu0JKWOXRrHJ76+Sko1AoEuwZj1c2rBLXwC7DTW9nR\n3tHQaDUovlps8hhU9YsMVEW1RbhYc9GkcwuUBbj3h3t5WcXr6+KLELcQtGharH5toRv0wSA884v5\nH7jswaiAUXhs7GP4JeUXFD5VKLikDNhrYvaJhkwqQ1VDlcljUGImA9WDPz6I1B2pJp277uQ6bDq/\nyeB+v1yaNmgaypeVY3TQaKtfW8iUaiVqVDUIdQ816fwN5zYg4N0Au+kydaj0EJYfXI6EgAQ4Shz5\nDqdHdpmYJ4ZNRMPLDZgSMcXkMUYHjcYPd/2AOP84DiMjRPgCZAEmdZhqbW/F+jPrMSd2Dn2gFZBc\neUdnXmP6MHcmEUlQ3VSNGpV9JGbdQrbs6mx8/MfHPEfTM7tMzCJGZPZ2CX+ZP+YOm0uF28mAEyAL\nMGm71JaLW1CjqsGjYx61QFT9q2+px6yvZ2HzRar+1Zk5W6WAv/p028vK7Oqmang5eWFn/k68sOcF\naLQavkPqxi4TMwAsP7Acz+1+zuTz/6j4AwdLDnIYESG2IdA1EA2tDVC3Gbft6JOTn2CQ5yDe+iE7\niB2wM3+nPhGRDrmKXDiIHRDpGWnS+faYmP1l/kgKToKqTSXI7xe7Tczna85jS84Wk89feWQllvy0\nhMOICLENpuxl1rJajA8Zj+cmPgcRw8+vFSeJExzFjtST+RrTBk3DG9e/YfIOFT8XPwCwm2fMnRMz\n0FFISmjscrsU0LEy+7sL36G1vRUOYgejz69sqKQ9zGRAmjZoGjbN2wQfZx+DzxExIqNqMFsK9WTu\n7ubBN+PmwTebfL6Piw/uirvL5Bm30Px4z49QtangL/OHq4MrTlSewKJRi/gOqwu7nTFH+0RDy2pR\nVFtk0vlVDVW0gIUMSJGekZgfNx9ujm4GHa9uU+Pn/J8F0XKRejJ3pdFqkHUlC82aZpPHkIgk2Dhv\nI2bFzOIwMv64O7oj0DUQIkaEMUFjkKvI5Tukbuw3MXtHAwDylflGn0tVv8hA1tbehr2Fe3FJecmg\n47+/8D1u/fpWHC49bOHI+pcQkAB/F3++wxCMAmUBRnwyAhuzzS9RrGW1HETEL41Wgxd/fRFHSo8A\nALYt2IbdC3fzHFV3dpuYY3xiEOsTa9KKO6r6RQYyLavF9P9NxzdZ3/R5nK6v7X1b74NEJEF5fbmV\nIuzdd/O/w79u/RffYUiRVjcAACAASURBVAiGbjZo6opsndlfz8a0/07jIiReKVQKrMpchTOXzwAA\nPJw8BNnwxG6fMfu4+CDnCdNW27k5uuHYQ8cQ4hbCcVSECJ+jxBFeTl597mW+tq+tRqvpKErCCKuv\n7UCnW3Fs6h5mHRepCwpqC7gIiVe6leW6leaNrY14fOfjuD32dtwx7A4+Q+vCbmfM5nAQO2BcyDiE\nuFNiJgNTgGtAn6uyhdrXdvXR1Zj+1XReYxCSXHkuAmQBZtdjsJcOU9cmZplUhm0527CrYBefYXVj\n14l5xaEVmPSF8R1Vzl05hy/PfGn0Pk5C7EWga2CfiVmofW2vNF7BodJDvMYgJDmKHLNny0DHliml\nWinIYhzGuDYxMwyDpOAkwW2ZsuvE3NreiqNlR41ekfhT3k94YNsDFoqKEOHrr/qXUPvaejp5orW9\n1axVyPZk+Y3L8eqUV80eR5fI5Cq52WPxSaFWAPjrzwMAScFJOHflnKCan9h1Yo72iQYL1uhON5UN\nlfB08oSz1NlCkREibGlT0pAxN6PX99+44Q04S7r+fAihr23n1o+kY086F5XYxgSPwTMTnoGYEXMQ\nFX+eGPcEml5pgrezt/61pOAktGnbkFWdxWNkXdnt4i+g05YpRT6G+w03+LzKxkpakU0GtISAhD7f\nV6qVkIql8HHxQUV9BcI9wpGenM77wq/OiTnQNZDXWPhWUV+Bc1fOYWrEVJN7MeuMCxmHcSHjOIqM\nXy5Sly5fJwUnYbjfcEFVjLPrxDzEewgA4/cyU9UvMtCV15djX9E+zImZAy9nry7vtWha8G7mu0gM\nSsRv9//GU4Q9C/MIw9SIqWAgvC0w1vbLpV/w0PaHULC0AFEOUWaPp1vsd21isyXvH30f7Ww7npv4\nVx+FSM9InH/sPI9RdWfXt7K9nL1wx9A7jJ79UtUvMtCduXwG92+9H3mKvG7vfXnmS1Q1ViFtCr8r\nsHsyOXwyDiw6wMmCJ1uXI8+Bo9gRER4RZo+lVCshe1uGz05+xkFk/Pnuwnf45dIvPb7HsqyVo+md\nXSdmANh892bcm3CvUedkLs7EiuQVFoqIEOHT3Qa+dmW2RqvByiMrMTZ4LJIHJfMRGjFQriIX0T7R\nEIvMfy7s6eQJMSO2+JYpXdEa0ZsiRK6JREZW7+scTKFrYHGt9afXI3h1sGB24th9Ys7IykDEmgij\n/qGD3YJpDzMZ0AJkHR2mri0y8nP+zyi6WoS0KWmCrJgkV8kx7ONh2HBuA9+hGMUSCSlHnoNYH27u\nHIgYEfxkfqhRWa7DlK5oTUldCViwKKkrQer2VE6Tc2+J2dPJE5cbL+PslbOcXcscdp2YM7Iy8MDW\nB1BaV2rwP3R5fTmWH1hucvMLQuyB7pfXtVumZsfMxoFFBzAndg4fYfXLReqCHHkOKuor+A7FYJZI\nSK3trSisLTS7FGdnfi5+Fp0xW7poTbOmGQ2tDT0mZl0LyJOVJzm5lrnsOjGn7U1Dm7aty2v9/UOf\nrz6P1/a/hooG2/nBJoRrjhJHeDp5drmVzbIsGIbB1IipvPVc7o+zxBlSkdSmtktZIiGJGTFOPXIK\nDyc+bG54epau/mXpojW16lp4OXn1mJhD3UPhL/PHiSphFBqx61XZpvxDVzVWAQAt/iID3sFFBxHg\n2nFLm2VZ3PjfGzErehaen/Q8z5H1jmEYeDp5oq5FOFtf+mOJhCQWiTEiYITJ5/fkwdEPWrRwS7hH\nOErqSnp8nQtBbkFQvqjscZGX0CqACfNjL0dMqU5U2VAJALRdigx4CQEJ+tnFnsI9OFBywOyay9bg\n6eRpUzNmS1RR+63oN/zn1H84XWl8b8K9eHD0g5yNd6305HQ4iB26vGaJojW9rY24a/hdmB09WxCr\ns+06Macnp3fbc9ffP3RVQxVV/SIEHb/c1x5fCwB4+/DbCHELwX0j7+M5qv7NGDIDCf59F0gRElN+\nT/Xnq3Nf4bXfXuN0gZ6qTYV8RT7ate2cjdlZSkIK3rj+Dbg7uoMBAzEjxuvXv85Z0Zpdl3bhru/u\n6rWs6P2j7seK6SsEsajRrhNzSkIK1s1ZB18XXwAdn0DXzVnX5z90VWMVzZYJAbAlZwte3vsyMssy\nsb94P56b+BwcJY58h9WvD2d+iJenvMx3GAZLSUhBiFuI/rl9iFtIv7+n+pMrz+V04RcAZJzLQMxH\nMfq7ipbw8pSXUfdSHSqfrQQLltNqXOeunMN3F76Do7j37+FmTbMgumjZdWIGOr7pa56vAfs6i5Kn\nS/r9Zt84byOOPHjEStERIlwBsgDUtdThtd9eg6+LL6cLichfappqkK/Mx/zh8wEA7978rllJmWVZ\nTrdK6fjJ/ADAolumTlWdQkNLAwJdA3FT1E3IyMqAltVyMnaNqgaOYke4Orj2eszQj4bi2d3PcnI9\nc9h9Yta53HgZF2su9nucWCTuVoKQkIGo6GrHlsF9RfvAgMHW3K08R2SYl/a8hGEfD+M7DIMdLj0M\nAHhs7GN4e9rbGB042qzxalQ1qG2u5XzGrFtvYKkZZVNrE5LWJWHN72sAAAtHLERJXQmOlHIzUdLt\nYe7rVvXIwJGCWAA2YBLzrRm34omfn+jzGJZlsWTHEuwp3GOlqAgRpoysDH2RDhYsalQ1nBd7sJR2\nbTtKrnZf3StUh0oPwVHsiPEh4/HylJfNLiear+joDWBrifmi/CJYsIj3jwcA3D70drhIXTj7nuut\nuEhnSUFJyJXnor6lnpNrmmrAJOZJYZNwrPxYn42+lWolPjn5Cc5XC6ugOSHWlrY3DS3tXfvTclns\nwZI8nTyh1qjR2t7KdygGOVR6CONDx8NR4oi65jr8lPeTWduSJoVPgvx5Oa6PvJ7DKDsKjAAdt94t\nIbs6GwD0idnVwRWrpq/CncPu5GR8d0f3fj/0JAUngQWL01WnObmmqQZOYg6fhKa2Jpy7cq7XY3SL\nGmgPMxnoLF3swZJ0W7qE1MavNyzLYsbgGbhvRMdq9wMlBzD7m9lmV6DycfGBk8SJixD13B3d8eGM\nD5EcZZka6dnV2XCSOCHK669OWI+Pe5yTftIA8O28b/vsMQ509J0GwPvt7IGTmMMmAUCfzyt0xUWC\n3GhVNhnYLLG31lo692QWOoZhsHzacixOXAwAmBA6AQBwtPyoyWOuPLwSn5z4hJP4Ovs6+2u8d/Q9\nJH6aaJEGE9nV2RjuN7xb041ceS6+zvqa02v1xl/mj3/f+m/MGDLDKtfrzYBJzGEeYQh1D8WRst4T\nM82YCelgib211hLrG4v7R95vE1u7SutKu3Q08pf5I8oryqzE/Nmpz7CvaB8X4elZo8HEWze+hVXT\nV3V7fe2JtXhg2wNmfdBqaGnApC8mYcvFLf0eu2TsEsT5x5l8LS4MmMQMABvu2IC3k9/u9f36lnpI\nRVLax0wGPF0NgAiPCDBgEOERYfbeWmtJCk7Cl7d/ydns3pKtCO/bch+mfTWty2vXhV6Ho2VHTapA\n1aJpQdHVIs4Xflm6wQQAjAsZ1+Nt8oUjFqK1vRU/XPjB5LGrm6qRWZZp0KKuWnUttuVsQ0NLg8nX\nM9eASszXR17f5fnFtZaOX4rmV5up6hch6EjOxU8XQ/u6FsVPF9tEUtZhWZaT/a+WnCm2aFrwe/nv\nuC70ui6vXxd6Haoaq0x6nn9JeQlaVsv5HmZLrzkovlqMHy780GMyHBM0BrE+sdiQZXorT91K8v5W\nZQPAyiMrcfvG2+HxTw+L3LI3xIBKzM2aZqw7uQ5Hy3q/TSTUrjmEEMNUNlTCKd0Jn5/63OyxLDlT\nPFF5Ai3tLZgSPqXL6/Pj5iNrSRZC3UONHjNXkQuA+61Sll5z8MulXzDvu3k93q5mGAYLRyzE/uL9\nJn8QMDQxZ2Rl4MNjHwKAxW7ZG2JAZSGJSIJlu5b1+pf87K5nsfroaitHRQjhkrujO1rbWzlZ/GXJ\nmeKh0kMAgMnhk7u87i/zR7x/fLdFUIZQqpWQSWWI8YkxO77OLL3mILs6G+6O7r1+GLk34V44SZxM\nXq1uaGJO25sGtUbd5TU+tgmalZgZhnmHYZgchmHOMQyzhWEYQbeekYgkGB86HpllmT2+/8PFH3Dm\n8hkrR0UI4ZJMKoOYEXOSmC05UzxYchDDfIfpS112trtgN1YcWmH0mA8lPoSGlxvg5uhmdnyd6dYc\n6BbGejt7c7rmIKs6C/H+8b1W5YryioL8eTnuGHaHSeO7OrhidODoHv+uOxPKNkFzZ8y/AohnWXYE\ngDwAgq8cPylsEs5eOdvtWQbLstTAghA7oOvJzEViTk9Oh0TUtW09VzPFt258C+/f8n6P7+0r2ofX\n979uUqERS3VHSklIQenTpfhu/nfIWpLFWVJmWRbZ1dmI94vv8ziZgwwATOpudU/CPTj1yKl+93YL\nZZugWYmZZdnd7P+3d+dRUV7nH8C/zyCLgAwKIyoIiBphcMGUn1FJXIIx0YaYNKbRmE09JW2TJj1N\nNUnJL6Y2pLG/JjU1SY2pS+MZszU2oCe2gkkbNO5LBBH3gAo4KIrjIDAy9/fHzFCQ2eed7eX5nMOR\nuXPnfW/uZObhve9z7xXCspTWLgCu3xTxsZzBOTAKI3af392lvPF6I9ra23iqFGMyEBsRi6ZWzxcY\n+VH6j0CCumx8sHjiYkmCUvagbNw97G6rz01ImgCD0eDS0K0QAtPXT+9YStUbQhQhmK2eLen3ZP21\nejReb3Q4Rand2I7b19yOF0tflOzcNwuUaYJS3mNeAGCLhMfzivFJ46EgBSobKruUW+Yw8+IijAW/\nBWMX4K40z1eMKj1dCoMwYOOPN0L3kg59I/qi8mKl4xc6sL1mO76o+sLmlChXFxrRlGuQ/KdklJwu\nwbNbnvVqstIR7RFoDkt3/IToBJz8xUnMHTnXbr0QRQjiIuOwoWKDy1fNj258FAuLFjqsFyjTBHs5\nqkBEpQAGWHmqQAhRZK5TAOAGAJvvFhHlA8gHgORk/60epIxQ4tLiSx2rA1k0G5qRGpuKwTGD/dQy\nxphUfnPHbyQ5TtGxIsSEx2By6mSEhYThs4c+w+iE0R4f9+3db2PP+T24P/1+q88nRCdgSOwQpwKz\nZUqXJXv8cstl5G/KBwCvBJRPjnyCwrJCzFbPlmQRFwUpMLTfUKfqpihTUHysGKG/C0WyMhmFuYVO\n/TcevnDY7lTZzuaNmuf3qYEOr5iFENOEECOt/FiC8hMA7gUwT9iZES+EWCWEyBZCZKtU9m/Ae9vN\nQRkAbku6DWeeO4MJgydYeQVjLJi0G9s93iGo3diOTcc3YcawGQgLCQMA5KblOkwgckQIgbLqsm7T\npG42YfCEjpE8e3yx+EdnGfEZMAojTjSekOR4H373IdYeXOuwnqZcg78e+CsA16cyObOzVCDxNCv7\nHgAvALhPCNHsqH6gqGyoRN5HebyLFGMy9ZNNP4H6XbVHx2i83ogxCWO67W50sO4gJq+b7FTQtOZk\n40lc0F9wGJjXzlqLnQsdXzH7OpPYMke66mKVJMd7d++7Ti0e4u5UJqMwoqG5oecEZgDvAOgDoISI\nDhGR9Cune0HvXr2x+fhmfFP9TUfZsu3L8OPPfuzHVjHGpCJFVrYqSoWtj23FQ5kPdSlXRiixvWY7\nlu9a7tZxLd87k1Im2a1nuUp3xNeZxJY50lIEZqMw4oj2iMOMbMD9P0AarzfCKIw9JzALIYYJIQYL\nIbLMPz+VqmHelBqbioHRA7tsaLGndk/HfqCMseAWGxELvUEPQ7vB7WNcar5ktTytbxoeUj+ElftW\nurW15L7afYiPjHdqda4nvngCr33zmt06vs4kjgqLQooyRZLAXH2lGnqDvmMPZnvc/QPkhvEG8m7J\nQ0Z8hltt9IcetfKXBRFh4uCJXQJzna6Op0oxJhMdezK7OWXq+KXjUP2fCp8e+dTq8y/kvABdm86t\n7RXf++F7OPTUIafmG5+5fAabj2+2W2d0/9FYPHGxTzOJt8zbgndmvuPxcSwXQ84EZnf/ABkQPQDF\nc4sl29fZF3pkYAZM85m/v/J9x32iWl0tB2bGZKIjMLtxRQsARVVFEBC4LfE2q8+PHTgWd6XdheW7\nl7u8CAgRITEm0am6E5Im4EDdAbvnWFSyCO/ufRdVz1T5bMORDFWG1SRaV9U01UBBCqe2Wew8lQkw\nrfAWLDueuarHBuZJKZMwcfBEXGq+1LHqFwdmxuTh1oG34tXJr7q9NGXRsSJkDchCSmyKzTpLJi/B\ny3e8DILzK21tObEFC4sW4vL1y07VH580HgajAQfqDlh9fufZnfjXqX9h0cRFDle1ktKJSyfwv1/9\nLy5cu+DRcZ4e9zR0L+kQEx7jVH3Ljme5Q3KhVqmdCsrv73sfiW8l2rw1EYh6bGD+waAfYMeCHRiV\nMArNhmaMSxwHtcqzLE7GWGAY2X8klkxZ4lbCT4O+Ad+e/RazRsyyWy8nOQdPj3vapbm8m49vxqeV\nnzr9B4Nl+uauc7usPr/k30ugilTh5//zc6fbIIXzuvN4rew1HL5w2ONj3Tw87YxMVSYqGyqd2rO6\nVleLOl0dlBFKd5rnFz02MFsY2g2ICotC2fwyPD7mcX83hzEmgXZjO2p1tW5tdr/5+GYICIeBGTB9\nf6zctxJbT2116thlNWWYOHhit/W3bRkQPQD3jbjP6rDxjpodKDldgsU5izvWkfYVSyKVJwlghnYD\nZn08C1tOuL5gpFqlht6gd2pKmFavRVxknNN9Hgh6dGBeuW8l+i7rC32b3t9NYYxJ6NzVc0h8K9Fm\n8pY904dOx/v3vo+sAVkO6ypIgVe+fgV5H+VB8VsFUpen2lzwovF6Iyq0FQ7nL9+saE4RFoxd0K28\npqkGI+JG4GfZP3PpeFLoH9UfsRGxOHrxqNvHONl4EsXHinGx+aLLr7WMbt68tLI1wTaHGejhgTlZ\nmQy9QY9fb/01Mt/LRJ2uzt9NYoxJwHKF6c5c5sSYROT/IN+prOmPj3yMppYmtLW3OVyNakfNDggI\nlwMzYJry09be1qVs7qi5qHy60udXy4ApgS09Pt2jK+YjDaYFnpzJyL7Z2IFjUTynGOMSxzmsq9Vr\noYr072qTrurRgdmyUPz6w+tR2VApSZYhY8z/+oT3AYFcni615/werDu0zulM64JtBWgzdg2Ytlaj\narnRArVK7VQw6azqYhWUbyhRVFXUUfbVma9gFEYoyH9f4RnxGTh79azbr6/QVkBBCqfmc98sOiwa\neSPyEBcZ57Bu7pBc5N2S504T/aZHB+Z+vft13KuIjYhF79De/m4SY0wCClJAGaF0+Yp51f5VeO6f\nzzkd8OytRlV9pRpCCGjKNUhdnoqH//4w9G16bKza6FKb0vqmwSiMHRtalFWXIffDXKw5uMal40jt\nnZnv4Pgzx91+fYW2AsP6DXP7e3d/7X58VP6Rw3pLpizB8xOfd+sc/tKjAzMAJEQmADANedm7P8QY\nCy6uLstpbdMKR2ytOpUUk4QxK8dg0JuDMP+L+ahuqnZ54wWLsJAwZA/K7gjMr/7nVSREJeCRUY84\nfQxviAyNdGq4397rbx98u9uvX3doHZ7a/JTdzGwhhMtbRAaCHh2YNeUafHvu247H7nxoGGOB6ZVJ\nr7i0+MTu87uh1Wudysa2sLUa1dKpS/Hm9DdxueUyDMauy4K6s/PT+MTxOFB3AKWnS/HVma/wQs4L\nbk0zklJTSxPmF83Hlye+dOv1Hz7wIVbPWu32+TP7Z0LXpsO5q+ds1qm7VofQ34X6fXTBVT06MBds\nK0Bre2uXMm9ul8YY8535Y+fj7mF3O12/+Fgxeil6YcbwGU6/pvNqVJ2Xw3wy60ksvHVht4QtC1d3\nfjIYDWhrb8Nd6++CghQBkQ8TFRYFzWFNl82AfMmSmW1JIrOmQd8AAREQ/eWKHh2Yfb1dGmPMd+p0\ndU5Np7E4fuk4pqROcflL3LIalbXlMKXY+UlTrsGq/as6HhuFEc9secbvI3u9FL0wPG64W5nZn1R8\ngqyVWR7NhMlUmZbxtPcea/VaAOCs7GDi6+3SGGO+89K2lzBD4/zV78aHN6J4TrGkbZBi5yd39yH2\nhfT4dLfmMh+sP4ijF48iPjLe7XPHRcahf1R/HNHavmK2BGaexxxEfL1dGmPMd5xN/tKUa5CyPAWK\n3yqQ8W6GpFeitoa6Xbn3Hcgje+lx6TjVeMrmkL0tFdoKpMenIzQk1KPzb5+/HStmrrD5fLAG5uBZ\no8wLLB+Ogm0FqGmqQbIyGYW5hbLcrYSxniY2IhZXW6+i3diOEEWI1Tqacg3yN+Wj2dAM4L8JoAAk\n+x6YN2qeR8dKViajuqnaarm/jUoYheFxw6HVa5EUk+T06yq0FchJzvH4/MPjhtt9PmtAFp4d9yzf\nYw429u4PMcaCl+XL+GrrVZt1CrYVdARli0AZJrYI5JG9OSPn4OjTR10Kyldbr6K6qRojVa6v+HWz\nqotVWLR1kc1drqYOmYq3Z7zt0bQuf+jxgZkxJk/OLMsZyMPEFlIMhwcSfZsec0fOxcTBEz0+Vv21\nevxx5x/x3YXvrD7feL0RrTdarT4XyHr0UDZjTL7uSL4D6x9Yb3fZxkAeJu7M0+Fwb3rsH4+hf2R/\nvHn3m07VH9hnIDY8uEGSc1sys49oj2D60Ondnp+pmYmY8Bhsfcy53b8CBV8xM8ZkaWi/oXh09KOI\nCY+xWafwzkIQug5zBsowcbCov1aPspoyp+s3G5qd2kfZGaooFeIj421OmdLqtUGX+AVwYGaMydR1\nw3Vsr9mO+mv1NuvMVs9G3i15UEWqZDFM7A8Z8RmouljlVLDVlGsQtywOiqX2t8h0RaYq0+YiI8Ea\nmHkomzEmS/XX6nHH2juwdtZaPJn1pNU64b3CUTS3yOpzzDnp8enQtelQq6tFYkyizXqWDPiWdtPO\nXVJlwKtVamw91X2oWt+mh96gD8rAzFfMjDFZcib56/CFw05v8ciss2zb6GgFMG9lwC+/ZzlOPnuy\nW3lDcwOA4JvDDHBgZozJlOXesq3AbGg34PY1t+NX//qVL5slO2qVGrlDch0uFuKtDHhbO4FFh0Vj\n2bRluC3xNo+O7w8cmBljshSiCEFMeIzNwLy3di90bTrkDsn1ccvkZUD0AJQ+XopJKZPs1rM119nT\nDPiWGy145PNHuu3NHB8Zj8U5i5HZP9Oj4/sDB2bGmGzZW5az5FQJCISpQ6b6uFXyZBRGu8//Pvf3\nCA8J71ImRQZ8eEg4tp7aiq+//7pLeYO+Aacvn3bYrkDEgZkxJlsf5H2AX47/pdXnSs+UIntQNvr1\n7ufjVsnPCyUvYNifh9mtM2/0PKyetVryhVKICGqVutuUqTUH12Don4fiuuG6jVcGLs7KZozJlrVF\nJwBA16rDrnO7sHjiYh+3SJ5iI2Jx5soZ6Fp16BPep9vzG8o34Lv677B06lKvTEXLVGXikyOfQAjR\nsfymVq9FZGgkosKiJD+ft/EVM2NMtg7VH0LJqZJu5ZGhkSibX4aFty70Q6vkx5KZfezSsW7PGYUR\nS/+zFCWnS2wmankqs38mLrdc7jJnXdscnHOYAQ7MjDEZe2vnW8jfnN+tPEQRgvFJ45HWN80PrZKf\nDFUGAOtTpjYd24Rjl45hcc5ir20mMTphNMYkjEHj9caOsmBdXATgwMwYkzFbyV+F3xRi17ldfmiR\nPA3tOxS9FL1wtOFot+f+8O0fkBqbitnq2V47/6SUSTj000NdMrCDOTDzPWbGmGzFRsSiqaUJRmGE\ngkzXIeevnsfLX7+M8F7hGJ803s8tlIfQkFA8P+F5ZA/K7lK+o2YHvj37LVbMWIFeCt+GmyWTl3Tb\nLjNYcGBmjMmWMlwJAQFdqw7KCCUAoPR0KQDgrrS7/Nk02Xlj2hvdyuIi4zA/az7mZ833+vl/8eUv\nUHO1BkVzTEus3p9+v9fP6S08lM0Yky1ry3KWnimFKlKFUQmj/NUsWRJC4PzV82g3tneUpcenY82s\nNT7JjG5rb0NZdRmEEGi90Yqy6jJcar7k9fN6AwdmxphszRw+E9vnb0dCdAIAU/AoPV2KaWnTOoa2\nmTTWH16PpD8l4dTlUwCAdYfWoUJb4bPzWzKzL+gvoLqpGpPWTcKWk1t8dn4p8f+ZjDHZGthnIHKS\ncxDRKwIAUKurhVEYeRjbC0bEjQBgysyu09Xhqc1P4b297/ns/GqVGgBQ2VAJrV4LIDg3sAD4HjNj\nTMaaWppQfKwYOck5SOubhsSYRNQ9X9dluJVJo/MuUzvP7sQN4w38aoLvNgjJVJkysisbKpHYx7T9\nZLAGZr5iZozJVkNzAx7/4nFsr9neUaYghcOdkJjrlBFKDIweiD3n9+Av+/6CBzMexLB+9pfplNKA\n6AGYrZ6NxD6JHVfMqkiVz84vJQ7MjDHZ6pz81dbehlF/GdVtFyImDU25Bo3XG/H50c/R1NqEUf19\nm1xHRPjsoc/wQMYD/w3MUcEZmHkomzEmW8pw0xSpppYm7Dy7ExXaiqCd2xrINOUa5G/KR2t7a0fZ\nGzveQFq/NK+sjW1Ps6EZD498GGqV2mtLgHobXzEzxmQrNCQUUaFRuNJyBaWnSxFCIZiSOsXfzZKd\ngm0FaDY0dylrNjSjYFuBT9ux+sBqRL8ejdiIWDyoftCn55YSB2bGmKxZluUsOV2CcYnjOhYaYdKp\naapxqdxbkpXJEBBYsXsF9tfu9+m5pcSBmTEma1sf24pFOYuwt3YvpqVN83dzZClZmexSubdYpky9\nVvYaXt/+uk/PLSUOzIwxWVOr1OgT1gcLshYg75Y8fzdHlgpzC7vdu48MjURhbqFP2zGoz6COvIJg\nzcgGPEz+IqLfAZgFwAhAC+BJIUStFA1jjDEp/PPkP1F/rR4f3PeBv5siW5YEr4JtBahpqkGyMhmF\nuYU+T/wiIoyIH4E95/cE7RxmACAhhPsvJooRQlw1//4sALUQ4qeOXpednS327dvn9nkZY8wZlmzh\nZkMzkpXJeD33kZmefgAABWVJREFUdZ8HC+Y7mnINnvnyGVxpuYK+EX2xYuaKgHm/iWi/ECLbcU0P\nr5gtQdksCoD7UZ4xxiTUOSgDpkSk/E35ABAwX9ZMOje/35dbLgft++3xPWYiKiSiswDmAXjF8yYx\nxpjnAmUKD/MNOb3fDgMzEZUSUYWVn1kAIIQoEEIMBqAB8Iyd4+QT0T4i2tfQ0CDdfwFjjFkRKFN4\nmG/I6f12GJiFENOEECOt/BTdVHUDAJszuoUQq4QQ2UKIbJUqeLPlGGPBIVCm8DDfkNP77dFQNhEN\n7/TwPgBVnjWHMcakEShTeJhvyOn99vQe8xvmYe3DAKYDeE6CNjHGmMfmjZqHVXmrkKJMAYGQokzB\nqrxVQZcIxJwjp/fbo+lS7uLpUowxxnoSV6ZL8cpfjDHGWADhwMwYY4wFEA7MjDHGWADhwMwYY4wF\nEA7MjDHGWADhwMwYY4wFEA7MjDHGWADhwMwYY4wFEA7MjDHGWADhwMwYY4wFEL8syUlEDQCqJTxk\nPICLEh6vJ+O+lA73pXS4L6XDfSkNV/sxRQjh1NaKfgnMUiOifc6uQcrs476UDveldLgvpcN9KQ1v\n9iMPZTPGGGMBhAMzY4wxFkDkEphX+bsBMsJ9KR3uS+lwX0qH+1IaXutHWdxjZowxxuRCLlfMjDHG\nmCwEfWAmonuI6BgRnSSiF/3dnmBCRGuISEtEFZ3K+hFRCRGdMP/b159tDAZENJiIviaio0R0hIie\nM5dzX7qIiCKIaA8RfWfuy9+ay4cQ0W5zX35CRGH+bmuwIKIQIjpIRJvNj7kv3UBE3xNROREdIqJ9\n5jKvfMaDOjATUQiAdwHMAKAGMJeI1P5tVVBZB+Cem8peBLBNCDEcwDbzY2bfDQDPCyEyAIwH8LT5\n/0PuS9e1ArhTCDEGQBaAe4hoPIBlAP5k7svLABb6sY3B5jkARzs95r5031QhRFanaVJe+YwHdWAG\nMA7ASSHEaSFEG4CPAczyc5uChhDiGwCNNxXPAvA38+9/A3C/TxsVhIQQdUKIA+bfdTB9CSaC+9Jl\nwuSa+WGo+UcAuBPA383l3JdOIqIkAD8E8FfzYwL3pZS88hkP9sCcCOBsp8fnzGXMfQlCiDrAFHAA\n9Pdze4IKEaUCGAtgN7gv3WIeej0EQAugBMApAFeEEDfMVfhz7rzlABYDMJofx4H70l0CwFYi2k9E\n+eYyr3zGe0lxED8iK2WcZs78goiiAXwO4JdCiKumixPmKiFEO4AsIooF8A8AGdaq+bZVwYeI7gWg\nFULsJ6IplmIrVbkvnZMjhKglov4ASoioylsnCvYr5nMABnd6nASg1k9tkYsLRDQQAMz/av3cnqBA\nRKEwBWWNEGKjuZj70gNCiCsA/g3TfftYIrJcSPDn3Dk5AO4jou9hus13J0xX0NyXbhBC1Jr/1cL0\nB+M4eOkzHuyBeS+A4eYswzAAcwAU+7lNwa4YwBPm358AUOTHtgQF83271QCOCiHe6vQU96WLiEhl\nvlIGEfUGMA2me/ZfA5htrsZ96QQhxEtCiCQhRCpM341fCSHmgfvSZUQURUR9LL8DmA6gAl76jAf9\nAiNENBOmvwJDAKwRQhT6uUlBg4g+AjAFpl1SLgBYAuALAJ8CSAZQA+AhIcTNCWKsEyK6HUAZgHL8\n917eb2C6z8x96QIiGg1TEk0ITBcOnwohlhJRGkxXff0AHATwqBCi1X8tDS7moexfCyHu5b50nbnP\n/mF+2AvABiFEIRHFwQuf8aAPzIwxxpicBPtQNmOMMSYrHJgZY4yxAMKBmTHGGAsgHJgZY4yxAMKB\nmTHGGAsgHJgZY4yxAMKBmTHGGAsgHJgZY4yxAPL/xG+EPMa5w+kAAAAASUVORK5CYII=\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["from numpy.random import randn\n", "\n", "fig = plt.figure(figsize=(8,6))\n", "ax1 = fig.add_subplot(111)\n", "ax1.plot(randn(50).cumsum(),'og--') #l'ordre des param\u00e8tres n'importe pas"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Plus de d\u00e9tails dans la documentation sur l'API de matplotlib pour param\u00e9trer la\n", "\n", "couleur\n", "\n", ", les\n", "\n", "markers\n", "\n", ", et le\n", "\n", "style des lignes\n", "\n", ". MatplotLib est compatible avec plusieurs standards de couleur :\n", "- sous forme d'une lettre : 'b' = blue (bleu), 'g' = green (vert), 'r' = red (rouge), 'c' = cyan (cyan), 'm' = magenta (magenta), 'y' = yellow (jaune), 'k' = black (noir), 'w' = white (blanc).\n", "- sous forme d'un nombre entre 0 et 1 entre quotes qui indique le niveau de gris : par exemple '0.70' ('1' = blanc, '0' = noir).\n", "- sous forme d'un nom : par exemple 'red'.\n", "- sous forme html avec les niveaux respectifs de rouge (R), vert (G) et bleu (B) : '#ffee00'. Voici un site pratique pour r\u00e9cup\u00e9rer une couleur en [RGB hexad\u00e9cimal](http://www.proftnj.com/RGB3.htm). \n", "- sous forme d'un triplet de valeurs entre 0 et 1 avec les niveaux de R, G et B : (0.2, 0.9, 0.1)."]}, {"cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [{"data": {"text/plain": ["[]"]}, "execution_count": 13, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAFpCAYAAABeVxsLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3WmMZFl2F/D/jcjIyH2J3JfKpbKq\nu6p6nyn3LN0M9miwB2Mx2MLSIED+gNRYsiUjQMgGJIylkQABBiGDGMEIf8AYC9N4ZFu2Z+yBmR7P\n0tXLTNfSVZWVtWVlRi6V+x7L5cOJ1xkZ8V5sb4/3/0mpzHgRGXEzMiLOu/eee67SWoOIiIiCLeZ3\nA4iIiKg6BmwiIqIQYMAmIiIKAQZsIiKiEGDAJiIiCgEGbCIiohBgwCYiIgoBBmwiIqIQYMAmIiIK\nAQZsIiKiEGjxuwHFBgcH9czMjN/NICIi8sw777yzrrUeqnY71wO2UuoBgF0AOQBZrfVVq9vOzMzg\n2rVrbjeJiIgoMJRSD2u5nVc97B/TWq979FhERERNh3PYREREIeBFwNYA/kQp9Y5S6g0PHo+IiKjp\neDEk/prWekkpNQzga0qpD7XW3zSuLATxNwBgamrKg+YQERGFj+s9bK31UuH7KoA3Abxacv2XtdZX\ntdZXh4aqJskRERFFkqsBWynVqZTqNn4G8OMArrv5mERERM3I7SHxEQBvKqWMx/otrfUfufyYRERE\nTcfVgK21XgDwkpuPQUREFAVc1kVERBQCgSpNSkTkhI1lIH0PyBwBiTZgdA5IjfndKiJ7GLCJqKls\nLAOLtwCdl8uZI7kMMGhTuDFgE1FTSd87DdYGnZfjxQGbvXAKGwZsImoqmSPr43ffBlrb5fL2Knvh\nFC4M2EQ1Yo8sHBJt5kE7FgdiMeBgG8gc19YLJwoSZokT1cCYFzUCgdEj21j2t11UbvR8+TEVAyYu\nAXMfBy6/Vh6sDVa9c6IgYMAmqkGleVEKltQ4MHYRaGmVy4k2YPLy2Z5zos38d62OEwUBh8SJalBp\nXpSC4+RQgu7wtHxZGZ07m0kOSC98dM79NhI1ij1sohqwRxZ82RPg7veB5fnqt02NSa87kZTLZr1w\noqBhwCaqgVnPiz2yYIkngOFZoL/GoJsaAwYLO/o++wkGawo+BmyiGvSPAiouQRqQHtnEJX7IB4XO\nA0oBQ1NAe1ftv2cs8To+dKddRE5iwCaqwckRoHPA+DPAC5+VhKaTA79bRYD8bz78DrD7tP7fTRYC\n9gkDNoUAAzZRDQ625Htnr6zlbU0CT58A+Zy/7Yo6rYHHN4Hs8WlvuR6tDNgUIswSJ6rB/rYU3mgr\nDLcOTgHba8DmMjAw6W/boqi4iA0A9I0ByY767yfeInPfDNgUBuxhE9Vgfwvo6JV5UgDo7APau4G1\nx9LLI++UFrEBgO2VxovYJNs5h03hwIBNVEUuCxztyXC4QSnpZR/vA3sb/rUtipwuYtPazh42hQOH\nxImqONiW7519Z4/3jQDLd4G1R0D3gPftckvQa6Y7XcSmtR3YKmwEotiFoQBjwCaqInsi85wdvWeP\nx2LA4CSQXgCO9oG2Tn/aV49qwTjoe0kfV8jMb7SITWs7AC0bgjSSuEbkFZ5PElXRPwY89xlJUCqV\nmpRe2fpj79tVL6sNTJbvAXubcizoNdNPDs+uhzfYKWLTnQKmX5CTMqIgY8AmqoGRbFYq0SpFVXaf\nWu8AFRRWwXjtwWlADmrN9FxGvncPAM9/plBWtNCjtltWtLVdpjfMTsiIgoQvUaIKDneBh9eBc1fO\nJp0VG7sAxFqCP/9pFXS1Bqafl5+t9pL2s/d5uAfceweYvCSBNRaX4OzkEP3eptxvR49z90nkNAZs\nogq0lmU/iVbr2xjbOOo8AGXdG3eCnYQwq2CcaDvtrZrtYgVID3d5Xq538+8znPk7k7LG2s1g+viW\nLNObecG9xyCyiwGbqIKOHmD25eq3Oz6UXuDYBRkid4PdhLChKWDpztljpXO/xv0UnxSMzEqm/OoD\n+d4zDKw9dC+LvOzvPAayGWBvC0i5lBQ2/fzpiRdRUDFgE1WQy9Q2HNzaJr3wpTvAo+vWGdh2lktV\nSgir5X6M9eItSSnladUGs+HmgQnJkn9yR6q+uZVFrjWwfMfe39kIDoVTGDBgE1nIHAM3vyUJTQMT\nlW+7mZa5VqtA5sRyKTsJYdurwM66jAAMz9T2eKUGJoCVBXleijUSTMtOXs5L0tfqA+lNm3Ez8e34\nANhZA1ITTD6j4OJLkyoKehENN+0XNvxoq2G7Rqve7+MbQHq+PMgZ19ca6HLZynPQ1X73yW35O4am\nqj9WJWZ/B1BfMDU7eXl8U35ubZeAmcuW/16j66xrcbgHLN0FOvvZ26bgCnheK/nJat1uozWbw+Zg\nW+Z427ur37ZSwOpKNfZ7hv1t4MM/lyVNZpnow9OVfz9d6BVPXrKfyW4VNBPJ2u/D7OQGkKmHS58C\nxp91dp11LbjNJoUBe9hkye6cadjtb0tvK1ZDkKvU+516TpYNmS6XapHh9L4R8+zrjSU5SUq0AUPn\npDyqMeLRkpDh48000D8OxOPlv6+1zFcPTJSXVm2EWRa5igHZrAxnD01XziLPnlifpOQycl9miW9u\nj+y4sc1mVEanovJ3BgEDNlkKahENL+RzwOGObPBRC6tAZvQKra6PJ4CtldPM8uIPv1hc2tHVL5W4\nWlplWLv4w3B7FXjwQ+DhD4HZl0x6pkp+16miLqZZ5DPA7oYs+9rbAnoGgFWTLHKtgTvflzaatae4\n9+70OutqnN5mM+glXp0Slb8zKBiwyZJVrzEKy18OdiXA1NorrdYrtLq+fxTIF+ZrVx9K0ENhu858\nDoCS0qhWz3nvsCTFLd6SeeBzz532cLdXgWSn1Dh3sqiLWTBNTQBPF2WufHf99PhH89MaSI0DE89K\n3fWVBeuTG784uc1mVEanovJ3BgUDNlkanQMWb5bv9zx63p/2eOmgkHBmVd3MTLVeodX1xrKxlfv4\nKFh/RMscdGrc+n4HJmSoOX0PyJxIxrNxopXsAi59sva/oVFKAYPn5G/InpRcqeVEJDUO9A7JVyIZ\nvGHU1nbgYMeZ+4rK6FRU/s6gYMAmS/2jsq44n5WgXfzBms9J/ezeYb9b6Y79Lamu5eVoQt4kMxqo\n7cNveEbmyUv35j45kGFLr4JhWbC2OO71kHctnNxms9GM/iAym6Pu7K284U0Y/84wYMAmSztrkgg0\n/YIkRRVbeyRv4mc/Jb2SoPWW7NBaEs56Br19XDsf8kqZbz3p9fBkmAOVk9tsmo1OBWHYv15Wc9Td\nKTlh7+iVevulw+JRGIXzA5d1kaX9bang1TtUft3wNDD7igTrZlz6NXmperEUp43O2VvOFIThSbt/\ng5+MpV1OzGOnxoDJK1JVztDVH74TWas56sNd4PLrwMUfObtzmjG9U88yP6ode9hkafyi1JE2Gx5U\nMckGvvlW8yWdKFU+ouAFu8uZgtC79WNJllM6eoErr58Nso3S+uyw/713gZMQzutangQenwbl0umN\nwz2gvYZiQ1Q/Bmwylc3IOt9qZRqD0Ktz2u5T6Sn4UfHKztxutaVlXgni/HQtYnH5csLqA8kpmH1Z\n1vFPXvJ3i9JGNXISaATr/S2grdu8PgA1hkPiVObkSGpob9YwrG1Z+SoEc5ZWlu5IDzFsUmNnhycT\nbXI5jMHTL0+fyPI0u+ItshmMUXQn2SEnwGFjNhddy0ngySEw/w6wet+ddkUVe9hURsWAwUmpq1yN\n1f7JHT0yLOjF3slOO/8x81rWYRDW3m1QbK/K63Zg0t79DJ4DcO7ssa0VKTBz7rK9+/aS8f6NJyQB\ntdYpjtZ22bK0e8D9NkYJAzaVSbQC48/UdtuyOcukzAFur8o2k+euODfM6JVEkkkzUWVWLa5eh3vS\noy4taXtyKPXpc7lwDBPrPJC+L9X1nvlE/SffRh5IPgfk8+EcYQgaBmw6Y3tVAmxXqvY3aGmvTmup\n2pWel6VG/WOyDCwMSUibaVkzbHdXKwonu8Fa54F778iSwKnnzl43NN341qZ+2EzLOv6ZFxsfKdMa\nmL8m33PZcHwGBBkDNn1E54End2Qpl52hLKWkvnR7l9S5Xr57uh41qLWGi4tDKCVDgEFqH3njcE/K\npo7OSUnXeu0+laFjs4JCRtBzojCL23Reqta1dwM9Jss6a6WUlMfdSp8eC+pnQBgE/GVDXtpekzeT\nU73LnkEZBistbWos+wqK0m1EtW6OteTUAC2jTEd7jf36RlpO9nosTng308D1b1pXhAuKjWUZwh+d\ns5+HYuwrXyxonwFhwYBNACRIrT2UZBE7Z9SlMscWxwO07KvSBgYULXa22cxlpTpg34h1DzrZISVo\nt9cab6Pb8oXedUePM0ljzbj00y8M2ARAkmEOdqR37WRmdxiWffEDhQx2ttncWpETvf4Kw7zt3fLa\n3wlwwN54Iq99J3rXQDg+A8KCATviNpalWtn8Nbns9NxaGEpV8gOFijW6zeZmGmjtqFxwRykp9bu7\nEcylg1rLWvTOPkk8dUIYPgPCgklnIWe2k06tiRylhf0B2c9YxZxLBild9tXSKsNsQUo2GZ0DHt84\ne4wfKNHVyDabJ0fA/qYUGqnWK+0dlp2udp/6UwK3EqWAC1el0qFTI23Ge33pjiTktSSAsWeC9RkQ\nFuxhh1hpslS9G294NXebGpMazS99ToL11or13LYfjFKKxnpxVgiLttZ2CcCl741KNgtZ0H2j1W/b\n2SfD7turjbXPLfm8/M3xltONUJySGgMufVp+Hpzie6tR7GGHWKWAW8sbwo+525Hz8uG2cl/qKwfB\n8rx8SF1+LZz1nslZjWyzebgjm4ckO6rf1hgW31qRIFlaYMVrxaN0UMDEs1Lp0GktCZnDz2Wcv++o\nYMAOMbsB14/dnZLtwMC4JLYMT9vfd9gJw7PyPDBYE3B2m81aX5/TL0hFr1r1DgEbS8Dehvf7rhcr\nmxbTMnQdi7vTC774ajjLFQcFh8RDzG6ylF/JIMOz8n0lIBsDdPUB/TUMZVI0tHbIe6haADYSNn/w\ndeDWt+tbqtWVkqDo9/Iur5c0Mljbwx62i+wkhNXC7naKmSOgfxzYXfe2ZGBrm2yusL4opRprGUZ0\nw866fI1dqL6NKEVHa5vkXFRS2jOtt3pXLC6lS9t83jfa62mxXBZYeA9IjQMDE+48RjPjx5RL7L6h\na9GdkuSoj+afAKQmart/nZez+47u6h9ObhiekeUjKwvA1PPePz4g1az2NvyfQ6TwsZs/ApiXL/Va\nS6t51TW3psVicZl6CtuGQEHBgO0SJ97QleTzwO3vypnqldflvm9/T5aK1FKrWMWAiz8i9+OHRFK2\nIFx7KEPkjdRttmt4RjJWg17XmbyXvgccHQAzL5hf71TPtJZiK5XYGcU7PpCdw0q5OS2mFHD+ZXfu\nOwr4UeUSt4eadtYk27KrsGe1igHjF2R3nadPKv9u9kR+Vyl/t/kbnpYz7dUH3j6uzgP72/Ize9dk\nRsUrvzacKraTXgAe35R58Jtv1Ve/3s6yzswRcO9d+RtHL5y226sljcaWm1Qf9rBd4vZQ09Mn0kst\nrvXbPShrPFcW5Izdal52+Z4E/Muv+Ts01dIKzLxUuTKUG54uAU8+BC78CNDZ6+1jUziMzFS5fvZ0\nistQb8/U2GCj0Z3sGh3Fy54A996Tk/a5j8v7r9rf66SjPeDO92QqLGiFY4KO/QuXGD3fUsPT9u/7\n5FDmXlPjZ7MulQLGL0qVorWH1r+7sSTzZ0GYR+pOyVy6kW1bby+jXvmcnNB09Hp/okDNI1so/NNS\nWArYSM/UboZ2I6N4uSxw/335HJh92Z/3QLIDgDLfxYsqYw/bJdMvyNKNlfunJTmzJ1I0JDVuL1hu\nLMn31Hj5dR29cta69lAysRPJs9evPAAUZP42CLxIzjMepzQ5j0tMyMrxgdTXn3i2vBd4ciTvo95h\nYObFxh/DzrSZ1jKCZlWPPL0gG/nEW0r2eo/Je23mJetOhdtUTE4UjGkpqh0DtsP2NuV7V78sWyhe\nurC1Ajz8AHh0QwJ6IwFDawnYXSnrog6jc1L2ML0AnLt8evy40LsemJClK0HgdnIeYF4zfe2hnOmz\nRCKZMU6wzXbtWr4r38cv2nsMq8JFsRZ5n1f6fNhZNw/WKgYkO4HV+/La3l47+9rXeblfvzce6ewD\nVh9K0pufeTT1cHuZbi04JO6gXAZ4dB1Y/PB0XqpY3wgwdlGC6fJ8Y4+xuyElEyutYUx2yPBc6fD7\n6n15s3o5X1WNF+tAud811ctqm829TTnxdqJKn1nhIkD2y154D8iY5MAYnys9gzIHfO5KecLYs5+Q\n/JTWdovXvvb/td/ZB0ADhyHpZdvdt8EprvewlVKfB/DvAcQB/Bet9b9w+zH98uS2vMkuvmh9djw0\nJR8Caw8l8O5v1XfGtvFEPkh6hirfrnS4/PhQXlyDk8HaNtKL8qjc75oaUbrNpi6U7UwkgaEZ+/df\nupNdok12+9J54Mkd4M535TabK6fTalpLec9k+2l1PrOpMeP9E9TXfkch2XN/y7ltPN3kxUhgLVwN\n2EqpOIDfAPCXACwCeFsp9VWt9U03Hxfwfvhia0Xmp0dmT1+MZlShuP7+lvwO6sgQzefl9/rHaluO\nlDmWM/XssSSiAVJ2MUjMqrUBQK+D2aN+1Eyn8CvdZnNjCTjclZ6tU8O4qTHz93tHryy7Wi1KHjVW\nnWyv1p68GtTXfktCai+EZR47KCc+bg+JvwpgXmu9oLU+AfDbAL7g8mN6PnyROZZh8PZuCdjVKFXY\nsaZk2LzaMG0sBlx+HRit4TEAmec62jsN1oDMv3k9jFNJakyG8T4a1ksCLUlgY7H+PYmtdJucwXO/\na6qmeJtNrYG1RzKU68VSpPZu65Py9ce1349f+wXUoqNPArbZ9GHQlCbvfnTc4xMft4fEJwAUv7wW\nAXyi+AZKqTcAvAEAU1NTjjxoLcMXdnvgZpmXUx+vvWqW1X7QVmdsxos6FkPNp1lmm2v4MYxTTWkv\nI3MM3H0buP+erJW2W2t8/JnT0Qk/E0YoXIxtNk+OZQj6wtXTgkNeqPczwozpsHtAXvudvTLFd7R/\nuid9UI1eABZvnj258OPEx+2AbfbSPnM+pbX+MoAvA8DVq1cdOdeqNHxxsCO9zsUPG19KVJp1bGRe\nHuzWXsy/3qGqg23JLp95Uc6+axGUYZx6JZLA+VdkWc3Ce/JBaXWGW43OSwLRtE/1yim8jG02D3dk\nVUVL4nTdtRecGs62Gnb3W/dAYXSt1e+WVJY9Cc6Jj9tD4osAzhVdngSw5PJjVnxB3/2+lAK0kzXs\nROal1VBVV79FyT4lPc16MlOdKp/oh7ZOKeyQPZZCD40sQ9lZl3rrxwfOt4+a3+GefH/4AfDBN07r\nH3glyMPZTkgkZbVLS4AD9sEOcOstyTdKjcm+DS99Tr77cRLkdsB+G8BFpdSsUqoVwBcBfNXlx7R8\noY8/U3lnqFp7nk70XMvmbtskg3xzGVh4t3xJR2ev9Drr2QYy7G/4zl5g+kX54Lz7NnDzW/VVQ4vF\nTvc2JqrHxvLZpZc6L6NyXuZ/mH1GeFHn20snR5KsG0TZjJysxRP+FZkp5eqQuNY6q5T6RQB/DFnW\n9RWt9Q03HxOoPnyxPG9vqCmRNJ9fcmKoqq1LRgDufl/OPp8+KSzpSMq+zfW8WYMyjGNHz6C0t7h3\nU+sURlcqHEtGKHiCsownqMPZTtleAZbuSkCsNO3l9aofreVz+OQIuPDx4IwCuL4OW2v9hwD+0O3H\nKVXphW62lEgp6eFW89HQrMKZ2Xineq79ozL0Pf/O2SH27HFjJTub4Q2/u1F+rNKH5+GuDGGNzAaj\nXjqFT1jzP8Kmb1TmsisFRK/KFxdbeyQbJI0/UyjyEhCRLE1a1vNMyvDHQQ1rAmMx6bXFE7Ie0o0z\nvo4eGfrOluxVG8QMby/U8+GpNfC4sKRvaJoBmxoT1PXLzSaRrJ5QWutoh5MrfwBJ7h08V/l3vBbJ\ngA2U9zwPdysndOm89K5bWoGp5+TYxDPutS9rMuQORPMMv9KH59NF2VZ0b7Nkc49JbzN6qbmYjsKF\nKP8jTHaeSonSkfPm11c6YX9yWwpR2e2Fm+03cLRf2KwpQB0k1hIvaO+WXm0+J8klxXtZaw08ugnc\nvSbF6r0Q5gxvp1klzw1NSwnHW2/JfFPxG3tzKVgFYihcopDwFRT7m0D6vvVnq1UPXMVO18Tb3S8g\nLPsNRLaHbeVoTxKcttdkmjpzLMOq+ZwsnvdqZxme4Z+qlDzXOwh8+J1gJAhRc2mG/I8w6OwD8EB6\n2aVJovmc+bSWip09gbKbcxCWnAUG7BIdvbKP9Pqj02P5HADVePGORjRDhreTrD48W9vLg7UhaG82\nIipXaSOQtYdSRyE1Aew+tf4stNyqNF55C8/9bclUD0vOAgO2ie1Vk4OaSzqCKixvNiIqV2kjkKEZ\noL1HlndWYrqJkJLO1p3vApOXpLZFaQcoeyIrSoZmZJ+FoI9oNm3AtpMxGJbhERKcPiAKt44+CZxG\nre71x7IrYUuierAGrEckW9vks2HhvbO3N5LSJi8Bz36qsP95S/BHNJsyYNvNGGSPLVw4fUAUchrI\nZ4Ef/qmsxMmeSPCudRtRwHpE8plPADe+WZjaLH7IPJBeON1PPAwjmk0ZsO1WKWKPLXzC8GYjonIb\ny2fLk2ZP5PPWqWWZRtKwmbCNmjblsi67Q9pc0kFE5A3LDtaCc4/RLMtkm7KH7cSQNntsRETu8yJn\nqFlGTZuyhx32XaqIiKLCi95vs4yaNmUP2/gnLN0BchlJYhi7GL5/DhFRs/Oq99sMo6ZN2cMG5B/z\n7Cfl5+Hp8P+jiIiaUbP0fr3QlD1sQyIplbD2t4EhvxtDRESmmqH364Wm7WEbOnql5J3W1W9LREQU\nVE0fsDv7ZF3fScjW2xERERVr/oBdKCx/sOVvO4iIiOxo6jlsAGjrAmZfOQ3cREREYdT0AVspoGfA\n71YQERHZ0/RD4oDsp7qyAOSyfreEiIioMZEI2CeHUpf2cM/vlhARETWm6YfEAaCzH3j+LwJxh3Z/\nISIi8lokAnYshoiMJRARUbOKTBjbWQfuv1++jRsREVEYRCZg5zIStI/2/W4JERFR/SITsDv75Ps+\nC6gQEVEIRSZgJ9pkm839bb9bQkREVL/IBGylpJfNEqVERBRGkQnYgJQnPTkCMsd+t4SIiKg+0QrY\nnMcmIqKQilTAbusGVIwBm4iIwidSATsWAzp6gAMmnhERUchEKmADQM8Q0NoOaO13S4iIiGoXidKk\nxYan/W4BERFR/SLXwzbkWaKUiIhCJJIB+967wIMf+t0KIiKi2kVuSBwAeocB5XcjiIiI6hDJgD04\n6XcLiIiI6hPJIXFAqp2dHPrdCiIiotpEMmBrDdz+LrBy3++WEBER1SaSAVspqSvOimdERBQWkZzD\nBgDEgOMD4Adfl603R+eA1JjfjSIiIjIXyR72xjKwu3Z6OXMELN6S40REREEUyYCdvldemlTn5TgR\nEVEQRTJgZ47qO05EROS3SAbsRFt9x4mIiPwWyYA9Oif7Yp+h5DgREVEQRTJL3MgGT9+TYfBYXLbd\nZJY4EREFVSQDNiDBmQGaiIjCIpJD4la2VoAnt/1uBRERUTkG7CKHe8DBNpDP+d0SIiKisyI7JG5m\ndBbArElCGhERkc8YmoqomHxlT4CVhfLiKkRERH5hD9vEzjqQXgDWHgG5LGuNExGR/9jDriCXle+s\nNU5ERH5jwDaRXig/xlrjRETkJwZsE6w1TkREQcOAbYK1xomIKGhcC9hKqV9VSj1RSr1f+PpJtx7L\naWa1xlWMtcaJiMg/bmeJ/7rW+l+7/BiOK601rhQweZlZ4kRE5B8OiVtIjQFXXgeGpgAooG/E7xYR\nEVGUuR2wf1Ep9UOl1FeUUv0uP5YreodlKJxFVIiIyE+2ArZS6utKqesmX18A8J8AzAF4GcAygH9j\ncR9vKKWuKaWura2t2WmOKzr7gOFpIB73uyVERBRlSnvQdVRKzQD4fa3185Vud/XqVX3t2jXX21Ov\nzLHMZXf0+t0SIiJqNkqpd7TWV6vdzs0s8eIUrZ8GcN2tx3LbkzvAgw/8bgUREUWZm1ni/0op9TIA\nDeABgL/r4mO5anha5rC1loxxIiIir7kWsLXWf9ut+/ZaR4/fLSAioqjjsq4aba/JFxERkR+4vWaN\nVh/I994hX5tBREQRxR52jTr7gMMdIJ/3uyVERBRFDNg16uiVpLPDXb9bQkREUcSAXaPOwhrsgy1/\n20FERNHEgF2jRFK219zf9rslREQURQzYdejsBQ4YsImIyAcM2HXo6JUypSdHfreEiIiihgG7Dp19\n8n2f89hEROQxBuw6tHcBsRhwcuB3S4iIKGpYOKUOKgZc+QwQ57NGREQeYw+7TgzWRETkBwbsOh0f\nAPffZ7Y4ERF5iwG7TrEWCdrZjN8tISKiKOEAb50SrcClT/vdCiIiihr2sBuktXwRERF5gQG7ATvr\nwI1vsoAKERF5hwG7AS2tQC7DxDMiIvIOA3YD2ruAWJwVz4iIyDsM2A1QMaCjhz1sIiLyDgN2gzp6\ngcM9IJ/zuyVERBQFDNgN6uwFoIGDHb9bQkREUcCA3aCOXvm+z2FxIiLyAAN2g3aeAlBAeh64+Raw\nsex3i4iIqJkxYDdgYxlYvAWgUDglcySXGbSJiMgtDNgNSN8DdP7sMZ2X40RERG5gwG5AxqLCmdVx\nIiIiuxiwG5Boq+84ERGRXQzYDRidk+IpZcfPe98WIiKKBm6v2YDUmHxP35Nh8ERSgnhq3N92ERFR\n82LAblBq7DRwG06OpFxp34g/bSIioubFgO2g9DywtQK0dQJtXX63hoiImgnnsB009gwQawEe3Shf\n9kVERGQHA7aDEq3A5CXgcBdYfeB3a4iIqJkwYDusb0S+0vclcBMRETmBc9gumHgW2NsEFt4HFIDM\nsazRHp0rT1Sza2O5KFvdpccgIiL/MWC7oKVVetnrj0+PGfXGgdOAajfYGjXNjflys8cgIqLmwCFx\nl2yvlR/Teckk1/o02BrlTBtKQawdAAAbfklEQVTZQIQ1zYmIooMB2yWW9caPgZ11+8H2cI81zYmI\nooRD4i5JtJkHzngL0N5dOdgeHwLJ9vIh85HzQP8IEIsDR3uVH5uIiJoLA7ZLRufOzi8DUn98/Fmg\ntc06oAPAh98GWpJA9gRn99y+Kb3z2ReBvmEgfxl4crv8MUbnXPuziIjIJxwSd0lqDJi8fNrbTbTJ\nZSMZzGwDERUDxi7KV64oWBc72Dy97cDE2ccAgKFpJpwRETUj9rBdZFZvvPg6wDpLfPmu+e9lM+aP\nkctJz3xvA9DnAaWc+RuIiCgYGLB9VCmgWw2ZW81Px+MS8JfuACcHQLLTuXYSEZH/GLADymoOvNL8\ndGoc6B2SdeBERNRcGLADqtqQuRmlJFhrDZwcAskOb9pKRETuY8AOsEpD5pUs3QE208DlTwPxhPPt\nIiIi7zFgN6HUuKz1jvG/S0TUNPiR3oTau+WLiIiaB9dhN7H1RWDxQ79bQURETmAPu4lljoCni8D2\nqlRN4/abREThxR52E2ttl+/ZE/neyI5gREQUDAzYTWzlfvkxbr9JRBRODNhNjNtvEhE1DwbsJmZV\nxpTbbxIRhQ8DdhMz2xEMADr7vG8LERHZwyzxJlZW3jQJxFuBgy0glwXiNfz3N5brK49KRETuYMBu\ncqXlTXVessbjLYWNRZT1Vpwby2c3IDGyzI37JSIi7zBgR4yKSU9Zaymqcrgre2yb9aDT82d3CwNO\ns8wZsImIvMWAHVFKAfkccLgHQMuxzBGweBPYWJLrMsfmv8sscyIi79lKOlNK/axS6oZSKq+Uulpy\n3a8opeaVUreVUj9hr5nkhv1tfBSsDVoD+5tALC5fZphlTkTkPbtZ4tcB/AyAbxYfVEpdAfBFAM8B\n+DyA/6iUsvj4J79U6ilf+Dgwcak8y1zFZNiciIi8ZStga61vaa1vm1z1BQC/rbU+1lrfBzAP4FU7\nj0XOq7ZOOzUGTF4+vZxIAh29QBeXhRERec6tOewJAN8turxYOEYBMjp3NgscKO9BF2eZnxwBt78D\n7G0BqXZv20pEFHVVA7ZS6usARk2u+ida69+z+jWTY9rkGJRSbwB4AwCmpqaqNYccVLZOu8o669Y2\n4MrrQDzhXRuJiEhUDdha6881cL+LAM4VXZ4EsGRx/18G8GUAuHr1qmlQJ/eUrtOuxgjWh3tAe5c7\nbSIionJulSb9KoAvKqWSSqlZABcBfN+lxyKPba0Cd74L7G743RIiouiwu6zrp5VSiwA+BeAPlFJ/\nDABa6xsAfgfATQB/BOAXtNY5u42lYOgZkOHz5buyDIyIiNxnK+lMa/0mgDctrvsSgC/ZuX8Kplgc\nGD0PPL4JbK0A/WYZDkQ2sIY9UTnu1kUN6R8D2rrkQzWfr357oloZNeyNOgFGDfuNZX/bReQ3Bmxq\niFLA2AXg5BB4uuh3a6iZpO9Z17AnijLWEqeGdQ8AXf3A8jyw9lBqj3P4kuyyqsDHGvYUdexhU8OU\nAjr7pfdjbBTC4Uuy4/jA+jrWsKeoY8AmWzZMVtdz+JIaFW8Bkp3lNeyhWMOeiAGbbOHwJTnh+ECS\nF1tagUufOlvDPhYHoCWYE0UZ3wJkS6LNPDhz+JJqlcsC89eAnkHg3BU5VlyBL58HHn0AtLAkLkUc\nAzbZYrqBCIcvqYrSddbdg8DQtPltYzFg5iVv20cURBwSJ1tKt+CMxYHhWWaJkzWzddZbaeBgp/Lv\n5fPAk9vmeRNEUcAeNtlmtYFILsOdvajc8rz1OutKJ3pKAUd7hTltoghiwCZXrCxIT+jCq0Ci1e/W\nkJfMyop2p6SM7WYayB6b/161REWlgNlXZIicKIoYsMkV3QPAygPgwQ+AuY83x4cs61tXZwx3Gz3o\nzBHw+Mbp9e3dQKwFyGfLf7eWREXjdbR8D3j6WBLW+L+gqGDAJld09AJTzwEPPwDuXQMyJ+EOdGaB\naPGW/By2v8VNZmVFARnGvvgq0NZZ/lwCsu661kTFjWVg9f7pZf4vKCqaoN9DQdU3AvQMSTJR2Ddy\nYH3r2lgNa+dzEqyB8kTFRJtcrjXYmj3n/F9QFLCHTa463C0/VkuCUdCwQExtal2Xb5WoWAv+Lyiq\n2MMmVzXLh6vV/CoLxJw1eh6AOnusnuHuWvB/QVHFgE2uapYPV7OA43QgagapcalW1uhwdy1G50xq\njcO68ApRs+CQOLnKtBJaCANdd0q+GxnOiTZgZNbfNgXN7lNJLrMz3F0L476NjP2WViB7AuysAYOT\nsvyLqBkxYJOrSj9cE0lg9EK45q8BYHtNvl+4CrR3yc8rC0D6PtDZCyQ7/GtbEORywOObEjwvvup+\n0Cw9KVhfBJ58CKw/Yk+bmhcDNrmu9MM1n5MCGv2j/rWpXturEpSNTGcAGJ4BugYYrAFg9YHsiT79\ngj893IEJ4GAbaG33/rGJvMKATZ5bfyzlKdu7zwbAoMpmgL1NYHj6bDBSMeldA8DWqgSMrZVwrzdv\nxPEBsPZQTsA6+/xpg1Ky7p+omTFgk+cGzwEdfeEI1gAADYzMAL0jFldrYOm29DANUSrmsXRXAubY\nRb9bItYeAseHwOQlv1tC5CwGbPJcLA50FXpiJ0dAa8AzxltaKyfJKQVok+NhXG9er92nkuw1ekHy\nE4Igm5HRjpvfkpOoKI12UHPjsi7yzfYqcOvbwP623y2xlstKwlk+V/l2jW5oEWa6sN1lazswNOV3\na04lO4Cj/dMRj7BW1yMqxYBNvulKyU5ej2/KXsdBtLMuG5gcmFRsK2a1rrylCXcq21gGbr4F/PDP\nZP66ZzBYm7ukF1hGlppTgN5mFDXxFimqcbwP3Ph/wA++LoEgSD2h3mHg/CunyWVWrIp5ZE+kd5fL\nuNM+rxkbdxSPHDx9Eqz/WbNU1yMqxTls8lW2EMiMIeegJWvFYrJVaDVl680LhVWO9oCttAT0sGzP\nWamdy3ete69B+VtqrWdOFDYM2OSrSjsv+R0AdjeAvQ1Zbx2v4Z1iVeFrdE7mwcOwPafpftY35efU\nmIwYmAlS79W0up4KX3U9olIM2OSrWocv/eidbi4BO08LG1rYEG+pvD1nkAJ2et5kP2stx1Njp2VA\nSwWp91o62qEUgBjQO+Rrs4hsY8AmX1kNXxbPBz+5Azxd9LZ3ms8D2+vyIW82N12voM+r5rLyHGes\nst0Lx8cuhqM2fPFox/42MP+2lC0dsXnyReQnBmzyldXmIEbRi6N9+aAt5XbvdG9DNvnoG3bm/oIy\nr1o6UjEyK0vS1h5LYpyKmfSwi9ppNlcf1Ll4Q2evnHitPgQGJpszc5+igQGbfFUtAFSq0+1m73R7\ntVDgpYaEs1qYnZgAUkHNK2bz009uy8/dKWB4VpZpVetBu70blxtGLwDb3wFW7gMTz/rdGqLGMGCT\n7yoFAKW8751qLUliTq4vttoS8rDK+u56Wc3157LW8+iJJDD7slw2lq+FqQddi7ZO2at7My3BOx73\nu0UUNGFYxcGATYHn9Z7a+5syPNzr0HC4ofTE5MkdGe7vH3Nm0wyrDO/leetKbED5vHUYe9C1GJ2T\nLwZrKmX23gniKg4WTqHAS41JgRWjVnUsLpfdeiNtrcoJQfegO/dvGD0vZ/KPbzlT6c2sBw0tJx8j\ns0CLRa3vIGV4uymRlC+tZcSByFBpFUeQMGBTKKTGgCt/QXqjgPO9X4PWsplFz4D7PbF4iyTXHe8D\naw/s35/VnL7OS89y7EJ5xnsQM7zdpDVw/33g0XW/W0JBEvRVHAYOiVOopMaBzWVge0V+dlo+J3PX\ntVQ3c0LPoGzbufIA6BsBkja2HK22RjqMGd5OUwroGQIUJHgX729OweX2/HJQVnFUw4BNodLZJ7tD\nbSw5G7BLPxA6HJhTrtXEM7JN5eKHwPmPNRZE8nkJQKWaIcPbaYOTfreA6uHF/PLoHLB48+x7KIjV\n8RiwKVSUkkCdvidLkCot+6qV3wkniSQwfkHWCWdPGttXOhYDzl2WXcU2l6Pbg66VzgOPbgJ7T6We\nPZ+r4PKiSmBqDFi9DxwfAtBnXw/bq9JRCML6fQZsCp3UmLxZN5ZkXtauIJQNTU3I/PzWav1Df9kM\n0JKQef3eYWAsYL2CINpMy6YshqBmBTeLakPaVtfvbXkzv5zLSLAenj77mZI5lnyH1g5g7mP+B20G\nbAqdRJvMMW8uF7a1tDkPGYSEE6WAzdX6e/qHe1J289wVmQOn2qQXyo8FsbZ7M7AcwdIyWlZphKur\nv3r1PSfsPJX29JSsDEkkgZmXgPs/AG5/T3IfMsf+jcgwYFMoGYHaiaShoCScNNLTTyQlUDuxjjtK\ngnCS1iyq9Z6Xbpu/rj+qEZABoMuvT98DrrwuSzjLqgQ6PL+8sw7EE0CHyb733QPAwDlg/eHpMb9G\nZLisi0Kpowdo73bmvkbngrHcqd4govMyFH7uSmPz3lFmdTIWtKzgoDN6x8Zr1AhkD2+cBthKa957\nhlAWrA3GfX5Uh6Hwv4nF5Xc6epz4C6Sdu+vSu7bqAGyvmP+e1+u0GbAptI72gUc3CmfoNqTGzr75\nE23uFmaxUilYPLohSXYby8DNt4AffB344BuyaQfVLygnaWFnNSq0tSy7pAGVT47OXa7t5Ck1Jr3t\nlz4HXH5NgnZ63n77AWlnLls+HF4sKCMyHBKn0NJ5yeBMjQFdqcbvJ5+TueD+MWDqOefaVy+rEqxd\nfcDWiszZF9MaWL4rBVg471qf0jXpgAyH8nmsT6WA1dUv36uVFq639HBLqySHpReA/S3700GJVmDw\nXOXaC0GZNmMPm0KrvRt47jP2gjUg81f5LNA/6ky7GlU69Gf09M9/7LRXUSqI5RPDorjXNjApH/5H\n+363Klxq7R2bva6Nk6Nq15sZnJbAvTxvXn+gHslO2cEtXqH7GpQRGfawKdRicXnD6rx5QKvFVlre\n/HYDvxOsCpskkjISYIaJUvaNnJcRjI0lYPyi360Jj9E5SR4rnoc2C2TVCvbUW9AnHpf/2ZMP5YS7\nd6iuZn8kcyxTTZ295QG5tH2A/1UCGbAp1LQG7nxPht8a2ec4m5E3/MC54JepDMqwXDNKtAIXX3Wm\nEE+UtHUA0HKynM95G8gGxoGTQ3vJp1tpYOkucOk1INle+bZBqBLIgE2hppR8yG6mgbGL9e9fvb0i\nQd/v4fBaeL3NaNS0Feq4Z09kiU/QT+D8pjXw5LaMTl36dOUhZTeomP3RkNSEDIlXC9ZBwTlsCr3U\nuFQq2lmr/3c30xLwnVoi5qZG5vqoPkd7wK1vS5IfVTc8IzvOeR2six3uAQ+vW08ZVRJvqZwdHjTs\nYVPodQ/IkNyjG8DDD2ofljs5lEQjJ6qleSUIw3LNLNkpva4wnMD5TSn3trmtRy4jm+cc7ZkXPrGy\nuwEc7ABD5xrPf/EaAzaF3mZadqsyEl9qrUKUz8vZdV8IhsPJG0rJ7mlUWfoeAAWMzPp/stvVL9n+\nW6vAgw9qTwrbWJJAPzztXVvt4pA4hV76HixLG1bS1gnMvhye+SvyzsmhbPpgtr941Gktz0/myP9g\nbdhaNa+4trFsfvtaqpsFEXvYFHqNVCHKHAF5zWBN5vI5GbnZXvM++znolAKmnjffkMMv9dbhr6W6\nWRCxh02h10hd6LXHwO0/r1znmKLrYBeAOk1kqtZji4r9LZkrBiqvW/ZavSftO+ty4lGpulkQBegp\nJ2pMI1WIBiell+BndisFV6PTLM0snyskdl63X13MafWetO+sAZ394Xv/h6y5ROWsqhD1j8oHi9kc\nVWu7fBGZCcpmD0FQvH0mAAxNB2/e16xGASA1wksdH8jXwKQ3bXMSAzY1hdLlTjovb+Bkh6wVLbb+\nWEp9BmFJCgUTq8oJY/vM4kC4/hho6wrWfH7pSXtLqyz3Wn8sZUuLK9gZ9Rp6Gixn6icGbGpOhfnH\n0mIK+ZxsGNA7zIBN1lhVTtSbzOWn0pP2gx1g4V3g3rvA3MdOg/bOuqwQCWPCKQM2NSUjk7V06G5n\nXYJ2f8A+bChYzLbfHDwXvCDltjBPDXT0yE53C+/JNrQ9w6f/z1iLjB6E7f9pK2ArpX4WwK8CuAzg\nVa31tcLxGQC3ANwu3PS7Wuuft/NYRPUygvX+luwolM/J7jxAOD5wyF9Gjy2fA26+JWuPoybsUwMd\nPcDcx+UzoHjEJJ+trbhS0NjtYV8H8DMA/rPJdfe01i/bvH8i27bXJMmk2OKHAFS43qzkj1gcmH5e\nypZGTd8IsPbw7LGwTQ20dwH33w/P0H4ltgK21voWAKigpQwSFTHbyCGMb1byT9jW6zplf0uWPsXi\nMjoV1gIyYR7aL+bmHPasUuo9ADsA/qnW+ltmN1JKvQHgDQCYmppysTkUVc3yZiV/7W1K/elzV4K3\nrMktMy8CJ0dAZx2bagRR2If2DVULpyilvq6Uum7y9YUKv7YMYEpr/QqAvw/gt5RSPWY31Fp/WWt9\nVWt9dWgohHn2FHiNVEIjKpU5BvY2onGip7V8JZLhD9ZAY8WVgqhqD1tr/bl671RrfQzguPDzO0qp\newCeAXCt7hYS2cQlOuSEvmGZ041C73rtkaxXnn05fNXAzFgVVwrb0L4r/wql1BCADa11Til1HsBF\nAAtuPBZRNc3yZiV/GT00nZeNY+IB2EO5uAqZk6/rloRUAmyGYG1ohr3k7S7r+mkA/wHAEIA/UEq9\nr7X+CQCfAfBrSqksgByAn9dab9huLVGDmuHNSv7LZYEP/1zWZI/M+tuW0ipkVvvANxLUU+PyRcFi\nN0v8TQBvmhz/XQC/a+e+iYiCJt4iy7s2nkjJWz+Hx62qkC3dARKtktm9uwGsPqge1A0nh8DOU2Bg\nPFi7cZFoogEPIiL3DUwAj65LMOzxcbmXVfJbLiPVvaxUWtKYvgdsrco+0a1MygwcnkMREdWhdxiI\nJ4CNRX/bYbXKoaUVmLsKnH/F+nfNgv3BDrCZBoamGKyDij1sIqI6xGIyv7v2qFBMJOlPO6xWP4xd\nBLr65HKl9ccH20A2A2RPgPTC6e247WxwsYdNRFSngQkAWuay/dI/AkxePu1pJ9rkcvFQd6X1x2uP\npGTn45tng/qT25KoRsHDHjYRUZ2SHZJ8ll6QL6+XCmaOgfm3gYlLwJXXrW9XaUlj3wiw+1Qy34ux\nbG9wMWATEdVpYxk4KdpQplr2tdPyeTlhqGVPZ6sljbFYebA2RKGaWxhxSJyIqE7pe1K6s5jRM/VC\nsl2SyuzuIMayveHCgE1EVCe/NpTReWDprmzI4YRmqbEdFQzYRER18qtnur4o+1MfbDtzf6mx6olr\nFBycwyYiqpPZkiood3ummWNJcOtKyVpwp7Bsb3gwYBMR1ak0+zreAoycdzfwLc8DOgdMPBuNHcOo\nHAM2EVEDzHqmxj7SMYcmG4s37gCA7gGgzWaiGYUX57CJiByg81LDe/muM/dn7MZVnMi2t8miJlHG\ngE1E5AAVk4Iq648lsNpltRuXV0vHKHgYsImIHDJ2UWpxP74J5HL27suvpWMUXAzYREQOiceBc1dk\nX+n0vL37YlETKsWATUTkoK5+YGDS/tA4i5pQKWaJExE5bOwisLUC3HsXgK5/c5CDbaAlIUVMzDbu\noGhiwCYictj2KpDPAijUG693c5CVB8DhLnDp0wzQdIoBm4jIYZU2B6klAE8/L/XCnVrPTc2BLwci\nIoc1muF9sCNbXsbiLJBC5RiwiYgcZpnJrWSo20zmWAqvPL7hWrMo5BiwiYgcZpXh3dIKxEwmIrWW\ntdv5HDB6wZs2UvhwDpuIyGGlm4MYGd79o7Jxh9bA2iPZNGTl/ulQed8oh8LJGgM2EZELKm1bebhr\nXnN8e1VqhTMznMxwSJyIyGMdPTI8Xoq1wqkSBmwiIh9kT8yPs1Y4WWHAJiLyAWuFU70YsImIfMBa\n4VQvJp0REfnAKpOcCWdkhQGbiMgnlTLJiUpxSJyIiCgEGLCJiIhCgAGbiIgoBBiwiYiIQoABm4iI\nKAQYsImIiEKAAZuIiCgEGLCJiIhCgAGbiIgoBBiwiYiIQkBprf1uw0eUUmsAHjp8t4MA1h2+zyji\n8+gcPpfO4XPpHD6Xzqn3uZzWWg9Vu1GgArYblFLXtNZX/W5H2PF5dA6fS+fwuXQOn0vnuPVcckic\niIgoBBiwiYiIQiAKAfvLfjegSfB5dA6fS+fwuXQOn0vnuPJcNv0cNhERUTOIQg+biIgo9Jo2YCul\nPq+Uuq2UmldK/bLf7QkTpdRXlFKrSqnrRcdSSqmvKaXuFr73+9nGsFBKnVNKfUMpdUspdUMp9UuF\n43w+66SUalNKfV8p9YPCc/nPC8dnlVLfKzyX/1Mp1ep3W8NAKRVXSr2nlPr9wmU+jw1QSj1QSn2g\nlHpfKXWtcMyV93dTBmylVBzAbwD4ywCuAPgbSqkr/rYqVP4bgM+XHPtlAH+qtb4I4E8Ll6m6LIB/\noLW+DOCTAH6h8Frk81m/YwCf1Vq/BOBlAJ9XSn0SwL8E8OuF53ITwN/xsY1h8ksAbhVd5vPYuB/T\nWr9ctJTLlfd3UwZsAK8CmNdaL2itTwD8NoAv+Nym0NBafxPARsnhLwD4zcLPvwngr3naqJDSWi9r\nrd8t/LwL+YCcAJ/PummxV7iYKHxpAJ8F8L8Kx/lc1kApNQngrwD4L4XLCnweneTK+7tZA/YEgMdF\nlxcLx6hxI1rrZUCCEIBhn9sTOkqpGQCvAPge+Hw2pDCM+z6AVQBfA3APwJbWOlu4Cd/rtfl3AP4R\ngHzh8gD4PDZKA/gTpdQ7Sqk3CsdceX+3OHEnAaRMjjEdnnyjlOoC8LsA/p7Wekc6NFQvrXUOwMtK\nqT4AbwK4bHYzb1sVLkqpnwKwqrV+Ryn1o8Zhk5vyeazNa1rrJaXUMICvKaU+dOuBmrWHvQjgXNHl\nSQBLPrWlWawopcYAoPB91ef2hIZSKgEJ1v9da/2/C4f5fNqgtd4C8H8heQF9Simj88H3enWvAfir\nSqkHkOnCz0J63HweG6C1Xip8X4WcRL4Kl97fzRqw3wZwsZD12ArgiwC+6nObwu6rAH6u8PPPAfg9\nH9sSGoW5wf8K4JbW+t8WXcXns05KqaFCzxpKqXYAn4PkBHwDwF8v3IzPZRVa61/RWk9qrWcgn41/\nprX+m+DzWDelVKdSqtv4GcCPA7gOl97fTVs4RSn1k5CzxjiAr2itv+Rzk0JDKfU/APwoZMeZFQD/\nDMD/AfA7AKYAPALws1rr0sQ0KqGUeh3AtwB8gNP5wn8Mmcfm81kHpdSLkASeOKSz8Tta619TSp2H\n9BRTAN4D8Le01sf+tTQ8CkPi/1Br/VN8HutXeM7eLFxsAfBbWusvKaUG4ML7u2kDNhERUTNp1iFx\nIiKipsKATUREFAIM2ERERCHAgE1ERBQCDNhEREQhwIBNREQUAgzYREREIcCATUREFAL/HyvFIvCh\nuhiHAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["from numpy.random import randn\n", "\n", "fig = plt.figure(figsize=(8,6))\n", "ax1 = fig.add_subplot(1,1,1)\n", "#avec la norme RGB\n", "ax1.plot(randn(50).cumsum(),color='#D0BBFF',marker='o',linestyle='-.')\n", "ax1.plot(randn(50).cumsum(),color=(0.8156862745098039, 0.7333333333333333, 1.0),marker='o',linestyle='-.')"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Ticks labels et legendes "]}, {"cell_type": "markdown", "metadata": {}, "source": ["3 m\u00e9thodes cl\u00e9s : \n", "- xlim() : pour d\u00e9limiter l'\u00e9tendue des valeurs de l'axe\n", "- xticks() : pour passer les graduations sur l'axe\n", "- xticklabels() : pour passer les labels\n", "\n", "Pour l'axe des ordonn\u00e9es c'est ylim, yticks, yticklabels.\n", "\n", "Pour r\u00e9cup\u00e9rer les valeurs fix\u00e9es : \n", "- plt.xlim() ou plt.get_xlim()\n", "- plt.xticks() ou plt.get_xticks()\n", "- plt.xticklabels() ou plt.get_xticklabels()\n", " \n", "Pour fixer ces valeurs :\n", "- plt.xlim([start,end]) ou plt.set_xlim([start,end])\n", "- plt.xticks(my_ticks_list) ou plt.get_xticks(my_ticks_list)\n", "- plt.xticklabels(my_labels_list) ou plt.get_xticklabels(my_labels_list)\n", "\n", "Si vous voulez customiser les axes de plusieurs sous graphiques, passez par une [instance de axis](http://matplotlib.org/users/artists.html) et non subplot."]}, {"cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [{"data": {"text/plain": [""]}, "execution_count": 14, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAF4CAYAAACW3co1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XecXXWd//HXZ1pmMpM66Y0ECCEQ\nIJAhATEgClJkqYvYECzEhqyuDX+4rqyLoiLqrjU20IVFhUUU6QgYpUgCIYQUQyBl0jOTTJLp5fv7\n43MuM5ncO/XemXtm3s/H4z7m1nO+c8v5nG/7fC2EgIiIiGS3nP4ugIiIiHROAVtERCQGFLBFRERi\nQAFbREQkBhSwRUREYkABW0REJAZ6HbDNbKqZPWFmq83sFTP7l+j+0Wb2qJmti/6O6n1xRUREBifr\n7TxsM5sITAwhvGBmw4BlwMXA1UBlCOFmM7seGBVC+EJvCywiIjIY9bqGHULYFkJ4Ibq+H1gNTAYu\nAm6PnnY7HsRFRESkB3pdwz5oY2bTgb8Ac4BNIYSRbR7bE0JQs7iIiEgP5KVrQ2ZWAtwDfCqEsM/M\nuvq6RcAigOLi4nlHH310uookIiKS9ZYtW7Y7hDC2s+elJWCbWT4erO8IIfxfdPcOM5sYQtgW9XPv\nTPbaEMJiYDFAWVlZWLp0aTqKJCIiEgtmtrErz0vHKHEDfg6sDiHc2uahPwBXRdevAu7r7b5EREQG\nq3TUsE8DrgReNrPl0X3/D7gZ+K2ZfQjYBFyehn2JiIgMSr0O2CGEvwKpOqzf1tvti4iISBoHnYmI\niHRHY2Mj5eXl1NXV9XdR+kRhYSFTpkwhPz+/R69XwBYRkX5RXl7OsGHDmD59Ol2dWRRXIQQqKioo\nLy9nxowZPdqGcomLiEi/qKuro7S0dMAHawAzo7S0tFetCQrYIiLSbwZDsE7o7f+qgC0iIhIDCtgi\nIiIxoEFnIiISCw9WwA+2wo4GGF8An5gE55X2bpsbNmzgggsuYOXKlQDccsstHDhwgCeffJIFCxbw\nxBNPsHfvXn7+85+zcOHCNPwXPacatoiIZL0HK+CmjbC9AQL+96aNfn+mNDU18fe//53vfve73Hjj\njZnbURephi0iIllh0drUj71cDY3tFpesC3DLZq9l722Cz68/+PHFs3pXnksvvRSAefPmsWHDht5t\nLA1UwxYRkazXPlgnVDX3brt5eXm0tLS8cbvttKshQ4YAkJubS1NTU+92lAaqYYuISFboqEZ8wcve\nDN7ehAL/OzKvZzXq8ePHs3PnTioqKigpKeH+++/n3HPP7f6G+oBq2CIikvU+MQkK201jLjS/vzfy\n8/P58pe/zIIFC7jgggs4+uije7fBDFINW0REsl5iNHi6R4kDXHfddVx33XUpHx8zZkxW9GErYIuI\nSCycV5qeAB1XahIXERGJAQVsERGRGFDAFhERiQEFbBERkRhQwBYREYkBBWwRERHgK1/5Crfcckt/\nFyMlBWwREZEYUMAWEZF4eLDCc5SevMz/pmGprptuuolZs2Zx1llnsXatrz6yfv16zj33XObNm8fC\nhQtZs2YNAFdffTV33333G68tKSkB4N577+Wss84ihMC2bds46qij2L59e6/L1p4Sp4iISPZLrK9Z\nF60CklhfE3qcTWXZsmXcddddvPjiizQ1NXHSSScxb948Fi1axI9//GNmzpzJc889x8c//nH+/Oc/\np9zOJZdcwj333MMPfvADHnroIW688UYmTJjQozJ1RAFbRESyQx+vr7lkyRIuueQShg4dCsCFF15I\nXV0dTz/9NJdffvkbz6uvr++06P/93//NnDlzOOWUU3j3u9/d6fN7QgFbRESyX4bW1zQ7eEWRlpYW\nRo4cyfLlyw95btulOEMINDS0Lh+2ZcsWcnJy2LFjBy0tLeTkpL/HWX3YIiKSHRbPSn1JrKPZXvv1\nNdteOnH66adz7733Ultby/79+/njH//I0KFDmTFjBr/73e8AD8wvvfQSANOnT2fZsmUA3HfffTQ2\nNgLQ1NTEBz7wAe68805mz57Nrbfe2ss3IjkFbBERyX4ZWF/zpJNO4oorrmDu3LlcdtllLFy4EIA7\n7riDn//855xwwgkce+yx3HfffQBcc801PPXUU8yfP5/nnnuO4uJiAL72ta+xcOFCFi5cyK233srP\nfvYzVq9e3eNypWIhpGhm6AdlZWVh6dKl/V0MERHpA6tXr2b27Nldf8GDFZlZX7MPJfufzWxZCKGs\ns9eqD1tEROJhkK+vqSZxERGRGFDAFhERiQEFbBERkRhIS8A2s1+Y2U4zW9nmvq+Y2RYzWx5dzk/H\nvkRERAajdNWwbwPOTXL/d0IIc6PLA2nal4iIyKCTloAdQvgLUJmObYmIiPSFvXv38sMf/rDbr3vT\nm96UgdJ0LtN92Nea2YqoyXxUhvclIiLSZakCdnNzx+lOn3766UwVqUOZDNg/Ao4A5gLbgG8ne5KZ\nLTKzpWa2dNeuXRksjoiIxFrFOnj5Tli22P9WrOvV5q6//nrWr1/P3LlzOfnkkznzzDN5z3vew3HH\nHQfArbfeypw5c5gzZw7f/e5333hdYlnNbdu2cfrppzN37lzmzJnDkiVLelWezmQscUoIYUfiupn9\nFLg/xfMWA4vBM51lqjwiIhJjFetg4xIITX674YDfBiid2aNN3nzzzaxcuZLly5fz5JNP8o53vIOV\nK1cyY8YMli1bxi9/+Uuee+45QggsWLCAM844gxNPPPGN1995552cc8453HDDDTQ3N1NTU9Pb/7JD\nGQvYZjYxhLAtunkJsLKj54uIyCC39o+pH6veAaHl4PtCE2x+2gN2Ux2sf/Tgx2f9U7d2P3/+fGbM\nmAHAX//6Vy655JI38oVfeumlLFmy5KCAffLJJ/PBD36QxsZGLr74YubOndut/XVXuqZ1/S/wDDDL\nzMrN7EPAN83sZTNbAZwJfDod+xIRkUGofbBOaO58requSgRn8FW6OnP66afzl7/8hcmTJ3PllVfy\nq1/9Km1lSSYtNewQQrLVun+ejm2LiMgg0VGN+OU7vRm8vQLvTyavsNs16mHDhrF///6kj51++ulc\nffXVXH/99YQQuPfee/n1r3990HM2btzI5MmTueaaa6iuruaFF17g/e9/f7fK0B1a/ENERLLfpJMP\n7sMGsDy/v4dKS0s57bTTmDNnDkVFRYwfP/6Nx0466SSuvvpq5s+fD8CHP/zhg5rDAZ588km+9a1v\nkZ+fT0lJScZr2FpeU0RE+kW3l9esWAdbn/eadkGJB+seDjjrL1peU0REBr7SmbEL0OmkxT9ERERi\nQAFbREQkBhSwRUSk32TTOKpM6+3/qoAtIiL9orCwkIqKikERtEMIVFRUUFhY2ONtaNCZiIj0iylT\nplBeXs5gWUeisLCQKVOm9Pj1CtgiItIv8vPz30gFKp1Tk7iIiEgMKGCLiIjEgAK2iIhIDChgi4iI\nxIACtoiISAwoYIuIiMSAAraIiEgMKGCLiIjEgAK2iIhIDChgi4iIxIACtoiISAwoYIuIiMSAAraI\niEgMKGCLiIjEgAK2iIhIDChgi4iIxIACtoiISAwoYIuIiMSAAraIiEgMKGCLiIjEgAK2iIhIDChg\ni4iIxIACtoiISAykJWCb2S/MbKeZrWxz32gze9TM1kV/R6VjXyIiIoNRumrYtwHntrvveuDxEMJM\n4PHotoiIiPRAWgJ2COEvQGW7uy8Cbo+u3w5cnI59iYiIDEaZ7MMeH0LYBhD9HZfBfYmIiAxo/T7o\nzMwWmdlSM1u6a9eu/i6OiIhIVspkwN5hZhMBor87kz0phLA4hFAWQigbO3ZsBosjIiISX5kM2H8A\nroquXwXcl8F9iYiIDGjpmtb1v8AzwCwzKzezDwE3A2eb2Trg7Oi2iIiI9EBeOjYSQnh3iofelo7t\ni4iIDHb9PuhMREREOqeALSIiEgMK2CIiIjGggC0iIhIDCtgiIiIxoIAtIiISAwrYIiIiMaCALSIi\nEgMK2CIiIjGggC0iIhIDCtgiIiIxoIAtIiISAwrYIiIiMaCALSIiEgNpWV5TRESk2yrWwdbnoeEA\nFJTApJOhdGZ/lyprKWCLiEjfq1gHG5dAaPLbDQf8Nihop6AmcRER6Xtbn28N1gmhCcqfhdDSP2XK\ncqphi4hI32s4kPz+ploIAQzYuRJqKqBwZOtlyDCwDuqaA7iZXQFbRET6TnOD16JTySuCnFy/3nAA\nqjZBxdrWxy0HhoxoDeBFo2H0Ef7YAG9mV8AWEZG+sW8LbHwKGqph+FTYvxVCc+vjlgdTTmm9PeUU\nvzTVQV0V1O2NLnugthL2boAhw1sD9qYlyZvZtz6vgC0iItKp5kbY8hzsWuW141kXQsn4rjdf5xVC\nSaG/pq2WZm9Cf+N2u2CdkKr5PWYUsEVEJHOa6mD1vdCwH8YdB5NPhpwo9JTO7F3NNyfXA31CQUnq\n4PzaYzBuDhSPB7Oe77MfKWCLiEj6heCBMXcIjJzul2ETM7vPSScf3IcNYLkwbBLsK4c9r8HQMR64\nRx3R2lceEwrYIiKSXrWV8PoTcPjbfGDY1FP7Zr+J2nqyZvbmRqhcBztfgQ1PQvlzMHY2TDgxNoFb\nAVtERNIrr9D/NtX3/b5TNbPn5sPYY2DMbNi/xaeMVW2CifP88USAz2IK2CIi0nvVu2D3api2EPKH\nwuxLs7Ov2AyGT/FLS5PfbqqHV34L40+ASfP6u4QpKWCLiHTFAE7I0SstzbD9Rdj2IuQX+eCyIcOz\nM1i3lxj8lpMLk+dDSdTHXlMBVRu9Np5flDWfvQK2iEhn4pSQoy+DS02F9wfXVsDomTD1TZA3JDP7\nyqScPB+IlrCvHLYu9ZOQoWOhZlfrfPF+/OwVsEVEOrPl78kTcmzJsoQcmTyxaHsikF8CxWO9Fpo7\nBI54u48CHygmnAAjpsGuV3zueHv9lIxFi3+IiLQXAtTs9uZegMbq5M9rPADrHoBtL3gWr+bGvitj\nMqlOLMqfab1ds9trxvX7fI50SzOdSpwIJOY4Nx6Ava9DUSkce/nACtYJRaNg2ptTP94PyVhUwxYR\nAQ+2+7f4yOGqzR6kZ57vg5Pyh0JjzaGvycnzNJtbl0Z3GAwthZIJ/roR0zJT1pYmT9FZWwm1UZrO\n2srUJxZNda3XX3sc6qsOftxyILcAcvL9b8n41mC1dZmPqG5/IgCeZSwxInygSpWMJSff/4YWT7E6\nbFLHi5KkgQK2iAxe9fuiAL0J9m/zfsqc/NZgO3SMP2/ygiQJOfJ8RHTpTB9lXL0DDuyAA9th12po\nrG0N2Jv+6rXQ4VMO3n9X+psbqr1WPPIwv735aZ9LTIjKkeNznYdN9P+jueHQ/zO/uPX6Yad7AG9u\ngJZG/9vcePD1nDahoWoTNKeYnjVAUn52KFUylkTO833l8OpDcMQ5/hk1N/ogtgwE74wHbDPbAOwH\nmoGmEEJZpvcpIoNcZ4GwqR7W3ue1VPD81mOP8QBbMuHQRBodJeQAH2g1YlprgA4trYGzqd4XqSgc\n6QG74QBseMpPDPZtal37ueGAL4xRtcn3P+lkKCiGPet9davjr/QRyyUT/LVFo/1SOKI1OLTvwwY/\nsZg8v/V2d7ONzb4EXr4zeXDO8nnLadHZZz9sEhx+duvJ2I6X/IRt1OG+KEkaU6FaCCEtG0q5Aw/Y\nZSGE3Z09t6ysLCxdurSzp4mIpJYqaJWM88B82EK/b8OT3gc7YpoHvUwKAQgeWKt3wca/+MjqVPKK\nfCBXyXgPEo01XtvvSq0tE6PEU72nhy3MrkF32aBqs89Hr9rsLTb5xa3Be+jYpMHbzJZ1pTKrJnER\n6ZosmYvaqa3PJx94Vb3LA3TC9Lf0XZnMgOhAXTwWjrkMli1O/fwTrmy9XlDSvZpsbxfUSLVNiMfn\n399GTPVLc4O3llSu99HmO1+GgmFR8D7SxzpEv6l5s6d1KVtLXwTsADxiZgH4SQjhoG+pmS0CFgFM\nm5ahARoi0jtxmYccQup+1ZbGvstp3RWpBjNlazNzJk4EBrLcAg/Mo4/0bpGqjR68d6zwwXrDJh/a\natGJvgjYp4UQtprZOOBRM1sTQvhL4sEogC8GbxLvg/JILzxYAT/YCjsaYHwBfGISnFfa+esk5lLV\nWvthLmpKtZWw6W+pH8+2QJh0MFOe3y8DS94QKD3KL011Psp/7R+6FayhDwJ2CGFr9Henmd0LzAf+\n0vGrJBs9WAE3bYS66LRqe4PfBgXtASm0eDPyvs2pa63ZMEq4qR62LfOR07kFMPooH6gV2swvzsZA\nqGbmwSkxDa4Hv52MBmwzKwZyQgj7o+tvB/4jk/uUzPlueWuwTqgLXuNWwB5AGms90UbV5mg6j/lg\np8Ro5rYKSnzK0ZARvhpSX6tcD5v/5rWWMbNh8sl+QBw+OR6BUM3Mg1eqLpEOZLqGPR6413xUXB5w\nZwjhoQzvU9IoBPjbPvjVdqhI0XqzI8m0T4mZ7ct9qtC4Y735rnpX6zSl4ZM9eCdrvp04D1592Ecw\nH3lO35e7pclPFmae3zpnGhQIJfsl6xLpREYDdgjhNeCETO5DMmdlNXx1A6yvg/H5MCwX9ifJYji+\nAPY3QY5BcTzWgR/4OhrR3VTvyR7qq2DiSX7f/q1RU92xXps+9p0HTz/pqPm27TzgxhqofNVru5mo\ncbc0e426qNRPLhL9gnFYGUqkrba/qS7K+Dzs7tA87P5X0wz7mmFCAZTXw+fXw3vHwzmj4dHKg/uw\nAQoNbjgMVlTDU3vh/+ZAoTLU96+kc2ZzvbbcVOvZuAgeoI97j2e1Ci3pycy0a5Vn9cor8gUU0h24\nQ/CsUsXjsnrdYpHu0Dxs6bYQ4MrVMLUQvnskTBkCd8xurbwk+qmTjRKfWgiHFbYG61XVMHuoKj79\nIumI7mZfrGHoGJgw14N38djWIJ2uNIpjj/HsW1uXeXau7S/1PnDv3+aLWhz+Nq/ZH3muvlgyKClg\nD3Ll9fDH3bBoEuQafGwyjGtzXG1/XDyvNPkAsznFfgFYcQA+uBbmD4N/mQKzhnZSiLgk5IiLjgay\nzL408/svmQBHvcNzam97IQrcy2H8CR7Quxq4G6phy3PexJ4YoFNQomAtg5YC9iC1psYHkj22x/ue\nzxgJxxTDWaN6v+3ZQ+GzU+GnW+F9q+GCUvjoJK+RHyIuCTniorEmexJylEzwwWCJwL3lOc+zfNjp\nHS/H2NLsWaG2vehN9RNP8laBHB2uZHDTL2CASpbg5NzR8Pf9Hqif2w/FOd4//Z5xMDZZMO2h/Bx4\n1zh4x2j4xXa4ayc8UgnvGw/vn9BmYFpzg9e+sj0hR1yUPweV62DCPJ+WlS0JOdoH7oJhfn9jLezd\nCNtfaK09jzzcM0LVV8GIwzwz2ZDh/VNukSyjQWcDUPsEJwD5BmPzYGsjlObBu8fDP4+Fkj4Y1b3t\nQA23b2/h7qoSpuXW86P8xxjXvBdLtXZvwrxFXsMKLapdpRJC9P7k+lSs/Vtg/PE+PznbuxnW/B6q\ndx56f24RzDgjc2tJi2QZDTobxH6w9dAEJ40BdjTCDdPg/FIY0tMxRqn6m0OL31e7x5cszM33/kpg\n4qu/4/pRM7jg6NP53uZ8tlU3sb9oEkeOGxXl1a07dD95Rf53/zZ49UE46gKvqTXV+QCp3DQ2CcRV\novugoNibmYvH+gXiMQ+5fn/y+3NyFKxFklDAHoBSJTJpAS4Z24sNJ+tv3vCkj+Btqjs4FeSwSW8E\nbA5bCAXDmFMMi2fl8OTeizhyOJALjx8o5k1VSyiitfm2ljzWjjyFueDBaNxxUBh1ru9aBVuX+jzc\nkgm+tm/JBMhvN7JtIA9kC8GX7yt/DggHr3UcJ021ye/vrOVFZJBSwB6AxuTDrsZD70866CuVEFpH\n41au9/STe9YnycoTPFiPOxYKR3pgLRzp2bISRh3+xlUzOLPNwLZ/2zeTM4FreZ7xHGAHJXyfk3lp\n30zuB9/WlAWtLxgxzct2YDvsXuPL1oFnu0oE8KY62LJ0YA5kq98HG56CA9t8tZ/DFsa3jzdbBsd1\nkRa+kf6mgD2A1LX4POjrJsMzG9bxsTZB8CeczIJJKYJVU52vdNT2UrcXjn+f9x3X7PJ1XVNNFwrN\nMOWUHpW5McDDzORhDi6bpUp3OnRMawrK0OInEvu3eQDb+zpUrMXXHW7XJxD3gWyhBXauhC3Pe5fA\nYadD6ax4T3GK0WpVWvhGsoEC9gAQAvypEr5XDj+cCeexjrNtCXnRgXAiB/iSLYk+7Jk+0KdyfWtw\nbts0mTvEE1+Mnul5mnPyYPICD8gv35n2GtH4Aj/4HXJ/V6bqWo5nvCoeB5zgb0TdHlh1d/LnNxzw\nAF80On2JQvpC7R7Y+JR/biOmwbSF3lUQdzFZrWpDHXxtkxa+kf6ngB1ze5v8TP+JvXBiSTRlauvz\nbwTrhLzQ5FOoSmd6ANi1CopGwYipHsASl7yiQ2ttidsZqBF9YtKhI9oBJhZAfUs3B8eZ+f+Qqqk1\nfyis/j8/KRkxNVrYYkrrcnfZaudKqKuCGW+FUUfEu1bdXhYOjqtthjt2wtwSKBsGjS1Qm2ShMvCT\nzWf3wYJhA+tjkeykgB1jf63yxTn2NXsz+HvHe7aylE3XiZr06CP9INndWmYGakSHpDvNh6OHwpNV\ncM1a+NYR3ex7h9QnFhPLfPR61SZf47nyVcC8hp5YmapodHYceWt2AwZDS70Pf1IZ5Bf1d6kGpJ0N\n8Mw+/+1cUOp5BO7c4Q02ZcPgyCKYkA/bk4wLyQGuXQcnFMPPsqSHIlN97XHpw49LOXtC87BjqKYZ\nvlMO9+72g8lXp8PMxCDpqk2+3GH7PlzwAHvce/qwpD335F748uveJ/+Nw+HEYd3cQGejxBP931Wb\n/FKz2+/PL/ZlItsu1djVbfZU++1OLINtS30g3VHv6P32B6GODtr1LfDiAXimygP1a9GswpNKYPEs\nv17bDEW5B28v2cI3X5jmQbq6Ga4Y50H+rp2+WM7oflgePFU5bzisd0Erk9tNZ3DNVDkzravzsBWw\nu6ufT99WHIAvb4At9Z457GOToCAHHz28+WkPPrlF0FLvQSnB8nxEcZY1P3bk9Vr4zHr/Xz8zFS4f\nm8EaTEO117qrNsP0M3ye944VsG+LB/DK9clr7b19T5OurJXnqTjHHZP9zfW9lImfU7KD9hCDM0dC\nVTO8sB/qgycTOrEEThkObxoBRxR2/P3qSllXVcP718CN0+EdpQdPtugLF7ycfExISY4nSwpEuXbw\ny2kjvOm/ohH+Z4dnQ5w1FDbWwd27/DktAe6vgJok3QJj8uGh46GqCf5R461jw/J8AGxji5/05KX4\n/7sSXOtbYF+Tf257m6Lr0e2qptbj3107fXsVTcn//zH58OBx2dECkowSp2RCPw8VrW6GT73q2cl+\nchScNAwfGLZ1ua+KZOYDxMbNgT2vZaY22IcnLDOK4Fez4d9eh29u9vveOS4ju/JBXGOO9kuC5XoT\nuuWkWAGryVOA5ub7UZDg/eQlE/zxyvW+3ZIJ/viuVf6c0NL6/O3Lk2+3Yg1MOilD/2x2SPZz+s/o\n53TmKG+qHpvvB/19TX7i1owHkBagOfj1xH3NwRegSZY4qD7AQ3vgsCGei+CU4TCv5OBadGdSLXzT\n1jHFcPexMDnqxvmfHfD8fu+ump/Bfu76FvjaxuTBCuBAC/x0m183vCkfYHSeB+z9zfDbnXBssQfs\n3Y3wh92+zoDhwfqc5yq49vdbGV/ZwI7RBXz/4kk8vMDfkNU13jXws1m+vcf3wL9v8H0MMX+fi3P8\n79AcGJoLL0YnTm0lBvLtaISfbfPAn0qB+fs6JsePieMLYFVN8ufuboRLX4E3j4CFI/xELT9G404T\nVMPujlSnrxMK4P7jMrbbrfU+CMvMv+Qzh0JJTvCcy5ufgYb9PhhpyimZHT3cT+1iLVEz44VjupFK\nNd0nFssWd+15I6b58o8AL/0aRh7mU7BCgBd+2r19zlvUvednWprf0wtehhOWHBoEXlpYyn/OgA+v\nhe/P9OD62B64/rXOt/n9mfDJdUk7hDDg+T5eQvvuXb4ITkWTd1+9d5w3lxf0MFjsaYSV1b7+/MvV\nMHWI//xCgPeuhm0NHnzbm5AP9x/f8//jW4sruPa2jRQ1tL6ztQXGf191GJ//SCn7mmBdrQf7klx4\nrda7G2qaPdi3/Vvb4pWPV1IEVwO+d6SvezA8F0bkRZfo+vA8GJnnJwLtT4BSHaKH58JxxX7y1BD8\n5OGKcfDxyT1/T9JJTeKQ3j7HJXvh0+tTP740M0eCf9TA1Wvg89Pg4rbdqqEFVt3j16ed5pnFMi3V\nr2FELnz9cJgfJfDYUOenv5Oi5Cm1zX46m6xtrJsnAXUt8IX1cNWEqIUhmUycWKSa0pZXBDPPA6Kj\nR25B6zS3hgM+LS7RrN1YGx1houdaDqz8TfLMXtk23iCN72kIfjD+w/9U8KX/OTQI3PS+w/jMNaU8\nu88HfY0tgF0NXnvKNa8d5hjkJv5G9+War8n+rlX9cl6dUkMLPFzpI89frfVc/peP81z+z1SlPgdq\nCv78lw94gF5ZDZvr/bFc4Kihvsrehye27itT59S1579M0c5D39TacQUUPdCzNzUT9Z/O/v/aZg/a\nS6r8BOqKcX5MuW4dfHCinxz2BwXsVH2D3elz3Fjni0MX5XoV7zub4aQKuGQrjG6AygK4dxI8X+pt\nce8c6+tT9vT0uY2m4PGtJXjT0GVjoTSn0ftVxx/ngaF+v9eo+2JO8d4mOOul1I/PKoI7olSk718N\no/Lge9H7fP4K2Nno/1Bhjp8aF+b4nK1N9f7PtjciFx6f60f3b2z2I1SuccCMh/cZ80Ya04vNt5k4\nei2Ifm1vW+6dXO315kiQju9TX2433c5bkTx9Xh4wvcirRYlLoh315GHwySn+vH9ZR5g/nL9dMJ7b\nNgc+8vV1HL/+AEOSfPa7Rucz9pGeVwezdeBR4kTljh3w9D7/2oI36ScUGPxbVM5PrvNaKniQP67E\na4nHFXvTe2GKn33ae63K6+HilckfM+BTU+Bto/z31Q3ZMpBtUx186XW4drLXOV6p9u6AhSP9hLEw\nJ4M9gdGGy564gqXVqzrtMBksCUhLAAAgAElEQVSYfdihpfNlG7f83afzjJzuv6TKV70vknx4sR4e\n2gd/r4NPzYALo9PhceVQtAkKoo6V0gZ4/ybvtHl4iI8G+065V4UvG9vlL/BBX4Z872d5Zp+PWB1f\nAIsSlefqvb48YeEIn5o1pLtDp3vo4UrvIEtlTL7XsBOum3JwbfrqCT73rK7FL/UtrddfS7LwB7QG\n3Ba8Q6w5QFOgpDlwaVPA2sfjy8Z4wG4OyYM1pE6y3hWZSvKRrclDGltgfZ2PIoLkwRqgCW+XbWkz\nkikxUmlom/6LPOPPB4wvvArTcgIz8gIFyU7UgDGVjV5Nvmq8HxUTlYoudgAfMlUwS6b2mPlXdMFw\nbzK+as2h87sbAnx/i5f1nWN94Nrxxa1dYl3Rlb72LtnTCD/f7u36qYzK82Pe1CF+vNtU500hC4bB\nqI6HyWfqc+ru/z+t0MfKJLxeBw9Uwj27vW4xvdB/Comva9qGLj1YQdN/biSvfUd+BwZODTu0wIEd\nnu96z+upFxYA7xtccYcfFCfP93WZl9/Wwcajps4QoCXJQb+gBI59t58+/26nt7cA/H5Oa7NwCsnO\nMgGmFsAPj4KJLXtgX7nXqsFHg/dF7uj9TT4iZEw+rKmBX26D2UOjkSBpPCXuabtYCGyvhStWBGYV\nBL56pDF+eI5/Rue/nDzA9LYjb6Db3gBPV8HfqrzdsDHAn0/wFqZzXvKO2PY6+JyaAzy6xwPOpCGw\nutqbeM8rjc7nOhrSPKcELiyFt4/2F330H/C1GV4Fqmn2ml13RoxloZOXZU9f+0Fqmr0Z4Nc7/OT6\nwjFwZCH895bkv/0Th3mncmEO3LbdzzjAT/ZOGe7B+4SStLQ89pWGFnjhgPeE3r3r4FaQhMRX/5kq\nONAMZ4/2+7fWeyPT8Fwoykl9otW2m6Fs9ZWDoIbdds7Ea497LmnL9YE/+7dBc5LaW6J/8fj3+hHl\nb1Vwz05YeywUNkNZEZxRDDPzIDR6MG+J/u5albwcDQdg5Z0wphT+dTR8YgSsyPfTYoAfbfEj1kWH\nzu1NNqIVIK+lgYm7XoAdL/vJQulM7wvti2Dd2ALvXOVNmv8xw3943zjCHxtfkN5T4mSpzgrN7++I\nGROGwo1HG//+Olz5Otx8OJw0zDyLTLKzoGG5/svqi0XA46ApwPID/ht4usqrEeDf2/NG+5yfREvJ\np6Z0+3OqbIQbN/h4g49OgtnFfnlDqs/+C9MO/k7lmQ/tTZz8PlQJ39jkoy+PL4bjSw6thsYge0bK\ntLz9vXLspnpYvA3eMhI+MdmrmOCjvTp7T68c78eNZ/fBc/vg19s9iBfm+ET3U4b7ZUY0hy5LP6eC\nnNai/jZFA0Oiwe6e3d5rkAjYN7zuAwLBv7rDcj14D8+Lruf5W/qhJGMCOhPfGnbVJtj0Vzj6Es8A\nta8cmuo9WOfmd61v8P+9Bo/s8bkNF42BS8fAxA5qxCkHHg2F4ZOgpsIXzUicN+fkQeFoeD4XckfB\nO0/yQUob69/4EZy8DN7OuoNWq1rCVM5kI2Op8WlGk07OfJar6mZvev6nUv8h3V/hozISTaKZ1Msf\nbdv52v861ZsS7aF221xQAvdX+qik7xwJkztu+Yi9VO9p4iT3mSofdl3d4keVE0s8QL+pzcG0q9uM\nNLTAHyp8kNSNM/y+tTUws8hrHN0qZ0fW1vh3dUW1dzgm2pVL8zx4FwBPVHn7ckIWZvnIqr72J/Z4\nS9rHomHTm+tgahpyAFQ3w7L9HsCf3ecnA6Py4OHjvavtqxvT/zmlWWeNgNXRyPcxUQ/As/tgW733\nAu5v9imJbf9WNcGbtlbzuS+tISf617taw45HwA4Bqnf43OKR031EdG2lr4s8eYH36Sbz5xchvAQj\nGqCqAPbPgaWl8OkpUJoPz+/zwVRvGdm1SXldOQloafKgXbPby1hTAbUVXkM/+hJYUwjf/zuct4/X\nik/l9nH7uSH8hYLcgxtdtjGMiUe/LVrYIoNqmv0U8tfbve/310e3qwbFw4Fmn6+9pMrPOU4qgZ9s\na3dsfX0/fH69R49bjvCxB90Qm5SPSfrGmguM3FF5cM0kH2OxvQF+vs2D9MnDoiT0PVPXAvfugl/t\n8J6IOcU+vapPGjLaD6VecQC2pKi5JI6wP9vmR9ShbSYFF0ftl8XRfSPzfCAj+NDix/fAzZvSHl2z\npoL5vXKPNLcd3c0E/t20td6ro/OHwwUrkud77a/h/Cmk/cRqdTV8fB1VLTCkoYXCxhDTgH3MYWHp\nb77uNcrRR7YG6T2v+9QXy/W8yuPmdL6xZO9yQTT/49tHto4o7q6eTBULwZ+fPxT2BXjyBULhGuzL\nx9By00pyRh96gGloLKLglCt7VsauqG2G30VH2b1NXrNaNMmPtjHVEjw5xE+3HbrA5hs/sAN18OlX\nfcLqlw7zUT2daApw3y64tfzgRA8FBh+dCGeMSj7daHiunwc2Be9lGJLj97ftyclELSvVFJymITnk\n3TTDT1B7oH1w+fAEP8e7YwdUNvlJ0ocnevzv14xSnXUOf2G9B/fE5OBkzz28EH57rF//4BqvfTYk\neWKWBZcuW1vjfc3vGQenjvCzrvxojlxfydpO/EOl7cQqCtaU5PLkzUfx5F8O8JF7t/JPf+vaKPHs\nC9i/vgEwyMn3AV6W6ysqjT4iau7uYgfPO1Z4upz2xufDn/pv4NGmOh+VSHNgzSNVzBr72+QHtwCU\nLUp/bsO6Fh9F8avtfpQ9dTgsmuhzRgaIs17yc5D2xuTBQyfAll1NNH3uNQ5buZ/brj+S5XNHUBs1\nayUGr9e2wGenepKLF/fDNf/ofjnaJ/246xjvZfjfHfDtcg/sKcazk4fHi2mF8NRe+P1u+OoMr7U+\nude7B4fk+ElDQTRTriAHhu9t5Nz3rCDZN6YFyFk6j8pGjz155sfoAvMTi1xSf9VSDY4E/x8/NKEH\n+d4zpTsDGVuCf+Dts3vkWGsLzAMVPgMkmSwMLh3aUg8/3goPVvrUyc9N83yk/SHV52R4K+jlY+OZ\njiyVRLAelgs/PgomDXnjROCJK8qoXrU0roPOAoRmmH6mZ4rqapAG/wE+UJk8WIPPB+4nf63yyt1/\nHQmnjjCOPm8kPFLg08Paq4z+5+te9Sa6xKCvhyr9qD11CEwqSP2FTnZK2BDgh1t8tO/8YfCRST56\nc4CpShKsAXZH9+8vzuO6a2dy8ZJdPDlrOAWN3ho6Ms+DYFF0SYwZ7Kwr76vTk6fMTIzVObIIPjm5\ntY/r2GKviTYH+OX25NtsorVlsrbFm5oTn/S6Gnik0mv79VEFsbi2mfc/vJ0LH9+Zspw7RhcwEZ+F\n82DloY8bHsDzzfNBJ2Lb98o9bWWy2SeleX5iklW6M5Axx6Km8VwgxTSk80vhh1uTB5ccvP/3LSOz\nJ1F1st/+KcPhF9u9VS0X+MAEeP94/6D7S7LPqcB8isyt5V6x+PQUn+eaLe9tTyUJ1tA6Bc1WL1vW\nlc1kacDGA3Z356K+sN8/6DU1Xn1INs+zH4Zg1rX4IMmkMfKJafBP62FIm7LWm9//drzpPj/6soYA\nX9/oA4XADxYTC2DKEI8qU4Z4IN9S74G5fc7zhSM8QffNE7OoOpR+KUffRsfjo4fCI2UGZeP4OHjS\n6q9vgi9Og3GHfj/G5HvlLFWlrbOmsemFMH1C6+3jS/wCHjhTbTfxVT139MGVoGsm+QUg1LbQ8rud\n5Ny2HdvXTN1Zo/jp6KFc+futh2QQ+59/nsTngEvGROs8R031DaH1emN0ve1p4Nj85MEavJEm62Ri\ngm+q4DIyFz73mk9d+ty01rO0/pIsQfuNGyEn+FngRWPgmolJv+d9LtXndO5o+Ns+uHWzZ5dcMMxH\nkx4R0+Vl19QkDdY9kb0Bu6AbNb/NdfBfW+CJvX5U/up0D25fSzJIpLPpQmnU0OKzIx6t9CRgJbkH\npxEE4PQT4DfN8I4trdnT/jQZzj3BH3/f+IOf//s5np/wjUud/324sjWJcFHOoW2XdcHnGgyCecip\nKljXpsobvKneVy+oakp5IOvp7LOelrVL261pxt65itztDT4G4eOTKTx6KFMr4BvD8vnIva05un9y\nySQWXOYHyJOGdZDWNYn3jIc7d2bpFKRU0pY9pM324NDgcvZorwn+ZCtc8YovifXhif03dTDZPNGm\n4H0mv5ntJ+zZJNXn9OYRHqjv3uUH0XevgkvH+vzAkdkbtpIamec5LL50WK+CNWRrwLY8H8zVFTXN\ncOUab1/86CQPcImcfWb9NgRzTQ38++s+tfXCjnZ5XilwEvzXhM7LaebZg0blt1bR2qpq8uD9gTXJ\n95Wqm2CA6XYFq2wY3DentQ16bY2vYtCbbWaqrCH4qglzir0Z95Ix3mRTNuzgbb6zlGveXNrv0+UH\nlFTB5V3j4JxR/iHescNbxD7RT6tKpFquqyFkX7DuTH60Juh5pX5CdN9un7MZl4BdHq3aNCHKgpUG\n2TfoLDFKvKPm8KbgI2/eFvUbPbXXOwbHpOiD6kNNwWfL/GKbx9UvHeYni32qn1YVGxAeqYT/97pH\noqsnZF/f2V074dub4X+jEWx9KGumIGWzVdU+UrAk11fryMETf2fS3qbWIHbqC96n0d5A+O3vaWxN\nd/q9cpg3rB8Orl20uxEuf8VzeyTy6Xcga9bDNrNzge/hQx1+FkK4OeWTh47t2gpFD1XCVzbA4qO8\nbe+Mnk1TSbdXa71WvbbWE0V9dqovB9fnVB3quTNGttaWNtT5/Kr+Tqm4qtrPBI8vgfNH+9qAM/q+\nrzTdrcwDUtvg/MMtPp7knjnJV6rrjZpm+PNeT3C04gA8cLwH7U9Mgh9tPXjQwUD57SeCdXWzJ1wY\nmpO9AXtMvs++SXNsymgN28xygX8AZwPlwPPAu0MISXN8dpjpbF2Nj/A+bYQfvJ7f5yMfO6gB9VWN\noCn4LKnF23zu7RenwZmj0r+fblF1qOdC8EUPfrwVTij2JCudLGSQERvqvAyP7fHJzT9KT7Oa9JED\nzZ4o5KihPvL0oUq4oLTnwbsleNaw+ys8WNe2+EDTC0p9ClSidjAYfvtN0VSMghxvbX12H3xkYv/8\nTttaVe0zD7qZITIrltc0s1OBr4QQzolufxEghPD1ZM9PGrB3N/pB677dXqu465gO8hy2emA33LTp\n0BPNTGS9S8zTPWsUfGFq/39nJE0ejVpyxuTDrUdmbpRq+wPs+8b54Ic/7PZ+9feO94tyoMfX/RX+\nXTqyyJveyrox6m9Tnb/+gWhKQXGOD3a7oNRPKLOt26av3bbd12soikb1jsyFH7dPc9gHJyyroqlb\n04bA7Ud363PJloD9z8C5IYQPR7evBBaEEK5N9vziY8rCmb9Z6u9vcYsP4Lhtu/fJXDEWPjTRM6dH\nNtT5VJSZ0cnM1zb6fTsaUmcnLMqBJSf69cVbvev7tBFeqXqtzo/Nw3M7TiCROLaOzvM1Ec4r9ZTG\nx8Y3SZiksrIaPvOq15AuHQOP7k3vgSBVRhLDBzN9YAKM1hlg7IXgs1i+U+5Z9s4eBf8yxc/2O8r5\nvrfJV0oL+BTPd5T6nO9Ui2EPVq/X+nv79L4O0hxmMGgngvWIaOpWR2tSJJEtAfty4Jx2AXt+COGT\nbZ6zCFgEMG/o7Hl/PO0unj5uBOeuqqJ4VyPbThvJX98/mX+MKWRHg1c4vhXlEPngGm8R+XHUUvix\nf/hUqgkF8PCe1OVaOs9/D299qXVMwL4mvw0+yLM034N3aV70Nx+218NDew7OUDjEfGDZQGtxkja2\nN8CH1xya97irB4LGKJNWS2htfll+wM8eP7M++QDBsfnw4MCfgjfo1LV4/9nt231mC+3yRRSaD6bK\nMV+kBrylZ24JjM3WOXRZ5OyXYE+yZWAzuLRuL4M1ZM+gs3JgapvbU4CtbZ8QQlgMLAYoKz4mTKxs\n5LKndrNldD6f/sxRvHCUNx2N2uuB+PA2Y20+NeXg8UBtu/he6mCgNPjJ659PaE0NWZDjy+3ubvRL\nRfR3SwO8VJ081SV4k/sPtipgD2gTCpLnPK5r8+HftNGn1NVEOU7f+NvSekCeVwI/meXX/2OD93Pt\nSNEUtHtwTMEbdApzPGf/BaU+irh9Rpq64HnOzx/tJ3g51rpuo3Qu1YE6cbK9pzFa8zJNoS8Nwbo7\nMh2wnwdmmtkMYAvwLqALw8B9NsQ17xjG+ALPZZGsBSjZVOSErgyUNmt9Awpz4O0d/C4aW+BNLyY/\nbqc65soAkiqlbeLDP9DsgXlkHkyMVoAqavs35+Af800zfGWoFdUxy0giaTFpSPLFRMC/S5+b1rfl\nGSg6S3N4x05P5v/4XD/o72n0wXpdGBd1iD4O1pDhgB1CaDKza4GH8WldvwghvNKV146vbGRiDxfU\ngvQnusjPyeIF5yXzOvvwv35497aXWMJUU/AGLx1Q0q+zNIdnjfI1GBI1wM+/BhvrfMbRm6Lsal0Z\nNdwPwRr6YB52COEB4IHuvq5+XAG9HZOb7nmjOrYOYpn68DOVQk2ynw4o6dfZ7+nooQdPubpsLPyt\nygerPVDpA9ZmD/XgfepwH0mcZ4fO5Jhb3OfBGrIt01nxMWHp7F/TNMTIy9KRXINhiqOkoA9f0k3f\nqezQEnw9gWf2wdNVPjukBV+w483DfYR/+xOrz06Fi8emZfdZMUq8u8qKjwlLz/yNvrQiItJ/9jXB\n3/d78P5LVfLBbGlM95oto8S7Z/bQ+Oe7FRGReBue5/3dZ42Ck1MsVd0Po401+15ERCSVVIMA+2Fw\noAK2iIhIKp+Y5H3WbfXT4MDsahIXERHJJlk0k0MBW0REpCNZsrasmsRFRERiQAFbREQkBhSwRURE\nYkABW0REJAYUsEVERGJAAVtERCQGFLBFRERiQAFbREQkBhSwRUREYkABW0REJAYUsEVERGJAAVtE\nRCQGFLBFRERiQAFbREQkBhSwRUREYkABW0REJAYUsEVERGJAAVtERCQGFLBFRERiQAFbREQkBhSw\nRUREYkABW0REJAYUsEVERGJAAVtERCQGFLBFRERiIGMB28y+YmZbzGx5dDk/U/sSEREZ6PIyvP3v\nhBBuyfA+REREBjw1iYuIiMRApgP2tWa2wsx+YWajMrwvERGRAatXAdvMHjOzlUkuFwE/Ao4A5gLb\ngG+n2MYiM1tqZkt37drVm+KIiIgMWBZCyPxOzKYD94cQ5nT0vLKysrB06dKMl0dERCRbmNmyEEJZ\nZ8/L5CjxiW1uXgKszNS+REREBrpMjhL/ppnNBQKwAfhIBvclIiIyoGUsYIcQrszUtkVERAYbTesS\nERGJAQVsERGRGFDAFhERiQEFbBERkRhQwBYREYkBBWwREZEYUMAWERGJAQVsERGRGFDAFhERiQEF\nbBERkRhQwBYREYkBBWwREZEYUMAWERGJAQVsERGRGFDAFhERiQEFbBERkRhQwBYREYkBBWwREZEY\nUMAWERGJAQVsERGRGFDAFhERiQEFbBERkRhQwBYREYkBBWwREZEYUMAWERGJAQVsERGRGFDAFhER\niQEFbBERkRhQwBYREYkBBWwREZEYUMAWERGJAQVsERGRGOhVwDazy83sFTNrMbOydo990cxeNbO1\nZnZO74opIiIyuOX18vUrgUuBn7S908yOAd4FHAtMAh4zs6NCCM293J+IiMig1KsadghhdQhhbZKH\nLgLuCiHUhxBeB14F5vdmXyIiIoNZpvqwJwOb29wuj+4TERGRHui0SdzMHgMmJHnohhDCfaleluS+\nkGL7i4BFANOmTeusOCIiIoNSpwE7hHBWD7ZbDkxtc3sKsDXF9hcDiwHKysqSBnUREZHBLlNN4n8A\n3mVmQ8xsBjAT+HuG9iUiIjLg9XZa1yVmVg6cCvzJzB4GCCG8AvwWWAU8BHxCI8RFRER6rlfTukII\n9wL3pnjsJuCm3mxfREREnDKdiYiIxIACtoiISAwoYIuIiMSAAraIiEgMKGCLiIjEgAK2iIhIDChg\ni4iIxIACtoiISAwoYIuIiMSAAraIiEgMKGCLiIjEgAK2iIhIDChgi4iIxIACtoiISAwoYIuIiMSA\nAraIiEgMKGCLiIjEgAK2iIhIDChgi4iIxIACtoiISAwoYIuIiMSAAraIiEgMKGCLiIjEgAK2iIhI\nDChgi4iIxIACtoiISAwoYIuIiMSAAraIiEgMKGCLiIjEgAK2iIhIDChgi4iIxIACtoiISAz0KmCb\n2eVm9oqZtZhZWZv7p5tZrZktjy4/7n1RRUREBq+8Xr5+JXAp8JMkj60PIczt5fZFRESEXgbsEMJq\nADNLT2lEREQkqUz2Yc8wsxfN7CkzW5jB/YiIiAx4ndawzewxYEKSh24IIdyX4mXbgGkhhAozmwf8\n3syODSHsS7L9RcAigGnTpnW95CIiIoNIpwE7hHBWdzcaQqgH6qPry8xsPXAUsDTJcxcDiwHKyspC\nd/clIiIyGGSkSdzMxppZbnT9cGAm8Fom9iUiIjIY9HZa1yVmVg6cCvzJzB6OHjodWGFmLwF3Ax8N\nIVT2rqgiIiKDV29Hid8L3Jvk/nuAe3qzbREREWmlTGciIiIxoIAtIiISAwrYIiIiMaCALSIiEgMK\n2CIiIjGggC0iIhIDCtgiIiIxoIAtIiISAwrYIiIiMaCALSIiEgMK2CIiIjGggC0iIhIDCtgiIiIx\noIAtIiISAwrYIiIiMaCALSIiEgMK2CIiIjGggC0iIhIDCtgiIiIxoIAtIiISAwrYIiIiMaCALSIi\nEgMK2CIiIjGggC0iIhIDCtgiIiIxoIAtIiISAwrYIiIiMaCALSIiEgMK2CIiIjGggC0iIhIDCtgi\nIiIx0KuAbWbfMrM1ZrbCzO41s5FtHvuimb1qZmvN7JzeF1VERGTw6m0N+1FgTgjheOAfwBcBzOwY\n4F3AscC5wA/NLLeX+xIRERm0ehWwQwiPhBCaopvPAlOi6xcBd4UQ6kMIrwOvAvN7sy8REZHBLJ19\n2B8EHoyuTwY2t3msPLpPREREeiCvsyeY2WPAhCQP3RBCuC96zg1AE3BH4mVJnh9SbH8RsCi6WW9m\nKzsrU5YYA+zu70J0QVzKCfEpa1zKCfEpa1zKCfEpa1zKCfEpa6bKeVhXntRpwA4hnNXR42Z2FXAB\n8LYQQiIolwNT2zxtCrA1xfYXA4ujbS0NIZR1odz9Li5ljUs5IT5ljUs5IT5ljUs5IT5ljUs5IT5l\n7e9y9naU+LnAF4ALQwg1bR76A/AuMxtiZjOAmcDfe7MvERGRwazTGnYnvg8MAR41M4BnQwgfDSG8\nYma/BVbhTeWfCCE093JfIiIig1avAnYI4cgOHrsJuKmbm1zcm/L0sbiUNS7lhPiUNS7lhPiUNS7l\nhPiUNS7lhPiUtV/Laa3dziIiIpKtlJpUREQkBvo0YJvZ0z14zWgze9TM1kV/R2WibO322ZNypkzT\nmkk9KWub137WzIKZjUlnmVLsq0flNLNPRultXzGzb6a7XCn22ZPPf66ZPWtmy81sqZllJFFQD8t2\nefT+tZhZWbvHMpZCOJ1lNbOzzWyZmb0c/X1rNpazzePTzOyAmX02PaV8Y7vp/vyPN7NnosdfNrPC\nbCunmeWb2e1R+Vab2RfTUcZelrV/0nKHELLiArwFuC3J/d8Ero+uXw98I0vL+XYgL7r+jf4uZ0dl\njR6bCjwMbATGZGM5gTOBx4Ah0e1x2fqeAo8A50XXzweezKKyzQZmAU8CZW3uPwZ4CR84OgNYD+Rm\naVlPBCZF1+cAW7KxnG0evwf4HfDZLP7884AVwAnR7dK++Px7UM734JkzAYYCG4Dp/fyeJj3eZ/o3\n1dc17AM9eNlFwO3R9duBi9NXouR6Us6QOk1rRvXwPQX4DvB5UiS0SbcelvNjwM0hhHqAEMLO9JYq\nuR6WNQDDo+sjSJF3oLd6+N1cHUJYm+ShjKYQTmdZQwgvhhAS7+krQKGZDeltGSHt7ylmdjHwGl7O\ntEpzWd8OrAghvBQ9ryKkaTZPmssZgGIzywOKgAZgXy+L+IY0H+8z+puKQx/2+BDCNoDo77h+Lk9X\ntE3TmnXM7EK8hvJSf5elE0cBC83sOTN7ysxO7u8CdeBTwLfMbDNwC9FCOFkurimELwNeTJzIZRMz\nK8ZzU9zY32XpgqOAYGYPm9kLZvb5/i5QCncD1cA2YBNwSwihsn+LdJA+S8vd23nYvWZmz+HNByXA\naDNbHj30hRDCw/1XsoN1tZx2aJrWPtdRWYElwA342XW/6sJ7mgeMAk4BTgZ+a2aHh6jtKcvK+jHg\n0yGEe8zsncDPgQ6zBPZh2VK+NMl9GX1ve/t7N7Nj8SbIjH5/e1HOG4HvhBAOmCV7e9OvF2XNA96M\n/7ZqgMfNbFkI4fEsK+d8oBmYhB8PlpjZYyGE1zJRzu6UNcnxPrO/qb7oB2jT7n+gB30Fa4GJ0fWJ\nwNpsLGf02FXAM8DQbH1PgeOAnXg/0Ab8y7YJmJBN5Yzufwh4S5vb64Gx2faeRvdX0TpN0oB92VK2\nNo8/ycF9g18Evtjm9sPAqdlY1ui+Kfgyvqdl8Xu6pM1vay9QCVybpWV9V9vnA/8GfC4Ly/kD4Mo2\nt38BvLO/31OSHO8z/ZuKQ5P4H/A3hujvff1YlpQsdZrWrBJCeDmEMC6EMD2EMB1vsjkphLC9n4uW\nzO+BtwKY2VFAAdm7QMBW4Izo+luBdf1Ylq6KTQrhaBTun/CD4d/6uzyphBAWtvltfRf4Wgjh+/1c\nrFQeBo43s6FR//AZeHbKbLMJeKu5YrzFbU1/FqiD431Gf1N9HbB70jRwM3C2ma0Dzo5uZ1pPyvl9\nYBiepnW5mf04zWVKJS6Zb3pSzl8Ah5uv4HYXcFWITlszrCf7uAb4tpm9BHyN1hXo0q3bZTOzS8ys\nHDgV+JOZPQwQQngFSKQQfoj0pxBOW1mBa4EjgX+Lfl/LzSxd41nSWc5MS+fnvwe4FXgeWA68EEL4\nU7aVE69hlwAro7L+Mpf17Y8AAAWcSURBVISwIk3lhDQe7zP9m+qzTGdmVop/Ibq0jFh/iUs5IT5l\njUs5IbvLms1lay8uZY1LOSE+ZY1LOSFeZYU+qmGb2SS8rf+WvthfT8WlnBCfssalnJDdZc3msrUX\nl7LGpZwQn7LGpZwQr7ImKJe4iIhIDMRh0JmIiMigp4AtIiISAwrYIiIiMaCALZIhZjbZzK7sh/2O\nN7P39/V+RSSzFLBFImbWHM2pfMXMXjKzfzWzHv1GokQftwIZSfPYkRDCDmCImV3bndeZ2dVm1uUk\nH+ZLip7f3fKZ2SQzu7s320gXM5tuZu/pr/2LdIcCtkir2hDC3BDCsXiSnvOBf+/OBswsFyCEsDeE\ncEVoXWEq46JMUDnR/n/aBxm25uLvUbKypFynIISwNYTwz51to49Mx5dvFMl6CtgiSQRfynMRcG0U\nCA+qfZrZ/Wb2luj6ATP7j2jBgFPNbJ756mLLzFdCmhg97wgzeyi6f4mZHd1+v2Y238yeNrMXo7+z\novuvNrP7otevNbN/j+6fbmarzeyHwAvAVDN7u5k9E23jd2ZWEj33ZjNbZWYrzKzDuadmNtbM7jGz\n56PLae0eLwD+A7giapW4wsy+YmaLzewR4FdR2ZaYrwT1gpm9qU2ZV6bYRrGZ/SLa54tmdlGb///3\nZvZHM3vdzK6NWkBeNLNnzWx0R++xmd1mZv8VvaevmVnihOFmfEW45Wb26S5+PUT6R7qSkuuiS9wv\nJFkEANgDjAeuBr7f5v77iRYmwVMbvjO6ng88TbRICXAF8Ivo+uPAzOj6AuDPSfY3HMiLrp8F3BNd\nvxpfXrAUXxN4JVCG1xBbgFOi540B/goUR7e/iLcSjMYX0knkXhiZZN9v/I/AncCbo+vTgNUdPT+6\n/RVgGVAU3R4KFEbXZwJLo+vTgZUptvE14H2JMuKLfRRHz3sVTwc5Fl9s5aPR874DfKqj9xi4Dfgd\nXkk5Bng1uv8twP39/d3TRZeuXPp9eU2RLNeVNRKbgXui67OAOXiOYYBcYFtUy30T8DtrXXZxSJJt\njQBuN7OZ+IlAfpvHHg0hVACY2f/hSyP+HtgYQng2es4pwAw8FzNAIZ4neh9QB/zMzP6En3B05Czg\nmDZlHW5mw0II+zt53R9CCLXR9Xzg+2Y2F3+PjurkteDLZl5oZp+NbhfiJwwAT0T7329mVcAfo/tf\nxhex6Ow9/n0IoQVYZWbju1AWkayigC2SgpkdjgeanfgypG27kArbXK8LrQn+DXglhHBqu20NB/aG\nEOZ2stuv4oHpEjObji81mNA+LWHidnXbXQFLQgjvSvL/zAfehi+reC3RSmgp5ODLAtZ28Jxk2pbl\n08AO4IRoe3VdeL0Bl4UQ1h50p9kCoL7NXS1tbrfgx7IcOn6P276+bxarFkkj9WGLJGFmY4Ef4821\nAV/feK6Z5ZjZVGB+ipeuBcaa2anRdvLN7NgQwj7gdTO7PLrfzOyEJK8fAWyJrl/d7rGzzWy0mRUB\nFwPJlpl8FjjNzI6M9lNsZrOi2ueIEMIDwKfwwV4deQQP6kTbSfb8/XgTdSojgG1RrfZKvLWhs208\nDHzSoiqymZ3YSTnf0I33uKP9i2QtBWyRVkXR4KNXgMfwoHVj9NjfgNfx5tdb8AFehwghNAD/DHzD\nfKnN5XgzLcB7gQ9F978CXJRkE98Evm5mf+PQAPdX4NfRNu8JISxNsv9d+Lrx/2tmK/DFDWbhQen+\n6L6n8NpvR64DyqIBaquAjyZ5zhN4s/lyM7siyeM/BK4ys2fx5vDqJM9pv42v4k3pK8yXVf1qJ+Vs\nryvvcVsrgCbzaXwadCZZTYt/iMSAmV0NlIUQujW3WkQGDtWwRUREYkA1bBERkRhQDVtERCQGFLBF\nRERiQAFbREQkBhSwRUREYkABW0REJAYUsEVERGLg/wP22IBj1oSJdAAAAABJRU5ErkJggg==\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["from numpy.random import randn\n", "\n", "fig = plt.figure(figsize=(8,6))\n", "ax1 = fig.add_subplot(1,1,1)\n", "\n", "serie1=randn(50).cumsum()\n", "serie2=randn(50).cumsum()\n", "serie3=randn(50).cumsum()\n", "ax1.plot(serie1,color='#33CCFF',marker='o',linestyle='-.',label='un')\n", "ax1.plot(serie2,color='#FF33CC',marker='o',linestyle='-.',label='deux')\n", "ax1.plot(serie3,color='#FFCC99',marker='o',linestyle='-.',label='trois')\n", "\n", "#sur le graphe pr\u00e9c\u00e9dent, pour raccourcir le range\n", "ax1.set_xlim([0,21])\n", "ax1.set_ylim([-20,20])\n", "#faire un ticks avec un pas de 2 (au lieu de 5)\n", "ax1.set_xticks(range(0,21,2))\n", "#changer le label sur la graduation\n", "ax1.set_xticklabels([\"j +\" + str(l) for l in range(0,21,2)])\n", "ax1.set_xlabel('Dur\u00e9e apr\u00e8s le traitement')\n", "\n", "ax1.legend(loc='best')\n", "#permet de choisir l'endroit le plus vide"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Inclusion d'annotation et de texte, titre et libell\u00e9 des axes "]}, {"cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [{"data": {"text/plain": ["Text(5,-10,'$\\\\mu=100,\\\\ \\\\sigma=15$')"]}, "execution_count": 15, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAGDCAYAAADDONJAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8lNXVwPHfyTJZgUBYEnZEQBQE\n2bQqLq/WpXVDq9a1rmjVtu/bt62tS22rttaqta32tai1rrXWFnfrVheUCoKCoKiIskOAsGWfzMx9\n/zjPkEmYSSbJTGYynO/nk89ktmduMsmc59577rninMMYY4wxmSkr1Q0wxhhjTPJYoDfGGGMymAV6\nY4wxJoNZoDfGGGMymAV6Y4wxJoNZoDfGGGMymAV6YzKMiJwjIi+3cv8bInJJlNvPEJFXRCQ/Qe34\nmYg8kqBjDRWRahHJTsTxjNmTWKA3pguIiBORvVvclrBAGMk596hz7pj2PEdEDgAuBk5xztUnuk3t\nJSIrReTo8HXn3GrnXLFzLujdH/VkpROvlyMid4vIGhHZLiJ/FZGCRB3fmFSyQG+MwTn3gXPuWOdc\nTarbkggiktPOp+QC24DJwDBgBPCdRLfLmFSwQG9MGhCRI0RkrYj8r4hsEpENInJhxP15InKbiKwW\nkQoRuSdWj1NELhCRtyOuf1VEPhGRHSJyFyAtHn+RiCwTkW0i8pKIDIu4bx9vOH+riHwqIme08jOM\nEJE3RaRKRF4B+ra4/yARmev1mBeLyBExjvMwMBR41huu/5GIDPdGRXJE5GZgOnCXd/9d3vOciFwp\nIsuB5e1pv3Ouzjl3nXNuk3NuB7AYGBDrZzWmO7FAb0z6KAN6AYPQYfS7RaS3d9+vgdHARGBv7zE/\nbeuAItIX+AdwHRp4VwCHRNx/CnANcCrQD5gD/NW7rwh4BXgM6A+cBfxRRPaL8XKPAQu917kR+FbE\n6wwCngduAvoAPwD+ISL9Wh7EOXcesBo40Ruuv7XF/dd67bzKu/+qiLtPAQ4E9u1A+8NtPcR77GOt\nPc6Y7sICvTHpoxH4hXOu0Tn3AlANjBERAS4F/sc5t9U5VwX8EvhmHMf8GvCxc+5J51wjcCewMeL+\ny4BfOeeWOecC3nEner36E4CVzrkHnHMB59z76EnDN1q+iIgMBaYC1zvnGpxzbwHPRjzkXOAF59wL\nzrmQc+4VYIHXvkT6lfc7qmtP+yN+jlHAM8BFzrmFCW6bMSnR3nksY0zHBNF54Ei5aHAPq/SCbVgt\nUIz2tAuBhRrzAR1+jycDfSCwJnzFOedEZE3E/cOA34nI7RG3CTpiMAw4UES2R9yXAzwc43W2tZjj\nXwUMiXid00XkxIj7c4HX4/gZ2qPlzxZv+8MuBJ52zj2Z4HYZkzIW6I3pGquB4cCyiNtGAJ/F8dwt\nQB2wn3NuXTtfdwNNwRZvdGBIxP1rgJudc4+2fKLXq3/TOffVOF+nt4gURQT7oUB4e8w1wMPOuUvj\nbHdb22rGuj/y9jXE3/6wcqC9v2Nj0poN3RvTNf4GXCcig0Uky1s6diLQZs/RORcC7gV+KyL9Qee8\nReTYOF73eWA/ETnVy0T/LpoLEHYP8JPwvLWI9BKR0737ngNGi8h5IpLrfU0VkbFR2rgKHYr/uYj4\nRORQ7+cLewQ4UUSOFZFsEcn3EhAHx2h3BbBXKz9XW/e3q/0R/hu4pY3jGtOtWKA3pmv8ApgLvI0u\n47oVOMc5tzTO518NfA68KyI7gVeBMW09yTm3BTgdDV6VwCjgnYj7Z6OJfo97x10KHO/dVwUcg+YC\nrEfn9n8N5MV4ubPRRLitwA3AQxGvswY4GU3824z2tn9I7M+gX6EnRttF5AdR7v8d8A1vpcDvY/zs\n7W0/3v3/08r9xnQ74lxbI2TGGGOM6a6sR2+MMcZksJQFehEZIiKve4U6PhKR73m39/EKXCz3Lnu3\ndSxjjDHGRJeyoXsRKQfKnXPvi0gPtNDGKcAFwFbn3C0i8mOgt3Pu6pQ00hhjjOnmUtajd85t8ApY\nhJNmlqFrd08GHvQe9iAa/I0xxhjTAWmRjCciw4G3gHHAaudcScR925xzNnxvjDHGdEDKC+aISDFa\nlvK/nXM7Iyp/tfW8mcBMgKKiosn77LNP8hppjDHGpJmFCxducc7ttl9ESykN9CKSiwb5R51z//Ru\nrhCRcufcBm8ef1O05zrnZgGzAKZMmeIWLFjQJW02xhhj0oGIrIrncanMuhfgfmCZc+6OiLueoWnX\nq28BT3d124wxxphMkcoe/SHAecASEVnk3XYNWsHrCRG5GK0PfnqM5xtjjDGmDSkL9M65t9FdsqI5\nqivbYowxxmSqlCfjGWOMMe3R2NjI2rVrqa+vT3VTukR+fj6DBw8mN7flTtfxsUBvjDGmW1m7di09\nevRg+PDhxLtSq7tyzlFZWcnatWsZMWJEh45hte6NMcZ0K/X19ZSWlmZ8kAcQEUpLSzs1emGB3hhj\nTLezJwT5sM7+rBbojTHGmAxmc/TGGGMy2ouVcPd6qPDDAB9cORCOL011q7qOBXpjjDEZ68VKuHkV\n1Hvbumz063XoXLBfuXIlJ5xwAkuXLgXgtttuo7q6mjfeeIMDDzyQ119/ne3bt3P//fczffr0Tv4U\nnWOB3hhjTLc289PY9y2pgcYWe7fVO7htjQb67QH40Yrm988a07n2BAIB5s+fzwsvvMDPf/5zXn31\n1c4dsJNsjt4YY0zGahnkw3YEk/eap556KgCTJ09m5cqVyXuhOFmP3hhjTLfWWg/8hCU6XN9SmU8v\nS3I61oPPyckhFArtuh65/C0vLw+A7OxsAoFA+w+eYNajN8YYk7GuHAj5LVan5Yve3hkDBgxg06ZN\nVFZW0tDQwHPPPde5AyaR9eiNMcZkrHDCXaKz7nNzc/npT3/KgQceyIgRI9hnn30639gkEediTGB0\nI7YfvTHG7DmWLVvG2LFjU92MLhXtZxaRhc65KW0914bujTHGmAxmgd4YY4zJYBbojTHGmAxmgd4Y\nY4zJYBbojTHGmAxmgd4YY4zJYBbojTHGmE742c9+xm233ZbqZsRkBXOMMcZktj18n1rr0RtjjMlc\n4X1qN/rB0bRP7YuVnTrszTffzJgxYzj66KP59FPdPm/FihUcd9xxTJ48menTp/PJJ58AcMEFF/Dk\nk0/uem5xcTEAs2fP5uijj8Y5x4YNGxg9ejQbN27sVLuisR69McaY7q2L96lduHAhjz/+OB988AGB\nQIBJkyYxefJkZs6cyT333MOoUaOYN28eV1xxBf/+979jHmfGjBn84x//4O677+Zf//oXP//5zykr\nK2vrp203C/TGGGMyVxL2qZ0zZw4zZsygsLAQgJNOOon6+nrmzp3L6aefvutxDQ0NbR7rD3/4A+PG\njeOggw7irLPO6nCbWmOB3hhjTPeWgn1qRZpviRcKhSgpKWHRokW7PTZyS1vnHH5/U3vWrVtHVlYW\nFRUVhEIhsrISP6Nuc/TGGGMyVxL2qT3ssMOYPXs2dXV1VFVV8eyzz1JYWMiIESP4+9//DmhAX7x4\nMQDDhw9n4cKFADz99NM0NjYCEAgEuPDCC3nssccYO3Ysd9xxR4fb1BoL9MYYYzLX8aVw7TDtwQt6\nee2wTmXdT5o0iTPPPJOJEydy2mmnMX36dAAeffRR7r//fiZMmMB+++3H008/DcCll17Km2++ybRp\n05g3bx5FRUUA/PKXv2T69OlMnz6dO+64g/vuu49ly5Z1+kduybapNcYY063YNrXKtqk1xhhjjAV6\nY4wxJpNZoDfGGGMymAV6Y4wxJoOlNNCLyJ9FZJOILI247Wcisk5EFnlfX0tlG40xxpjuLNU9+r8A\nx0W5/bfOuYne1wtd3CZjjDEmY6Q00Dvn3gK2prINxhhjTHts376dP/7xj+1+3sEHH5yE1rQt1T36\nWK4SkQ+9of3e0R4gIjNFZIGILNi8eXNXt88YY0x3UbkcljwGC2fpZeXyTh0uVqAPBluvnz937txO\nvW5HpWOg/z9gJDAR2ADcHu1BzrlZzrkpzrkp/fr168r2GWOM6S4ql8OqOeCv1uv+ar3eiWD/4x//\nmBUrVjBx4kSmTp3KkUceydlnn8348eMBuOOOOxg3bhzjxo3jzjvv3PW88Pa0GzZs4LDDDmPixImM\nGzeOOXPmdPzni0PabWrjnKsIfy8i9wLPpbA5xhhj0t2nz8a+r6YCXKj5bS4Aa+ZC6SgI1MOKV5rf\nP+bEVl/ulltuYenSpSxatIg33niDr3/96yxdupQRI0awcOFCHnjgAebNm4dzjgMPPJDDDz+cAw44\nYNfzH3vsMY499liuvfZagsEgtbW17f2J2yXtAr2IlDvnNnhXZwBLW3u8McYYE1PLIB8WbHsL2XhN\nmzaNESNGAPD2228zY8aMXfXsTz31VObMmdMs0E+dOpWLLrqIxsZGTjnlFCZOnJiwtkST0kAvIn8F\njgD6isha4AbgCBGZCDhgJXBZyhpojDEm/bXWA1/yWNOwfSSfDqOTk99mD74t4aAOumtdWw477DDe\neustnn/+ec477zx++MMfcv7553eqDa1Jddb9Wc65cudcrnNusHPufufcec658c65/Z1zJ0X07o0x\nxpj2GTgVpEWfVnL09g7q0aMHVVVVUe877LDDeOqpp6itraWmpobZs2fv2t0ubNWqVfTv359LL72U\niy++mPfff7/DbYlH2g3dG2OMMQlTOkov17+nPXtfsQb58O0dOWRpKYcccgjjxo2joKCAAQMG7Lpv\n0qRJXHDBBUybNg2ASy65pNmwPcAbb7zBb37zG3JzcykuLuahhx7qcFviYdvUGmOM6VZsm1pl29Qa\nY4wxxgK9McYYk8ks0BtjjDEZzAK9McaYbicT8svi1dmf1QK9McaYbiU/P5/Kyso9Itg756isrCQ/\nP7/Dx7DldcYYY7qVwYMHs3btWvaUDc3y8/MZPHhwh59vgd4YY0y3kpubu6vkrGmbDd0bY4wxGcwC\nvTHGGJPBLNAbY4wxGcwCvTHGGJPBLNAbY4wxGcwCvTHGGJPBLNAbY4wxGcwCvTHGGJPBLNAbY4wx\nGcwCvTHGGJPBLNAbY4wxGcwCvTHGGJPBLNAbY4wxGcwCvTHGGJPBLNAbY4wxGcwCvTHGGJPBLNAb\nY4wxGcwCvTHGGJPBLNAbY4wxGcwCvTFmN845Dj30UF588cVdtz3xxBMcd9xx7T7Wueeey9tvv93h\ntlx33XXceeedHX6+MXu6nFQ3wBiTfkSEe+65h9NPP50jjzySYDDItddey7/+9a+EvUYgECAnJ/kf\nQcFgkOzs7KS/jjHpynr0xpioxo0bx4knnsivf/1rfv7zn3P++eczcuRIbr31VsaNG8e4ceP4wx/+\nAMDnn3/OxIkTdz33lltu4aabbgKgpKQEn88HwODBg7nxxhs55JBDmD17NsuXL+fYY49l8uTJHHbY\nYXz22WdR27JkyRIOP/xw9tprL+6+++5dtz/44INMmzaNiRMncsUVVxAKhQgEApSUlHDdddcxbdo0\n5s+fz3vvvcfhhx/O5MmTOf7446moqEjWr82YtGM9emNMTDfccAOTJk3C5/OxYMEC5s+fz6OPPsr8\n+fMJBoNMmzaNww8/nMLCwpjHuOuuu5pdLyoq4p133gHgyCOP5L777mPkyJG88847XHXVVbz88su7\nHeOzzz7jtddeY/v27YwdO5bLL7+cZcuWMXv2bObOnUtOTg4zZ87k8ccf54wzzmDHjh1MmjSJm266\niYaGBo488kieeeYZ+vbty6OPPsr111/PrFmzEvvLMiZNpTTQi8ifgROATc65cd5tfYC/AcOBlcAZ\nzrltqWqjMXuyoqIizjzzTIqLi8nLy2POnDmcdtppuwL7Kaecwttvv80xxxwT9zHPPPNMALZv3867\n777Laaedtuu+QCAQ9TknnHACPp+P/v3706dPHzZv3syrr77Ke++9x5QpUwCoq6tjyJAhAPh8PmbM\nmAHAsmXL+Oijjzj66KMBHcofPHhwO38TxnRfqe7R/wW4C3go4rYfA685524RkR97169OQduMMUBW\nVhZZWTrL55yL+picnBxCodCu6/X19THn34uKinYdq2/fvixatKjNNuTl5e36Pjs7m0AggHOOiy66\niBtvvLHZYwOBAAUFBYjIrtfZf//9mTNnTpuvY0wmSukcvXPuLWBri5tPBh70vn8QOKVLG2WMiemw\nww5j9uzZ1NXVUV1dzdNPP8306dMpKytj/fr1bNu2jfr6ep5//vk2j9W7d2/Ky8uZPXs2AKFQiMWL\nF8fdlqOPPponnniCLVu2AFBZWcnq1at3e9y+++7LunXrmD9/PgB+v5+PPvoo7tcxprtLx2S8Ac65\nDQDeZf9oDxKRmSKyQEQWbN68uUsbaMyeatq0aZx11llMnTqVgw46iG9/+9uMHz+e/Px8rrnmGqZO\nncpJJ53EvvvuG9fxHn/8ce655x4mTJjAfvvtx3PPPRd3W8aPH88NN9zA0Ucfzf77788xxxwTNcku\nLy+PJ598ku9///tMmDCBAw44gHnz5sX9OsZ0dxJrKK7LGiAyHHguYo5+u3OuJOL+bc653q0dY8qU\nKW7BggVJbacxxhiTTkRkoXNuSluPS8cefYWIlAN4l5tS3B5jMsby5cupq6tLdTOMMV0oHQP9M8C3\nvO+/BTydwrYY0+2tXr2aW265hZEjRzJmzBh+85vfpLpJxpgulNKhexH5K3AE0BeoAG4AngKeAIYC\nq4HTnXMtE/aasaF7Y5qrrKzkiSee4E9/+hOffPIJIkJ9fT0AQ4YMYdWqVbuy0o0x3VO8Q/cpXV7n\nnDsrxl1HdWlDjMkANTU1PPPMM/zpT3/i3XffJTs7m9ra2t0eV1lZyYcffsiECRNS0EpjTFdLx6F7\nY0ycGhsbeeGFFzjllFPo27cvl112GW+++SYNDQ1RgzxAQ0MDf/nLX7q2ocaYlGmzRy8iI4G1zrkG\nETkC2B94yDm3PdmNM8bsLhQKMXfuXP785z/z97//HRGhqqoKYNfwfDQ+n4/s7GyGDRvG4Ycf3lXN\nNcakWDxD9/8ApojI3sD9aLLcY8DXktkwY0xzS5Ys4cEHH+TBBx+kvr6e2traZtXoosnOziY/P5+S\nkhIuuugizj//fPbee+8uarExJh3EE+hDzrmAiMwA7nTO/UFEPkh2w4wxsHLlSh555BHuu+8+Nm/e\njN/vj1kPPkxEKC4uJjs7m3PPPZcLL7yQAw44wJLvjNlDxRPoG0XkLHSp24nebbnJa5Ixe7bNmzfv\nyphfvnw5zjkaGhrafF6PHj0IBoPMmDGDSy65hOnTp9s+7MaYuAL9hcDlwM3OuS9FZATwSHKbZcye\npaqqiqeeeopZs2Yxf/58cnJyYibTRSouLqaxsZGjjjqKmTNnctxxxzXbAMYYY9oM9M65j0XkanRd\nO865L4Fbkt0wY7qjUCjE1VdfzTe/+U0mT57c6mP9fj8vvfQS9957L6+88go5OTlUV1fvui+WwsJC\ngsEgkydP5rLLLmPGjBn06NEjoT+HMSZzxJN1fyJwG+ADRojIROAXzrmTkt04Y7oT5xwXX3wxDz/8\nMKtWreKJJ57Y7TGhUIg5c+Zw//33889//pPs7Gx27tzZ5rHz8vIQEfbee28uu+wyzjjjDPr3j7rf\nkzHGNBPP0P3PgGnAGwDOuUXe8L0xxuOc44orruCJJ54gGAzy3HPPUVdXR0FBAc45Fi9ezAMPPMAj\njzxCY2Mj1dXVMfd2D8vJycHn81FaWsqll17KOeecw1577dVFP5ExJlPEE+gDzrkdLTJ2U7vlnTFp\nxDnH97//fR566KFd8+o5OTncc8897Ny5k/vuu49t27bR0NAQd8a8z+fjvPPO48ILL2T8+PGWMW+M\n6bB4Av1SETkbyBaRUcB3gbnJbZYx3cd1113HrFmzmiXPVVVVcc0117QrY945x2mnncbFF1/MIYcc\nQlaWFa40xnRePIH+O8C1QANaKOcl4KZkNsqY7uLmm2/mzjvvjJoh31qVOtCM+UAgwDHHHMOll17K\nMcccg8/nS1ZTjTF7qHiy7muBa0Xkl865mi5okzHdwu23384vf/nLuJbBhYUz5qdNm8bll1/OSSed\nRHFxcRJbaYzZ00UN9CKS65xr9L4/GLgPKAaGisgE4DLn3BVd10xj0ssf//hHrr/+eurq6tp8bH5+\nPgCjR49m5syZnHHGGfTr1y/ZTTQmc1Uuh/Xvgb8afMUwcCqUjkp1q9JWrB79TBFZ7Jx7G/gtcCxa\n4x7n3GIROayrGmhMunnggQf4wQ9+EFeQz83N5dvf/jbf/e53GT58ePIbZ0ymq1wOq+aA8xJb/dV6\nHSzYxxAr2+ce4IzwFefcmhb3B5PWImPS2GOPPcaVV14ZV5AHzb4fNGiQBXljEmX9e01BPswF9HYT\nVdRA75wLOue+611d4w3fOxHxicgPgGVd1kJj0sitt96K3++nuLiYXr16UVhY2Orj6+rqmDVrVhe1\nzpg9gL869u3BRv2+oUqvt1GrYk8RT9b95cDvgEHAWuBl4MpkNsqYdLVo0SLq6+tZvXo1K1euZOXK\nlXz++ecsW7aMFStWsG7dOmpqaigoKCA7Oxu/389nn33GZ599xujRo1PdfGO6t/odIFngomzPLNmQ\n5YW09e/B1s8hKxfye0F+SfOvvF6Q1WLDpwye948n634LcE4XtMWYbiE/P5/Ro0fHDNx1dXXNTgRW\nrlxpmfXGdIZzsPkjWDsPkN2DveTAsOkQLizVfzwUl0H9dv2q3qiBv+kJUNgXxs7Qq+vmQ8UScN6s\ndIbN+8dT674fcCkwPPLxzrmLktcsY7qvgoICxowZw5gxY1LdFGO6v4adsPJNqN4APYfAsMOgan3r\nve+ifvoVKdgIDTuagn/ksH7Fh7uPEoTn/feEQA88DcwBXsWS8IwxxnQF52DLMlj7LiAa4EvHaK+9\ndFT7A3B2rvbiC/tGea0oUwGgJxJ1W6GgT7ubn07iCfSFzrmrk94SY4wxJizYAOsXQNEAGH649tyT\nxVccO8nv4yehxyDoPw56DdFpg24mnhY/JyJfS3pLjDHG7Nmcg+0rtYedkw/7nAKjvpbcIA869C8t\n+r2SA0MO1fvqt8OKl2Dp33QuP+hPbnsSLJ5A/z002NeJyE4RqRKRtjfQNsYYY9qjah2seBm2rtDr\neT2bEuySqXSUJvOFTyh8xXq9/75QfgCMPwtGHAW5hbD2PxrwQ91nJjuerPseXdEQY4wxeyDnNOEu\nv5cOkY88BnoN6/p2tDbvL1nQZ6R+1WyG+m26PM85Dfy999Is/zQVzxw9IjIIGEbzrPu3ktUoY4wx\ne4DGWlj9NuxcC/t+Q3vwJcNT3arWRWb0B+p09CG/RAN9KKDBPzs3tW1sIZ7ldb8GzgQ+pinr3gEW\n6I0xpi0ZXIilU7Z9oUE+6NffSbLn4ZMhtxDGn910vfIzXZNfOgb67wfVFWnx3sfToz8FGOOca0h2\nY4wxJqN0pw1YuuqEJFCvAX7bF1DYD4YfAQW9E/86XSWywl5Rf13rv2kpbFoCCNovJqXvfTyB/gsg\nF7BAb4wx7bFmbvQNWNa8o8PUhX13L8WaCsk8IYk8gcjJh2AQCMLAKVA2sVsuV4upsC/sdRT4D4KP\nnoBQY/P7U1SEJ55AXwssEpHXiAj2EZveGGOM8dfAjtX6NeQrGsiDMfpHQT98+rTWZy/qp/O7RQOg\neIAGw64QbNSksrqtsOY/0U9IVr3VFJRWvaW98axcnYPO9nnf+5qu5xZqrxb0sdtXwep3mo4dqNfL\ngVM1mz1T+Yp2D/JhsdbrJ1E8gf4Z78sYY0yYC2kGdji411Xq7eHiK3k9YxdiyS3Sk4HqCq3DvnEx\nu4Z4++wNI/5Lv/dX62NbLjHryDB71XrYuU4De91W8FfF8TNGLCEL+jU7PujXk4Sgv6nNYcXlMOZE\n/f6Tp6GxZvcTCNCKd5kc6CH2ex8+kfNXwxevwZCDdy/Xm2DxLK97UER8QHgHj0+dczFOVYwxJoOF\nglrQZcdq2LnG66GK9sQHTYNeQyG/d1NgHji1+ZA4aCGWQdN0SVbvvbzjBqBmkwb+3MKm25Y+DgMm\nwKCp+tq1m3UHt8hecniY3QE9yvT5Wdm6iUvFh1p0RrJg25ew+WNdxlbUD0pHa2nXgj7w2fPQGCUo\nRSbI7XV08/uc0xOBcNAPNTYfhi8/AFa+Ef33mIJebZeL9d4P/op+76/R31lOnl6vWg912/RvIrcg\noU2JJ+v+COBBYCWaWTBERL6V7OV1IrISqEIz/QPOuSnJfD1jjInaUy7qpwG9uAxwGryycrQcaq+h\n0HNw7OH2cC+7rd53Vg70GKhfkYYc0lSbvXYzfBpjcNUFYNXr+v0+p+jweVYO5BRAoEEDx8ApMPjA\npq1cIw2KEZQGTo39uxLRx2TlRA9MpaO1hG20oN4dM+zbq633vniALikM2/al7tC3Zq7+HfTeC3qP\nSMhUjjjnWn+AyELgbOfcp9710cBfnXOTO/3qrb/uSmCKt01uq6ZMmeIWLFiQzOYYYzJdy4Q00ECW\nWwg5Phh7qt5Wt017xV2dRBb0a69vxcuxHzP0UF2HHh4VaI9kZN3H+p0Om55+qw5SzTnNmdi6Arat\n0GkSRE8ke++l72u49++9V1PO/AkLPl7VZunAeOboc8NBXtviPhOR9KoGYIxJX91lHfm696InpIUa\nYeQJTbelailYtk8/7GPN/fqKod++HT9+R3aEi+eY0D3e/1QT0WmUQX109KWu0gv6X8CqN2H1HOg/\nXh/T8uSpDfEE+gUicj/wsHf9HGBhB36M9nLAyyLigD8552ZF3ikiM4GZAEOHDu2C5pjOeLES7l4P\nFX4Y4IMrB8LxpalulUm67rKOvGp99Dlq0Opn6TTUHGvut7Vh9lRKxglEphNp2lJ30DSdttn2hVbg\nWx/lhLQN8QT6bwNXAt9F5+jfAv7Y7oa33yHOufUi0h94RUQ+icwL8AL/LNCh+y5oj+mgFyvh5lVQ\n771LG/16HSzYZ7Rgo9YBj9ZLTsFa4qj81brf+bYvaFbcJFI6BXmwXvKeRkRzLsLLFle92e5DxJN1\n3wDc4X11Gefceu9yk4jMBqbL2Es4AAAgAElEQVRhZXe7pbvXNwX5sHqnt1ugzzD1OzQbfcdqqNrQ\nfHlWpFRnXYeCmpG+8QOdGy2fBL4ezbPZIX17ytZL3nPFmrppRcxALyJLiHp6q5xz+7frldpBRIqA\nLOdclff9McAvkvV6Jjmcg4XV2oOPpqJ7belsogkFNKvbV6QblHz0N709v0Tni7cubyqSEslXrGVQ\nC/p0bl65o9a+qxnOJcNh8EG65h00wc56yiadRZu6aUNrPfpw9smV3mXkHH1t+1vXLgOA2aJrUXOA\nx5xz/0rya5oECTp4fTs8tBE+roUsIBTlcQN8Xd0ykxCBhqbs32WzNUjufaxmeg8/UpcNhQNnYd/o\n88nlk3Wdd7Z3nPCa7GhLvxKlYade5vWEAfvr0rheQ5o/xnrKJt1FTt3EKZ7lde845w5p67ZUsuV1\n6eW1bXD1FzAkD84dAD6BX69uPnyfJ3DdMOiVA5/XwVn9ITeDSl53W9Ey5HvvpdXbdhWJaYD9z9W5\nw60rdJ1vz0HtO2b4w8qFtBe9faWeEJRNgL5jE7/NZygISx7Tk5CRxyT22MakiIgsjKfGTDynz0Ui\ncqhz7m3vwAcDRZ1toMkczsGDFVCcDd/oB4eXwG0jYXovyPZWeOZI9Kz736yGd3fC2QNS+zMYomfI\nr3wDVr4JeAG5x0ANxC6oPfM+I9s+bmu95PBadF+xDuOvfVfLwSYi4DsHVeugxyCtFDf8CH0NY/Yw\n8fToJwEPAL3QOfsdwEXOufeT37z4WI8+NaqDGtwBvrMc+uTAz0e0/zg7A9AzB2qDcO2X8K0ymJhm\nic57hCWPRU/yycqBEUdpkE90T7ul6o2wfqEG6Jx8Lf/ab9/2v27dNq0wVrVOS7eGS80ak0ES0qMX\nkSxgb+fcBBHpiZ4Y7EhUI0339GUdPFQBr2yDv+8L5Xnag8/r4NB7T++vcHUDfFoLl3wKR5bAdwbB\n0NaqP3aXQizdRaxM3lAASoZ1TRuKy2D01zXgb3gf1s2DisXxB/ygX08UNi3Vxw45RBPujNmDtRro\nnXMhEbkKeMI5t7OL2mTS1OJqeHAjvLVD59hP7ts0r97RIB9pn0L45zh4pMJ7ne1wen+4pBxKWv6l\ndpdCLN1B7Radf2+t4lpXKy6DUV9rHvCzcqD/fnp/y5O88qkgDtbO0wI3fffRE78Ebw5iTHcUz9D9\n9UAd8DegJny7c25rcpsWPxu6T5yWFeyuKIfiHA28i2ugVzac0R/O6Ae9kziKu6URZq2Hp7ZAYTZc\nPCDEmUWb8Pm367Ds5o+jr9HOLdREMRO/de9B5adQNknnyNOxLnl1BRSWarBf9TZUfqKJfC0V9dde\nfJK3/TQmHcQ7dB9PoP8yys3OOZc2k14W6BOjZQU7aKoVVubTDPqTS6EguwMHj2eY3TmtK57trbtb\n/Q6bckq5uWYfFu308yZ/8RqVHbsQC8Dkmfo6m5dBv7HpV9ksHVRXaKDsUa4Z6aGALpnrDtMhH/xZ\n29tSdh5MOH/3vduNyVAJy7p3znUgvcp0R9Eq2Dm0F//UOM2c75Cow+xvQc1myM2H+u1NX0UDdI4W\noHYL/Xvk8rtRMG+nj1+u+honDOrJ/r174Jb8FYlWmzy3aNdz2bioKSt8xxpNzCou068EbP3YLQUb\nNZBvWqq/hzEnaUZ6lnf21h3WkUcL8gDBBgvyxkQRz370uWi9+8O8m95AN5lpTGK7TArEqlS3M9jB\nIO9CWi0t2iYMLgibl+r3uUW6I1jffZrqOQPsc/Kubw/sCVPHDSbLa8eDWVM5kzkU0HTcOnL4tNc0\nJoImYE38FmR58wt1lbDpIy17CpDfWwNdj3K9DPf6u0OPtqOq1utSOX+VJrYNmpbqFnVMOuUSxME2\ndDKpFs86+v8DcmnayOY877ZLktUokxr9cmFTlNO3NivYOacBvW6r7qfcf7z2rFa9BTvX6n2xTLww\n7qVTWREnGw8GRrEcuIr3GEA1FRRzF1NZvHMUz4UflB3R8LKJ0H+cjiJUb9SvrZ/DlmV6v6+HnnDU\nbsm8BL+gX5PUtizTqnCjT9Clct1VN9q9zTZ0MukgnkA/1Tk3IeL6v0VkcbIaZLpWfQj+vgnOGqDL\n2eatXM5lEcHzT0zlwIERQS7o14C+62ubXgYbmh7Te6TWPi8drQFl3YLoW4D6iju8Lrs6CC8xipdo\nHoCltfr5WTnag+9RrtddSNtetQGqN+jwfsu5/3Taaa0jdqzWoNhYq2VfB05JbpnZrtCNdm/7wzrb\n0MmkXjz/8UERGemcWwEgInsBrWRCme5iWQ1cvxJW1sNeBXA8y/mqzCHH6ymVU81PeZOsYCOwrw59\nr3mn6QBZuVpprPcIvQx/hee/d/UaJeE9sAG+6JvllLYnhklW057PA8bDwlnRH+evhs9f0p+n11DI\n79WhNne5td4a9PzeMPKrzadFurs0zSVoCEHAQVG2VnyMNkIGsTd6MiYZ4vlY/CHwuoiEN2weBlyY\n1FaZpAo4+MtGuHc9lObCXaPgoJ7Akvd2BfmwLEKwYQH031frhA+c2hTQfcXxJT8loQd25cDdVwgA\n7Ahorf2jenfgoLHmfnMLoWEH7Fil+6vn9dLNUHoNheLypkS2dOGcvi89Bmrbyg5IvzZmCOegNqSB\nvToIx38IF5fDBWUwrgh6ZENVjG7RhZ/AOQPgqBLLIUwHmZxLEU/W/WsiMgoYgwb6T7w96k03tKYe\nfroSltTAsb3h6qFeZTrnYldGC28zGu79dkSCe2Dhf8DIf8zz+sOL3oY6F5bB5QObau3HJdbc76AD\nte0NO3UofMcaXbq3aamOavQcpEG/ZETTrm6p4ELwxWu6Reygqd7JyJC2n2faZWcA5ldpj/0/O2B0\nIfx2by0HfVEZTPJyAouz4UdDdj8hzRM4urfWpXh8k34PegLe4ZUtCZCsQNcdAmim51LENdDpBfYP\nk9wWk0TOwT+3wG/XQq7AzSPg2PD+HjWbdW/wWNI0m/n40t3/CWf0g1vXwAMbtZzuzSOgR7zD+W2N\nPOT11IS+/uN0mVrVei/wr9bd14r6a6Cv26r3F/XXrlqyMvmjHTcnr3kSYobqyqB0TB/4uAb+s1OD\n+9Ia3Xa5KAum9dRNnMIuLG9+vGgnpOG2Bh1s884pKxvhrI/hx0PhvzoyGtVJrQW64/roMttdX04T\nY7MFQk6nK3Kz9CQl4KAuqI8LAa9thTvWQkOCA2hn3v/6kJ5siei05ar66EuLMymXos2COd1BtyiY\nk8LT2tog/OQLeGcnHNgDfjrcy6QP1MO6+bDlE8gp0CVplcvTszJaOzgH/9gCt62Bcp/W4R+ZzEqo\nzulqg/ze3qfHG7B9FUw4T7dxXfVW8yS/RPxOW9YmSNRxu4FohZ3yBa4d1vng0fK4OaK9oXqnw5lj\nC+ErPeErvXRoPlE98A0NcNc6mDkQhuXr1s31IX2NZHIO1vt1f4nN7Vgw/T+Dddrhyzo4/eOmjsP8\nnXDF8rafX5IDr06AT2rh9jXwwyE6MvJRDfxrKxRkaUXMwiiX71fBvRuaTh6g6f0fnAcfVOsU3s4g\nbA80fb8joKMxDQ7+PUFHMv+wFh7dpCddsSLhjcP1/d6tDHcaSOQ2taazUjwuVJAFviz4wRAtXZtF\nCDZ/oqVPg35dDjdwsvYEi8uS0/vswhMdEd0ud+8C+PEXsKYhyYFepPn2p4MP0poAkuXVEIiSyb/q\nTW9Nv9NP2x7lMPRQvX/ZbJ0OGDRN7/vwYb10oabHR6sMmK4rBBL83rfW+9q3SIPAtwbAqEJY5O3P\nEHTawwy5pu8jL68eGv24Aae91ZuHay2HZH3Yl+fBzRG1Rv+yUQPehCINqIeXtHMaKob6kI5OhIAp\nPcDv4LSP9OeM5dJyPckR9E9dgAneIF/vXF2tM9r7/xqarycBWd5jb1sDx86r5Kqn1jNgq5+KPj7u\nOmUgLx+o73/Q6WPDS2fXNMAzW6AupG2M++fy3v9T+sI96/UErFc29MrRr8F5sG9h0/Xw7/L0/vqn\n+N/LYWOUE50sNGE5C9i/GA7tBYf3ghHdbAuFeArmHAIscs7ViMi5wCTgd865VUlvXaokcqg15OB3\nXb/GpjoIv18LF5Vr+dpb9/ISflwIPn0GajZpItnQQ5oHqWRkMyfrRKeNADKxGGbv11Sy98Nq2K+o\njQ/MRASlnHw9YYLYeQ8upEsQJQuQ5tMjxQM04Q/0Teu9lz5GpOmyIsZMWqzXS5UEv/fO6SFiBY+6\nkPYKq73zoIYQbPLre54l+oGd7V3mZnlD0GhgiFUwqj4UMc3VRX4yVHvzf62AH30Bg3y6BPbEUk38\ni+fP1DlY54cl1fBhjeblLK/VJVMHFMOUMboZ1Y3D4fa1ur9ES2U+uKyVkgslObqtdOTjzxnQdH3N\nU5Vc9cgqCvz6/pdv9XPdI6v0hGlyKfsVwZ/GND3+uD7eVIHTnndNUIN+5OX3Po/elgo/nN1fvwqy\n4ktwLPNmua4cFH2U6JqhMKwA3t4Bc3boqMuKOrhxhLZxYTWML0rMpl7JFE+t+w+BCcD+wMPA/cCp\nzrnDk9+8+CR06D7RQ6J3rIHHNsW+//d7a8p7VgJO1yOsbYDzlmkv/uulaM89PHe7cZEGlt4juybd\n92sfRl9nlI12VW71ytT+bq1mMF3sTXTetwH8IcjP0q+8iMul1fDEZu2ShOUJ/PdgPU0H2Nqon+rZ\nwqqgcNanwiWD4aKBMX7mZIwJx9rj3VcM48/u2DGTedxEO2FJ9LVkJTn6KRrZTQx3A/vm6laGAAur\noDQXNyyfd7c73nqzmt4f7ORbL1WQF9ENrfMJd10wjB/O7PiJY6ymlvngufEdPmynBB28uR0erdDk\nveJs7eUvqIo+dH18qW4E9dZ2zSXY6n2MFWbpSe64Itjfu4zclCpZ0yH1xywmf+vuJYvr+vsoeHZc\nh4YpkvU+xXPytMmvJ49D8nV+/xsfwdVD9CMnfDLSN7d9x+xMY6e8fiYLaj5u85cYz0BUwDnnRORk\ntCd/v4h8q/MtTVNRy7VGDIkG6jXTOtpyJed0rPAfW+C8ATCmUE/BX6iEUZtgxnro44etPpg9EBaW\nwnc/hyF5OtZ8YmnT5uwd0BCCF7fqxjOD8+Dpcd7hajbB8hdgr6/qkHDZxA6/RrvsCOgnVKzFxEFg\nUESWeoUf6iN+/me36ARivGkkDQ5+v07/60IOjmnq9Q4D5oavZIPLFiRbdKzvf4foe3fDyt3HCzs7\n8pKsKm7dpTpcrAXj2wPaVY3mvyJO/n64gg1H9eHqU4fy+Q7H3Js+i/qUAr/jvx9ZDXtn6VBOn/YX\nYoq2ZDNf9PZUyRZNzvuv3hq4H62AV7bt/rh6B3ev0z/TD6o0CB3cS3ub44t06qq1mNpa0mCHbPLD\nrA1RgzxAwWY/fHUx/Hw4TC9pWhIah2S9T9GSe1vqH5HnWu6DO/duOid9dRvcuEqnCA7tpeetf9mY\nhBnbaGdlbYgnqlSJyE/Q0rfTRSQbLYmbWRprNXM61tBn+Palj2vFtyEH665fH/8dyIXtwLoQVAoM\nyIHNJdCzJ/TywfVV4FsNPi+KlPrh/NVwWl8IDIcnNmk6/B/XwddK4dsD4/qgijxbLM3RTtHmAAzP\n18+6nuIHfDo0XzJch4q70otb4c8btRdeH2XGrcwH3xvcdP2XLTZEfHq8V17X6fMbQt6lg29+HP01\n6yJe5+ohejIRcPoV1MtAwPHqZsfYPMew8GRjiNiTgrHGdOORrCpu6VYdzjn4rA7m7oBP6+BXI/SD\nuzBLF5q31DcH/jBKf+fhVO5wqnbPbILeZ1j2nXszN5jLjgD8aIQQuGsUOVdFz/bKrQ3pycPlA+GS\nch2/f6ESjihp/gkdQ8KDXYKNK4Jf7QWvLox+7lvhnU//dHjH5vPjCXRt2hnQpIjHN+n/Xsz3P1dH\nMod4xbVe2qb7Uh/UU78m99A5ihjthNS/T3lZGtDDJveAKwbqMP+9G6K/RwmZsY2WTNKGeAL9mcDZ\nwEXOuY0iMhT4TQeal562fq5Z51Ub0LcmvDFrC+E51IFTdQMWgE+r4csi2FoLviCUOBgO5NVCaAus\n9/7Ae+ZCqMUfuy8ERctgYCFML4U1A+HJbfpX8n0v+K2p12CYu/sEUMuTui3eifN5/WGirwa+nKdb\nke53upY8HX5Eh39FcWsM6bq2ofk60XZKX834WV7b8VNwEfCJZhNGKotRGi886ZYlTUP4LexshL+t\n0DnLC8vgcgfZ2RL7mL07mYGVrCpuqa4OVx2EeTvhnR269iyctr1PoVaJ6Zmjk83R3vvvDdZsuSg2\n+eGKjzVWH7d/MSeE4GSBHBEY0DP2+zQgVyNheOx0aY2utRyRr4F+aY2Og48v0syqKJl1x8+v5PhU\nR5A2xKoKGd6TIhFJex3yUQ18Z7m+98f10ROuD6ujv//fHdT891qSoyObz1TqlFw2mvF3YE/9GlvY\n7AdLx/dpcJ7mRF1UDtsa4asx0mjC/YYbV2ry4SwvR+FP3o/TM0cLLfXM1u97ZusS4Z5ecmHPCj/t\nfYvjKZizUUT+AbuKim8BZrfzddJHoF577qVjNIhUV2hvvvwATXqqqYTVrQyJ9t9Px2geXgYf1ULe\nIP2jPq2fpvxGCgV1bvzDh6O3pbFGl17pi8CMEjirD+xYAv4+cG0llPbQahwt3L0eDnfLm23q8kem\nUFxZB1ve12Svsgm7PS8pgk7/CXNET1TGB/R3kp+lqe97FzQ1OlH/mJ0Yv+uTC38a3Xy9/U0joGe0\nYwq62PmpLXrisqfb6Nd08Lk7YHG19tqKs7UXdoi37ixykjLO7ldjCFbU6zlC31wYVaBZ0xAl0SnW\ne3/VIA3gYQf20Enb8Inashp4aGNTAe+hefr48UUaVD6tgV+t7vKk0fZKqymGoJcdOShP/8+n94Kz\nvWlLaJqaa+vnD/fk/SHNHHzXK1rwf+v1q6f3N3bTCHhpa9pXt+md28r5qHdCtl9R8w3DVtRp5yO8\nBDCaMXmO+3xZFDS0Z01CfMl4lwIzgT7OuZFelbx7nHNHteuVkqjNZLzGOs1uzsnTHvyX/4YxJ2t2\ncyio90XOD/37A3CLoZcfdvhAJsDIsXrGmSXw2zUwd6cG96/3absiS6zEqdxi3Xu9rhJqK5suG2ua\nHuPyYZ9jIVAKv18OX+9BaGI51y/6ghuCb+HLblpmtWuaq9dQnVrI6xnfL7CjaoI67TB7Czw0Vs/K\n673kua6QgA/Qf2yG36zRf8rbRsLeb7Q45sVl8Np2/dA519v5p51dpm5VcazlQS8r10A+PF/XFL23\nE769XNdTHdILDu4J44s7vKC8IQRPb9HR3pqQxuXieKr1dvSHD68v+7BGe5tLapqq1sQYzNuV5bXR\nr48JL+qO5+8gSVluaVNt7rov9ff45H67j7olwtZGLUM4b6dGwNv3Ts+sySg689b7Q7r2v8qrAVAV\nhB0NjgPuXMXAlytpzIbcIExZdl5cyXjxBPpFwDRgnnPuAO+2Jc65tPmNTtl3mFvwt181n6NsrNOe\n+7YvtILZoGnaww02ainTgj7Rkz+ivTu5ovPEd4/SYaTI0krxaG8mf6Beq6uFg//AqfBhCJ57G05c\nw4bbp9Hrsg8pLK7f7ak1jXkUHZTkXMm6oA6vPbQRdgS1J/ejoc0T67qRRdVw9QqdSjypFN7c0eID\ntJfT1RNPbNYey80j9IM+Dl1Z3KXTx32xksBNq8iJ6E4E84Rsv9Pi7VcO0lyHrY1xzXm3pi6oOasP\nb4TKgGaSX1KunbYurfseXoO2uFqTMaMR4L3JWlVmUcQJe57oPHJBll4WeidE1w3T+5/YpOOxO6LU\nPEizoNQuH1ZrVZ9eOZr5Vxno2oL9U2MkKYTfpzSSsBOyoIObVsGzlTx2cjkfleZx1VPrOfGdxGXd\nNzjn/OK9iSKSQ/x50F3HX+3tf75et0StWg84XY9cNkF7uaDboha28puOlujQ6HTSJFwVor091vYm\nTuXk64YkkXuGTwFGH0zwP1/Q6PdRWLR7kAcozEniNgT1IXhys3a/tgW0NzdzYPLLdyXZxGJ4ZCxc\n+in8bXPT7btGBIcJx/9oKMFh+WTdsYbARZ+y4Za9qe7noy6k+X/13lddEKb21M/7tQ3NR4LD6h3c\nvFpnOcKlRCPXd3+zv3ael9fCC1t1XXLfXJ1inus955GK6Me9fa0mMRdn67rozX6dCs8RHYBpdE0p\nDy074XV3rqOgxZhhdoOjvk8O+eHF1DnS7iAf+WHXP1dHyhdUa+L9tB5wczlMjnN/pIQT0cnVwXk6\nRNzaWOtFZfpD1IS03GRtxGV4bVXkkOqr26IHeehcgmeqrKzX1P7Xt+tI17cHwQE9ur4dsZIUirL0\nH7AgvpPwrpCQBMeIIM+l5fT+xkDeXAUvHVjKsvOi57m0FE+gf1NErgEKROSrwBXAs51odvK4IGz9\nVIesyybonHtBafyfIAEXezlQdbD5wtP26kTi1Ea/JuT/cEgvehx7AEO+6uDV+Zq934Js9T6UXtmq\nJyTTS3Z7TKuinYIe2VvHuB/yul8H9tAqGpHzod1cP58GwZbqnVb3Or4Uln69P7P8+fz0wZVcvSjA\n8iHRA971wzTQ7whETzgGbwS51qvURvOKbcf0gRFoos4Tm3TVZd9c7UjN2tD6z7E9oMlsxQX6J3D7\n2qZyn3/eAA9WND02Gw34fWsCnPfCBmZURl8G6dsagBzhyc2ab5Ur+hU+WfCJ5ovmiv7JndZPn7e0\nBv69VQdCwiclFY1QsR1G5cMdI9PsT6itye+D27k98awxsYeZe2Q35baku01+TSN/eouOXlw+UKvS\npEq09ykLqA7BqR9prsbxfRJemyQlIoP8zHKYOZDjvbvuXg/L4jxMPIH+x8DFwBLgMuAF4L72t7gL\n7Xdm+7oHzsFbO7RgSywDOjdU2RnbGrV5J5TqJhqSJfD6UDhxBeRF/LE3eLcfgy7g7JvbFOjP+Vg/\nVAbnaVb84DzNORiSp8lKIrGrmP19s85pTu0Bvx6oXeAMFGu5f7hTNjgPph/bk/lHjePC/Czys6D0\n8xrc2KJdNX0KsvQzHDTZprXFAbPHtd6e8PrpsLMHaG8/BJy8pGk5VaS+OU0zKIeV6PfhWYbDS/SE\nxh/SOkOhmiD7PbOJKU9tJLc+RJ0vi0L/7mcmFX18lKObf8zfqSdEjU6PE3BNuW2g09fhQP9YhW4Z\nHK1PWxVKsyAPyVm3FSvBc2cQzl8GPxyaPv9PLU/yLx4A6xv1jQwCZ/bXUY3OdHgSIdb7NDBPC+ff\nsBL+tknrY0xIk99tR0QJ8mHhkQJZtnBhPIfKjE1t9h3mFjx8rV5pb2WwT2t1DfuCKu2GHdpTh6cT\nPanaTlsa4Y3tWkcHdEChWZLSi5Xwr/fh6+uaivA8PwiOm6TtbPCGE/vk6onMbWtgVYMu2dvgb75m\nvChLo9h6f/TNs/vmaCHuySkYputC7c7xeXWbFtO/a5ROLkeRlnP0AacjNPdv0NJpR5TAtwfym9dq\nueovTeVKIb6Kc0Ev8AecZs+H40CFX3+n3WQ6NXlaBtAryiEnSzsWFY3a+/ze4OarFVLRxlhFWI73\nlsp1hxyckNP6HXet0+WeX+2tS/nKu0HbW5qzHf5nxW5BPlKnN7URkSW0MhfvnNs/nrZ2qfZUBqsL\narr1s5W6dONHQ+DUfjoWOaYwZSmtzmntiFtXa6ye3kubsFsm8vGlwCT4fVn0duZlNa1LEtGeQ1hj\nSIP6mgadSF5Tr99/Whe9UZWBjA/y0IFlS4f10hrDU2P/bpJV3KNTxw06eLhCT2xvH6RZ88C4kgJ+\nHYTLZjfVkP/TjIEceFrrB/WqDHtXmm4f4Gt7zfceIdZE7fReur7z4Qpd3/+joTpslwqxirCU5mhh\n9+4iS7Tm93+VwEMVOt341nb4v9FpOITUhuklcO/ohORBxOzRi4iXOsqV3mV4Mfg5QK1z7hedfvUE\niZp1H0t4DZpzMPMzHV+9qKxTpWcTZWujJm+97tX0uGG4fhZ3mW6ybCWZOpwlu8mvC/N/PDS1PbNY\nPqjS6ZxbR+oJ4JZGr5xi8ymuRC/bStaIRkZZ26BDzmf117m5VMzdT4kxAtzdh142+rVK31WDtBO3\ntgEG+tJ3/j7orfA5oRTGtp3kHG+PPp7lde845w5p67ZUintTmwVV2lW+Z7QOaadRMsxr2zTI1wQ1\nz+28ASlomn0qd9y8nfC/K7TKy2/31s2100H4b3z+Tvjlai3O3aVnj2m05ru7+N1aWF0Pvx6ZuA3v\nI4WcLhOcs0OHtUXgiEVNW/5FyqST/NogzFiqySvXDmv78alQ2QgXfqKJLpHbAsaQyP3oi0TkUOfc\n296BDwaSvp5KRI4DfocOBt7nnLulwwcLOP2H6Zur6113BDTQx4ikXfnBtD0Av1mtw/X7FMLPhjcV\nkuty6VJEujs6sCfcNwa+/zlc/KmutT+snSseEunzOl0KNSQPvj9Ee4pP7pecwNGGhCwx2pP0zdWk\nh/B7FXCJed/WNsDzlVr/f51fMydP7av15q8ekkbl9pIkP0t3txzmnehua9TlL+kwfx90OnpSmguP\njm27CFs7xdOjnwz8GeiFztnvQOvev5/QljR/zWzgM+CrwFrgPeAs51zUnUxi9ujXNuim7NC0G1Yb\nurJT+0ktfG+5BvtLyuHC8pR8DptE2uzXnv2yWk2wOqd/1y4QX9egRVpe3KontZeUa0U/0z19XANX\nf6E976N7t/9vqTqoSaPPV8IH1RpMpvbQoeEjS5qvOd/Thl5uWa07ZJ4zQAtCvbk9NT9/0MEvVuqH\n/3XD2vUeJ6xH75xbCEwQkZ7oicGOuFvRcdOAz51zXwCIyOPAyUDUQL+sVqeXd70vVQHdNe3xTdpr\nv6Cs1W0Q1zboVE6FX/PzohUi+e3apve8Lqgnh+35n4v2PzS9RKdhLh/YtNWh6eb6+XT99A1fwp1r\n4cs6nbePsjFRp0X+UaxSXfYAAB02SURBVPXLhb3ytRJNNnD+ADi/TKuXme5L0PWaP/lSVwP9cGh8\nQ347A/ph9u9tWjh9aJ5urfa10qaNn1ra04ZeLijTudI/b9SCFQ2uqZhGV9XPDwf557dqIEhSpyAt\nl9eJyDeA45xzl3jXzwMOdM5dFe3xU4r2dc8e8jfuPbmc0wpD7PfIetgZxJ1QyrZLB7K+l4/6kG6k\nBlqqPkuadkg9drEmlrdlgZeTcuQiPSH+3yGawH7dlzraVpqrl5Hfl+TAy1t3HyXI807e9qT/qz1K\nyGnP+v6NMDxPK+dsbkxcTyHWcqgpxfCLEZ0uUWvSSNDpfhL/t0576N/oB3vnw/0VzXsOY4u013Jo\nL33OOcu0tvAJpVq9MiWlB7uBJdWamB2tYlYycxRaBvlLytt9iETO0adCtL/IZu+CiMxEN9thcuFY\nyrf6ue6BVWQBn+zbg3v+ZzDvDiwksAHYAOU+eNZ7v+pCzafnrxmmPfQyH1zxWfRCJP29RGrndGvT\n8OZM1UHddWteVfRclmyattmO1OASsC+xSV9ZoiVCtwe0qHvYRr8WwQB98z+v095XrVc/t9arqVsb\nbLosz2safv/JFzrH+Fxl9OVQa/0W5DNNtmhwP7o33LO+eZ1maOp9jsjXugjPjtfn/HWsBfd4jC/W\nPIhoklWqOAFBvj3SNdCvBYZEXB8MrI98gHNuFjALtEcPWgVxa3EOt18zigF5wrk+3aK6zNc83+Ka\nFgmXh0fkTF01KPoc/XcG6fciOiIa1jtXc5xA8zoqG3XlUvhyS6OODEXTHctdm3Z6Z+fut0We5f3k\nC/gy+r4FZKNl7SYVNwX6/CytORvrj8f+qDJXSY5OA72+bfchyHoHmwO6aUN46ZgF+fjFKvgQXir7\nxnbd+OiygZ3fnbOLgzzEEehFpBD4X2Coc+5Sb5vaMc6555LYrveAUSIyAlgHfBOIq9xdSXWAe/fp\n+B94ZxLP87O0eFTLAlIvbLWiIXustgLyj4fqP36htwtaYZYmSBV6xeNbfljfMFwv/7nF/qj2VFtj\nzDNWNqZnDYfuIFa1rO96PbzltZrvEL7++CY9Ef9KL60qGq8UBHmIr0f/ALAQ+Ip3fS3wdyBpgd45\nFxCRq4CX0F/nn51zH8Xz3Ib+Pjq7Oi3ROSntrrhmMkdbpeE6WnHQ/qj2XFZuMPHa6uFdOlCXRYVP\nvF/d5m1ZvEYTHb/SU4P+lB7Ne/wts7BH5cOcnV0a5CG+QD/SOXemiJwF4JyrE0n+mJBz7gV0A524\nBfKEgu+k3wedLU/fgyUrINsf1Z7LTvKSo60eXuTa5/vGaOnwuTt17+intmjuhE/ggGIN+jjNqYjc\nJGxbI5zQp0uDPMQX6P0iUoCXDCciI4EkbnreQWU+ctL4g25PW7liPMkMyPZHtWeyk7z0MCQfzszX\nXf0aQlqn4D874D87dWltUdbuCbMNTpfAdrF4CuZ8FbgO2Bd4GTgEuMA590bSWxenuEvgGmOMMcm2\n0Q8nJn/rxkQWzHlFRN4HDkKb+D3n3JY2nmaMMcbsmcrSa+vGNtcJiMjFzrlK59zzXqb9NhG5oQva\nZowxxnRPVw7U3IlIKcqliGdB4FEi8oKIlIvIOOBdIPM3JzfGGGM66vhS3SSlzKdj4WW+lO0EGs/Q\n/dkiciawBKhFN5d5J+ktM8YYY7qzNEmYjWfofhTwPeAfwErgPK+IjjHGGGPSXDxD988C1zvnLgMO\nB5ajleuMMcYYk+biWUc/zTm3E8DpWrzbReSZ5DbLGGOMMYkQzxz9Ti8Jb18gP+Ku5UlrlTHGGGMS\nIp5NbW4AjkAD/QvA8cDbwENJbZkxxhhjOi2eOfpvAEcBG51zFwITgHZs12OMMcaYVIkn0Nc550JA\nQER6ApuAvZLbLGOMMcYkQjzJeAtEpAS4F92uthqYn9RWGWOMMSYh4knGu8L79h4R+RfQ0zn3YXKb\nZYwxxphEiBnoRWSo923QObcOwDm3sisaZYwxxpjEaK1H/6B3WYkm5BljjDGmm4kZ6J1zR3ZlQ4wx\nxhiTeK0N3Z/a2hOdc/9MfHOMMcYYk0itDd2f2Mp9DrBAb4wxxqS51obuL+zKhhhjjDEm8eIpmGOM\nMcaYbsoCvTHGGJPBLNAbY4wxGazNQC8ihSJyvYjc610fJSInJL9pxhhjjOmseHr0DwANwFe862uB\nm5LWImOMMcYkTDyBfqRz7lagEcA5VwdIUltljDHGmISIJ9D7RaQAXTuPiIxEe/jGGGOMSXPxbFN7\nA/AvYIiIPAocAlyQzEYZY4wxJjHi2ab2FRF5HzgIHbL/nnNuS9JbZowxxphOa63W/aQWN23wLoeK\nyFDn3PvJa5YxxhhjEqG1Hv3t3mU+MAVYjPbo9wfmAYcmt2nGGGOM6ayYyXjOuSO9rWpXAZOcc1Oc\nc5OBA4DPk9UgEfmZiKwTkUXe19eS9VrGGGNMposnGW8f59yS8BXn3FIRmZjENgH81jl3W5Jfwxhj\njMl48QT6ZSJyH/AIusTuXGBZUltljDHGmISIZx39hcBHwPeA/wY+9m5LpqtE5EMR+bOI9I72ABGZ\nKSILRGTB5s2bk9wcY4wxpnsS51zXv6jIq0BZlLuuBd4FtqCjBzcC5c65i1o73pQpU9yCBQsS3k5j\njDEmXYnIQufclLYeF8/QfcI5546O53HeRjrPJbk5xhhjTMZKu21qRaQ84uoMYGmq2mKMMcZ0d3H3\n6EWkyDlXk8zGeG71svod/9/evYdbVdd5HH9/kNTUowVGCmhoIHIRiJDJCfF+KUuzVKCr40xoeXms\nsYtjKjrZg0k2zwxdtMRLJY6lhmWCUnkZURHlnCNiCN4CaxI1FTBshO/8sX5HN4e9D9tz9nX5eT3P\nfs667L3WZ+999vme9Vtr/37wFHByDfZpZmaWS0ULvaS3RcT/pel/BH4M7EDWK95o4OSI+GI1AkXE\nZ6qxXTMzs7eiUk33UyV19Hz3XeAI4HmAiGgDJtYgm5mZmfVQqUL/Q+CEjpmIWNlp/YaqJTIzM7OK\nKdp0HxEbgDPS7MrUfB+Stk7L3WGOmZlZEyjnqvtTgFOBAcAqYEyaNzMzswZXznj0zwGfqkEWMzMz\nq7CuxqP/L7KvuBUVEWeUWmdmZmaNoasjevcpa2Zm1uRKFvqIuLqWQczMzKzyumq6/xVdN90fXZVE\nZmZmVjFdNd3PqFkKMzMzq4qumu7v7JiW9HZg94hYVpNUZmZmVhFb/B69pI8CrcDcND9G0s3VDmZm\nZmY9V06HOdOA8cCLABHRCgyqXiQzMzOrlHIK/WsR8VLVk5iZmVnFlTMe/RJJnwS2kjSErK/7BdWN\nZWZmZpVQzhH96cAI4FVgNvAycGY1Q5mZmVlllNPX/SvAOZIuzmZjTfVjmZmZWSWUc9X9vpIeBtqB\nhyW1SXp/9aOZmZlZT5Vzjv4K4IsRcTeApAnAlcCoagYzMzOznivnHP2ajiIPEBH/A7j53szMrAl0\n1df92DS5UNJlZBfiBTAJuKP60czMzKynumq6/06n+fMLpksOdmNmZmaNo6u+7g+qZRAzMzOrvK6a\n7j8dET+V9OVi6yPi0urFMjMzs0roqul++/Szpcg6N92bmZk1ga6a7i9LPy/ovE6Se8YzMzNrAuV8\nva6Yos35ZmZm1li6W+hV0RRmZmZWFd0t9D5Hbw3hpJNOol+/fowcOXKzdXPnzmXo0KEMHjyY6dOn\nb3F5LXWVe9CgQeyzzz6MGTOGcePG1SGdmeVJyUIvaY2kl4vc1gD9a5jRrKQTTzyRuXPnbrZ8w4YN\nnHrqqdx6660sXbqU2bNns3Tp0pLLGyV3h9///ve0trayaNGiGqYyszwqWegjoiUidixya4mIcvrI\nNyvpwAMPZNmyZQA8//zzRY9syzFx4kT69Omz2fKFCxcyePBg9txzT7beemsmT57MnDlzSi4vV1tb\nGxMnTmT48OH06tULSZx//vlbfmCZuc3MKs0F2+pixYoVDBkyBID29nb22WefTdbvv//+rFmz+ZAK\nM2bM4NBDD93i9p955hl222231+cHDhzI/fffX3J5OdavX8+kSZO45pprGD9+POeeey7r169n2rRp\nFcsNIInDDz8cSZx88slMnTq1rMeZmRVTl0Iv6XhgGjAMGB8RiwrWnQ38M7ABOCMi5tUjo1XP008/\nzYABA+jVK2tQam9vZ9SoTQdDvPvuu4s9tGwRm19GIqnk8nLMnz+fsWPHMn78eABGjRrF3LlzN3l8\nT3MD3HPPPfTv359nn32Www47jL333puJEyf2eLtm9tZUryP6JcDHgcsKF0oaDkwGRpBdBzBf0l4R\nsaH2Ea1aWltbNynsDz74IJMmTdrkPj09Mh44cCArV658fX7VqlX079+/5PJyLFmyZJOWh4ceeoix\nY8ducp9KHNF35OnXrx/HHnssCxcudKE3s26rS6GPiEeh6JHUMcB1EfEq8KSkFcB44N7aJrRqamtr\nY/369QAsX76cOXPm8M1vfnOT+/T0yHjfffdl+fLlPPnkkwwYMIDrrruOa6+9lqFDhxZdDnDIIYdw\nzTXXMGDAgKLb7Nu3L7/73e8AeOyxx7jxxhtZsGBBRXOvW7eOjRs30tLSwrp167jttts477zzerRN\nM3tr6+7X66plALCyYH5VWrYZSVMlLZK0aPXq1TUJZ5XR2trKxo0bGT16NBdeeCHDhg3j6quv7ta2\npkyZwn777ceyZcsYOHAgV1xxBQC9e/dm5syZHHHEEQwbNowTTjiBESNGlFy+ceNGVqxY0eUFclOm\nTGHt2rWMHDmSqVOnMnv2bPr27VvR3H/5y1+YMGECo0ePZvz48Rx11FEceeSR3dqHmRmAip2zrMiG\npfnALkVWnRMRc9J97gDO6jhHL+l7wL0R8dM0fwXwm4i4oat9jRs3Lvw1pOYxePBgFi9eTEtLsWEU\n6mPJkiXMmjWLSy/1WE1m1hwkPRgRW+xso2pN9xFR3gnJTa0CdiuYHwj8qTKJrBGsWbOGXr16NVSR\nBxg5cqSLvJnlUqM13d8MTJa0jaQ9gCHAwjpnsgpqaWnhscceq3cMM7O3jLoUeknHSloF7AfcImke\nQEQ8AlwPLAXmAqf6inszM7Puq9dV9zcBN5VYdxFwUW0TmZmZ5VOjNd2bmZlZBbnQm5mZ5ZgLvZmZ\nWY650JuZmeWYC72ZmVmOudCbmZnlmAu9mZlZjrnQm5mZ5ZgLvZmZWY650JuZmeWYC72ZmVmOudCb\nmZnlmAu9mZlZjrnQm5mZ5ZgLvZmZWY650JuZmeWYC72ZmVmOudCbmZnlmAu9mZlZjrnQm5mZ5ZgL\nvZmZWY650JuZmeWYC72ZmVmOudCbmZnlmAu9mZlZjrnQm5mZ5ZgLvZmZWY650JuZmeWYC72ZmVmO\nudCbmZnlmAu9mZlZjrnQm5mZ5VhdCr2k4yU9ImmjpHEFywdJ+puk1nT7YT3ymZmZ5UXvOu13CfBx\n4LIi6x6PiDE1zmNmZpZLdSn0EfEogKR67N7MzOwtoxHP0e8habGkOyXtX+pOkqZKWiRp0erVq2uZ\nz8zMrGlU7Yhe0nxglyKrzomIOSUe9mdg94h4XtL7gV9KGhERL3e+Y0RcDlwOMG7cuKhUbjMzszyp\nWqGPiEO78ZhXgVfT9IOSHgf2AhZVOJ6ZmdlbQkM13Ut6l6St0vSewBDgifqmMjMza171+nrdsZJW\nAfsBt0ial1ZNBNoltQG/AE6JiBfqkdHMzCwP6nXV/U3ATUWW3wDcUPtEZmZm+dRQTfdmZmZWWS70\nZmZmOeZCb2ZmlmMu9GZmZjnmQm9mZpZjLvRmZmY55kJvZmaWYy70ZmZmOeZCb2ZmlmMu9GZmZjnm\nQm9mZpZjLvRmZmY55kJvZmaWYy70ZmZmOeZCb2ZmlmMu9GZmZjnmQm9mZpZjLvRmZmY55kJvZmaW\nYy70ZmZmOeZCb2ZmlmMu9GZmZjnmQm9mZpZjLvRmZmY55kJvZmaWYy70ZmZmOeZCb2ZmlmMu9GZm\nZjnmQm9mZpZjLvRmZmY55kJvZmaWY3Up9JIukfQHSe2SbpL0joJ1Z0taIWmZpCPqkc/MzCwv6nVE\nfzswMiJGAY8BZwNIGg5MBkYARwLfl7RVnTKamZk1vboU+oi4LSJeS7P3AQPT9DHAdRHxakQ8CawA\nxtcjo5mZWR40wjn6k4Bb0/QAYGXBulVpmZmZmXVD72ptWNJ8YJciq86JiDnpPucArwE/63hYkftH\nie1PBaam2VclLelZ4prZGXiu3iHK0Cw5oXmyNktOaJ6szZITmidrs+SE5slarZzvKedOVSv0EXFo\nV+slfQ74CHBIRHQU81XAbgV3Gwj8qcT2LwcuT9taFBHjehy6Bpola7PkhObJ2iw5oXmyNktOaJ6s\nzZITmidrvXPW66r7I4GvAUdHxCsFq24GJkvaRtIewBBgYT0ympmZ5UHVjui3YCawDXC7JID7IuKU\niHhE0vXAUrIm/VMjYkOdMpqZmTW9uhT6iBjcxbqLgIve5CYv71mimmqWrM2SE5ona7PkhObJ2iw5\noXmyNktOaJ6sdc2pN06Pm5mZWd40wtfrzMzMrEqaotBLWtCNx/SRdLuk5ennO6uRrdM+u5OzZHfA\n1dSdrAWPPUtSSNq5kplK7KtbOSWdnrpRfkTStyudq8Q+u/P+j5F0n6RWSYskVaWDqG5mOz69fhsl\njeu0rmpdVVcyq6TDJD0o6eH08+BGzFmwfndJayWdVZmUr2+30u//KEn3pvUPS9q20XJKepukq1O+\nRyWdXYmMPcxan+7fI6Kpb8CBwFVFln8b+Hqa/jpwcYPmPBzonaYvrnfOrrKmdbsB84CngZ0bMSdw\nEDAf2CbN92vU1xS4DfhQmv4wcEcDZRsGDAXuAMYVLB8OtJFdULsH8DiwVYNmfR/QP02PBJ5pxJwF\n628Afg6c1cDvf2+gHRid5vvW4v3vRs5PkvW0CrAd8BQwqM6vadG/99X+TDXLEf3abjzsGODqNH01\n8LHKJSquOzmjdHfAVdXN1xTgu8BXKdGRUaV1M+cXgOkR8SpARDxb2VTFdTNrADum6Z0o0W9ET3Xz\nd/PRiFhWZFVVu6quZNaIWBwRHa/pI8C2krbpaUao+GuKpI8BT5DlrKgKZz0caI+ItnS/56NC346q\ncM4AtpfUG3g78Hfg5R5GfF2F/95X9TPVFIW+m94dEX8GSD/71TlPOQq7A244ko4mOyJqq3eWLdgL\n2F/S/ZLulLRvvQN14UzgEkkrgRmkAZ4aXLN2Vf0JYHHHP4CNRNL2ZH2LXFDvLGXYCwhJ8yQ9JOmr\n9Q5Uwi+AdcCfgT8CMyLihfpG2kTNun+v1/foe0zS/WTNHDsAfSS1plVfi4h59Uu2qXJzavPugGuu\nq6zA3cA5ZP/N11UZr2lv4J3AB4B9gesl7RmpjazBsn4B+FJE3CDpBOAKoMteJWuYreRDiyyr6mvb\n08+7pBFkTaVV/f3tQc4LgO9GxFqp2MtbeT3I2huYQPbZegX4raQHI+K3DZZzPLAB6E/29+BuSfMj\n4olq5HwzWYv8va/uZ6oW5ysqcL5jbTfOhSwDdk3TuwLLGjFnWvc54F5gu0Z9TYF9gGfJznM9RfZL\n+kdgl0bKmZbPBQ4smH8ceFejvaZp+Uu88TVXAS83SraC9Xew6bnPs4GzC+bnAfs1Yta0bCDZcNgf\nbODX9O6Cz9aLwAvAaQ2adXLh/YFzga80YM7vAZ8pmJ8FnFDv15Qif++r/ZnKc9P9zWQvKOnnnDpm\nKUmluwNuKBHxcET0i4hBETGIrGlpbET8b52jFfNL4GAASXsBW9O4A1/8CTggTR8MLK9jlnI1TVfV\n6armW8j+iN5T7zylRMT+BZ+t/wC+FREz6xyrlHnAKEnbpfPfB5D1Ztpo/ggcrMz2ZC18f6hnoC7+\n3lf1M9Ushb47TRjTgcMkLQcOS/PV1p2cM4EWsu6AWyX9sMKZSmmWnpK6k3MWsKeyEQ2vAz4X6d/k\nKuvOPj4PfEdSG/At3hiRsdLedDZJx0paBewH3CJpHkBEPAJ0dFU9l8p3VV2xrMBpwGDg3PT5apVU\nqet1Kpmz2ir5/v8VuBR4AGgFHoqIWxotJ9kR/Q7AkpT1yohor1BOqODf+2p/phq+ZzxJfcl+kcoa\njq9emiUnNE/WZskJjZ21kbN11ixZmyUnNE/WZskJzZUVGvyIXlJ/snMZM+qdpSvNkhOaJ2uz5ITG\nztrI2TprlqzNkhOaJ2uz5ITmytqh4Y/ozczMrPsa+ojezMzMesaF3szMLMdc6M0aiKTekk6rVDet\nZmYu9GZdKNaftaRTJH02Td+hIqOQdbG9AyX9Ok2fKGlmwTqRfYe6PcroprUb+75K0nEFjx1U7mN7\nQtKg9FXHam3/Tb0OJbZxoaSa9EhoVmtN2wWuWb1ERFX6Okjf9T+tGtu2rkXEefXOYFYtPqI3e5Mk\nTdOm44V/WtICSUuUxpOXtL2kWZIekLRY0jFb2Oa7JN2Q7v+ApA8Wuc/bJV2nbCzr/yYbkatj3eHK\nxgd/SNLPJe2whafxAlk/4Ej6gaRFysb0viAt20nZuNhD0/xsSZ8vd1+S3i+pTdK9wKkFy7dSNib3\nA+l5nJyW7yrprtSJyBJJ+xfZ5nnpcUskXZ5aQDoUew8OKOgkZ7GklrT8q8rGKG+TND0tK2ztmC5p\naco3Iy07Pm27TdJdPX0uZjVVqb50ffMtjzeK9GcNTCONF07Wv/aP0vREYEma/hbw6TT9DrK+1rcn\n6wP712n5icDMNH0tMCFN7w48WmS/XwZmpelRZOMNjAN2Bu4Ctk/rvgacV+TxVwHHFVneJ/3cKj2f\nUWn+MLLvC08G5qZl5e6rHTggTV9S8LpMBb6RprcBFpGNv/2vwDkFOVpK5UzTPwE+uoX34Fek/u3J\nekjrDXwIWEDqZ7zguV8FHAf0IRsno+Orx+9IPx8GBnRa1u3n4ptvtby56d6s52YDRMRdknZU1r/6\n4cDRBUf+25IV8FIOBYYXHKTuKKklItYU3Gci8J9pX+2SOrrz/AAwHLgnPX5rsgJdrhMkTSUrhLum\nbbVHxO2SjifrSnR0ufuStBNZMbwzLfoJWYGF7HUZ1XH0DOxE1q/3A8AsSW8DfhkRrWzuIGVDom5H\nVpAfISvmUPw9uAe4VNLPgBsjYlU6D39lpH7GY/NhS18G1gM/lnQL8Ou0/B7gKknXAzdW4LmY1YwL\nvVnPde51KshGovtERCwrXCHp3SW20YtstKq/vcl9kfZ1e0RMKSdspzx7AGcB+0bEXyVdRfZPCZJ6\nAcOAv5EV1lVl7kslcnasOz2KDC8qaSJwFPATSZdExDUF67YFvk82OtlKSdM6ciabvQcRMT0V6w8D\n96Ui31U2IuK11PR/CFlLxmnAwRFxiqR/SPlaJY3p7nMxqzWfozfruUkAkiYAL0XES2QjfJ3ecR5Z\n0vu2sI3bKLgQLxWSzu4CPpXWjyRrvge4D/igpMFp3XbKRu0rx47AOuCl9E/IhwrWfQl4FJjCG0eo\nW9xXRLyYtjchLfpUwep5wBfStpC0l7LrGd4DPBsRPwKuAMZ2ytlR1J9L1wQc12n9Zu+BpPdGNuri\nxWTN6nuTvc4nSdou3b9P4UbStneKiN8AZwJj0vL3RsT9kV209xywWw+ei1lN+YjerGvbKRsZq8Ol\nRe7zV0kLyIrmSWnZv5O+KpeK/VPAR7rYzxnA91JzfG+yon5Kp/v8ALgy3aeVNIxlRKyWdCIwW298\n//4bZNcFdCki2iQtJmsGf4KsibpjeN9/AcZHxJp0Ado3IuL8Mvf1T2T/HLxCVhA7/BgYBDyUXpfV\nwMfIrl34iqT/A9YCn+2U80VJPyI7V/4UWfN4oWLvwZmSDiK76HApcGtEvJr+iVok6e/Ab4B/K9hO\nCzAntSCI7J8dgEskDUnLfgu0kV2H8Kafi1mtua97MzOzHHPTvZmZWY650JuZmeWYC72ZmVmOudCb\nmZnlmAu9mZlZjrnQm5mZ5ZgLvZmZWY650JuZmeXY/wMy2037NlAHOQAAAABJRU5ErkJggg==\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["from numpy.random import randn\n", "\n", "fig = plt.figure(figsize=(8,6))\n", "ax1 = fig.add_subplot(1,1,1)\n", "ax1.plot(serie1,color='#33CCFF',marker='o',linestyle='-.',label='un')\n", "ax1.plot(serie2,color='#FF33CC',marker='o',linestyle='-.',label='deux')\n", "ax1.plot(serie3,color='#FFCC99',marker='o',linestyle='-.',label='trois')\n", "\n", "ax1.set_xlim([0,21])\n", "ax1.set_ylim([-20,20])\n", "ax1.set_xticks(range(0,21,2))\n", "ax1.set_xticklabels([\"j +\" + str(l) for l in range(0,21,2)])\n", "ax1.set_xlabel('Dur\u00e9e apr\u00e8s le traitement')\n", "\n", "ax1.annotate(\"You're here\", xy=(7, 7), #point de d\u00e9part de la fl\u00e8che\n", " xytext=(10, 10), #position du texte\n", " arrowprops=dict(facecolor='#000000', shrink=0.10),\n", " )\n", "\n", "ax1.legend(loc='best')\n", "\n", "plt.xlabel(\"Libell\u00e9 de l'axe des abscisses\")\n", "plt.ylabel(\"Libell\u00e9 de l'axe des ordonn\u00e9es\")\n", "plt.title(\"Une id\u00e9e de titre ?\")\n", "plt.text(5, -10, r'$\\mu=100,\\ \\sigma=15$')\n", "\n", "# plt.show()"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### matplotlib et le style"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Il est possible de d\u00e9finir son propre style. Cette possibilit\u00e9 est int\u00e9ressante si vous fa\u00eetes r\u00e9guli\u00e8rement les m\u00eames graphes et voulez d\u00e9finir des templates (plut\u00f4t que de copier/coller toujours les m\u00eames lignes de code). Tout est d\u00e9crit dans [style_sheets](http://matplotlib.org/users/style_sheets.html)."]}, {"cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAGHCAYAAAC6dYsvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XeYVPW9+PH3OdPbznaqICCCKEoU\noogKoRiEKGiCRIoNNWhMiKRYfldNbkwCNyHqVYyGKCp5bsRcFdSgSBE1clWQZkFEiojALtum9/P9\n/TEwsO4MDMsuu8t+Xs/Dw+6ZUz4zszOf8+2aUkohhBBCiJOe3tIBCCGEEOLEkKQvhBBCtBOS9IUQ\nQoh2QpK+EEII0U5I0hdCCCHaCUn6QoiMzZs388ADDxAMBls6FCFEM5CkL8RJ4te//jWnnXbaEfdZ\ntWoVmqaxe/fuBo/5fD7Gjx9P165dcbvdzRLjsGHDuOmmm5rl3Ndffz0jR45slnMLcbKQpC9EE8iV\nzHbv3o2maaxatarZY/jFL37Be++916hjlVJMnjyZH/3oR1x//fVNG1gT+/vf/46maQ22P/zww/zz\nn//M/H7TTTcxbNiwZo1l4cKFDBkyBK/XS1lZGTfddBPhcLhZrynE8TC3dABCiKbhdrsbXULXNI1X\nX321iSM6sbxeb6OOi8fjWK3WRh37+uuv8+Mf/5hBgwaxY8cOJk2aRElJCbNnz27U+YRoblLSF+IE\nOli9vmzZMi655BKcTif9+vVj6dKl9farqKjg+uuvp6ysDI/Hw5AhQ3j77bePeO5s1fuPPPIIXbt2\nxel08t3vfpddu3Y1OO7DDz/k0ksvxe12U1ZWxlVXXcWXX35Zb59ly5YxZMgQHA4HXbp04YYbbqC6\nuvqI8Xz55ZeMHj0ah8NBt27deOSRRxrsk0wm+fWvf02PHj2w2+2ceeaZPPHEEznPuWrVKqZOnQqk\nb1Q0TcvUTBxevf/rX/+aJ598krfeeiuz39NPP5057r//+7+ZNGkSXq+XyZMnA417zefPn8+kSZPo\n3bs3l156KYMHD876GgvRWkjSF6IF/OIXv+Cee+5h48aNDBw4kIkTJ1JXVwdAJBLhO9/5DoFAgNde\ne43169czZswYRo0axebNm/O+xuLFi7njjjuYOXMmGzZs4Oqrr+aXv/xlvX0+/fRThg4dyuDBg1m7\ndi0rV67EZDIxatQootEoACtXrmTcuHH88Ic/ZNOmTSxatIidO3dy5ZVXkmsWb6UUV155JdXV1axa\ntYqXX36Zl19+mXXr1tXb76abbuLFF1/kiSeeYPPmzdx3333ceeedPPnkk1nPe+GFF/Loo48CsHfv\nXvbu3cvDDz+c9fWdNGkSgwcPzuw3ceLEzOO/+c1vGDx4MOvWreN3v/tdk7zmL774IsuXL+fmm2/O\na38hWoQSQhy3oUOHqmnTpjXY/tVXXylAvfnmm0oppd58800FqBdeeCGzz969exWgXn/9daWUUvPn\nz1ddunRRiUSi3rm+853vqBkzZuSM4f7771e9evXK/D5kyBA1adKkevv8/Oc/V4D66quvlFJKXXfd\ndWrixIn19olGo8rhcKiXXnop89zuvPPOevt8+eWXClDr16/PGsuyZcsUoLZs2ZLZVllZqex2e+Z1\n2r59u9I0TW3evLnesb/5zW/UOeeck/N5LliwQGX76rruuuvUiBEjMr9PmzZNDR06tMF+gLrxxhvr\nbWvsa3748U6nUy1atOio+wrRkqRNX4gWMGDAgMzPHTt2xGQyUVFRAcCaNWvYt28fhYWF9Y6JxWI4\nHI68r/Hpp59yzTXX1Nt20UUXMWfOnMzva9as4YsvvmjQFyAajbJ169bMPu+9916mhH24rVu31nsu\nh1+7tLSU008/PbOtrKyMPn36ZH5fu3YtSikGDhxY79hkMonJZMr7eTbGt7/97Xq/H89rnkqluP32\n25k9ezbjxo1r8liFaEqS9IVoAjabDZ/P12D7wSp7u91eb3u2jmOGYWT+P+OMM3jppZca7ON0Oo8p\nrmy93L95zalTp3LXXXc1eKykpCSzz5133plpSz9cx44ds55XKZXXtQFWr17d4Hkd7djj5XK5GsTS\n2Ne8oqKCUCjEWWed1aQxCtEcJOkL0QT69u3LK6+8QiqVqldK/eCDD9B1nd69e+d9roEDB/Lss89S\nUFBAeXl5o2Pq168f7777Lrfddltm27vvvtvgWps2baJXr145E+3AgQP55JNPjjoHwOHOPPNM9u/f\nz9atWzPPvaqqis8//zxTsj/vvPMA2LVrF9/73vfyPvfBG6ZvvtbZ9kulUnmd83he87KyMtasWVOv\nFkOI1ko68gnRBKZPn86+ffu44YYb+PDDD9m2bRvPPfcc99xzD9dee22m1JyPyZMn06NHD8aOHcsb\nb7zBzp07ef/99/nDH/7AokWL8j7Pz3/+cxYuXMjDDz/M1q1bmT9/PgsWLKi3zz333MPmzZuZMmUK\nH3zwATt27ODNN99kxowZbN++HYD//M//zHQK3LBhA9u2beP1119n2rRpRCKRrNceMWIE55xzTua8\nGzZsYPLkyZjNh8oZp512GjfeeCM333wzCxYs4IsvvmDjxo089dRTRxzy1qNHDwBefvll9u/fn3P2\nwB49evDZZ5/xySefUFVVRSwWy3nO43nNKysrmTJlyjF1shSixbR0pwIhThYbN25Ul19+uerUqZNy\nOp3qrLPOUrNnz1axWCyzz8GOfAc70h1kMpnU/PnzM79XVVWp6dOnq86dOyuLxaI6d+6sxo8fr9at\nW5fz+t/syKeUUg899JDq3LmzstvtasSIEerpp59ucP1NmzapK664QhUWFiq73a569eqlbr75ZlVd\nXZ3Z5+2331YjRoxQbrdbOZ1O1bdvXzVjxowGHd8Ot2PHDjVq1Chls9lUly5d1EMPPdSgw2MymVSz\nZ89Wffr0URaLRZWUlKhLLrlEPf/887lfaKXUjBkzVHl5udI0TV133XVKqYYd+aqrq9Vll12mCgoK\nFJB5fQG1YMGCBudszGt+8HlyWGdNIVozTakcY26EEEIIcVKR6n0hhBCinWgVHfmqqqqYO3cudXV1\naJrGyJEjGTNmDMFgkAcffJD9+/dTVlbGHXfc0WwLgQghhBAnu1ZRvV9bW0ttbS09e/YkEolw1113\n8ctf/pJVq1bhdrsZP348ixYtIhgMMmXKlJYOVwghhGiTWkX1flFRET179gTIzO1dU1PDmjVrGDp0\nKABDhw5lzZo1LRmmEEII0aa1iqR/uMrKSnbs2MFpp52Gz+ejqKgISN8Y+P3+Fo5OCCGEaLtaRZv+\nQdFolDlz5nD99dcf08xjy5cvZ/ny5QDMmjWrucITQggh2rRWk/STySRz5szh4osv5vzzzwfS62PX\n1tZSVFREbW0tBQUFWY8dOXJkZklNgD179pyQmI9XaWkpVVVVLR3GUbWVOKHtxNpW4oS2E2tbiRPa\nTqxtJU5oO7E2V5ydO3fOa79WUb2vlOLxxx+nS5cu9abjHDhwIG+99RYAb731FoMGDWqpEIUQQog2\nr1WU9Lds2cLbb79Nt27dMut9X3PNNYwfP54HH3yQlStXUlpaysyZM1s4UiGEEKLtahVJv2/fvjz/\n/PNZH7vvvvtOcDRCCCHEyalVJH0hhBCiMZRSRKNRKioqjrioUmtxPHEqpdB1Hbvd3ujlpyXpCyGE\naLOi0SgWiwWbzXbEpZZbC7PZfFxxJpNJotEoDoejUce3io58QgghRGMYhlFvyeaTndlsxjCMRh8v\nSV8IIUSb1dhq7rbseJ6zJH0hhBCinWg/dSJCCCHavVVhBwsCHqoME6V6iqmeAMOckZYO64SRpC+E\nEKJdWBV2MNfnJXagknu/YWauzwtwXIn/q6++4rrrrmPlypUAPP7444RCIf7v//6Pb33rW6xevRqf\nz8ecOXMYMmTI8T+R4yBJXwghxEnjnuqSnI9tiVtJUL89PIbOPH8Bw5wR/IbOrNqieo//vqT6uOJJ\nJpP861//YsWKFfz5z39u8aQvbfpCCCHahUSO7QHVfKlwzJgxAJx99tns3r272a6TLynpCyGEOGkc\nqWQ+raKc/UbDtFempwAo0I1GlexNJlO9YXTRaDTzs9VqzeyTTCaP+dxNTUr6Qggh2oWpngA26o9x\nt2Ew1RM4rvOWlZVRVVVFTU0NsVgss9R7ayQlfSGEEO3Cwc56Td1732KxcMcdd3D55ZdzyimncNpp\npzVFuM1Ckr4QQoh2Y5gz0ixD9KZNm8a0adNyPl5cXMz777/f5Nc9VlK9L4QQQrQTkvSFEEKIdkKS\nvhBCCNFOSNIXQggh2glJ+kIIIUQ7IUlfCCGEaCck6QshhBBNZM6cOTz++OMtHUZOMk5fCCFEu+FY\nFcazIICpyiBVqhOY6iEyzNnSYZ0wUtIXQgjRLjhWhfHO9WHeb6ApMO838M714VgVPq7zPvzww1x8\n8cVMnDiRbdu2AbBz504mT57M6NGjufLKK/niiy8A+OlPf8qrr76aObZ3794AvPbaa0ycOBGlFBUV\nFVx00UVUVlYeV1zZSElfCCHESaPkntwL5li3xNG+sdSeHoOCeX4iw5zofoOiWbX1Hq/+fe6legE2\nbdrEyy+/zBtvvEEymWT06NGcffbZ/OpXv2LWrFn07NmTdevWcffdd/PPf/4z53kuu+wylixZwtNP\nP82bb77JL37xC8rLy4/+hI+RJH0hhBDtQ461dfWAavQp33//fUaPHo3D4QBg1KhRRKNRPvzwQ370\nox9l9ovH40c9129/+1tGjBjBueeey/jx4xsd05FI0hdCCHHSOFLJvHxaBeb9RoPtqbJ0S7dRoB+1\nZJ+Npmn1fldKUVBQwLJlyxrse/gyvEopEolDdyL79u1D0zT279+PYRjoetO3wEubvhBCiHYhMNWD\nYau/zbCltzfWBRdcwOuvv04kEiEYDLJs2TIcDgennHIKr7zyCpBO7p988gkAp5xyCh999BEAS5cu\nzST9ZDLJzJkzmTt3Lr179+avf/1ro2M6EinpCyGEaBcO9tJvyt77/fv35/LLL+fSSy+la9eunH/+\n+QA8+uij3H333Tz88MMkk0nGjRvHmWeeyZQpU7j22msZO3YsF110EU5n+tqPPPII3/72tzn//PM5\n88wzGTNmDCNGjMh09GsqmlKq8Y0ZrdSePXtaOoS8lJaWUlVV1dJhHFVbiRPaTqxtJU5oO7G2lTih\n7cTaFuIMh8M4nU7MZjPJZLKlwzmqpojz4HM+XOfOnfM6Vqr3hRBCiHZCkr4QQgjRTkjSF0IIIdoJ\nSfpCCCFEO9Fqeu8/9thjrFu3Dq/Xy5w5cwB4/vnnWbFiBQUFBQBcc801nHvuuS0ZphBCCNFmtZqk\nP2zYMEaPHs3cuXPrbR87dixXXHFFC0UlhBBCnDxaTfV+v379cLvdLR2GEEIIkTefz8fTTz99zMe1\nVGG21ZT0c1m6dClvv/02PXv25Nprr816Y7B8+XKWL18OwKxZsygtLT3RYTaK2WxuE7G2lTih7cTa\nVuKEthNrW4kT2k6sbSHOiooKzOZ0Kjv4/5HYQl/h9n2KnopgmBwEvf2IuU5p9PVDoRDPPvssN910\nU73tqVQKk8mU9Riz2cySJUsafU2bzdbo96VVTc5TWVnJ7NmzM236dXV1mfb8hQsXUltby2233XbU\n88jkPE2rrcQJbSfWthIntJ1Y20qc0HZibQtxHsvkPI7wbry+j9BJZbYZmPB5+xNxdm3U9W+99Vbe\neOMNevbsicViwel00qFDBz755BNWrVrFE088wcKFC4F0v7Rbb72VZDJJ79692bp1KxUVFdx6660E\nAgFSqRR/+MMfMrP6He05Hy7fyXladUm/sLAw8/OIESOYPXt2C0YjhBCitSupXp3zMWu8Do36C+7o\npCjwf0LE2RXdiFNUu7be49UlFx7xevfccw9btmxh2bJlrF69mmuvvZaVK1fSrVs3Nm3axPPPP8+r\nr76KUorvfe97XHTRRZxxxhmZ41966SWGDh3KjBkzSKVSRCKRRjzr/LWaNv1samsPrWv8wQcfcMop\nja+CEUII0d41XGEPQFc51txthAEDBtCtWzcgnbdGjx6N0+nE5XJx2WWX8d577zXY//nnn2fOnDls\n3ry52fu2tZqS/kMPPcSnn35KIBBg+vTpXH311XzyySfs3LkTTdMoKyvjlltuaekwhRBCtGJHKpmX\nV6zAbDQsSad0BwCGbj1qyf5oDq92z6f1/IILLuCFF15gxYoVzJgxg+nTpzNhwoTjiuFIWk3S/9nP\nftZg2/Dhw1sgEiGEECejgKdP1jb9gKdPo8/pcrkIBoNZH7vgggu44447uP3221FK8frrrzcYlr57\n9246duzI5MmTCYfDfPTRR+0j6QshhBDN6WBnPU9gCyYjQkp3EPD0aXQnPoDi4mIGDRrE8OHDsdvt\n9XrV9+/fnwkTJjB27Fgg3ZGvf//+9Tocrl69mscffxyz2YzL5eLhhx9udCz5aFW995uK9N5vWm0l\nTmg7sbaVOKHtxNpW4oS2E2tbiFOW1k2TpXWFEEIIUY8kfSGEEKKdkKQvhBBCtBOS9IUQQrRZJ2G3\ntKM6nucsSV8IIUSbpet6m+jA11SSySS63vjULUP2hBBCtFl2u51oNIqmacRisZYO56hsNluj41RK\noes6dru90deXpC+EEKLN0jQNh8PRJoYXQssPg5TqfSGEEKKdkKQvhBBCtBOS9IUQQoh2QpK+EEII\n0U5I0hdCCCHaCUn6QgghRDshSV8IIYRoJyTpCyGEEO2EJH0hhBCinZCkL4QQQrQTkvSFEEKIdkKS\nvhBCCNFOSNIXQggh2glJ+kIIIUQ7IUlfCCGEaCck6QshhBDthCR9IYQQop2QpC+EEEK0E3klfb/f\nTzQaBcAwDN58803eeustDMNo1uCEEEII0XTySvqzZs1i7969APzjH//glVde4dVXX+XZZ59t1uCE\nEC1PKcX48eNZuXJlZtvLL7/M5MmTj/lcP/nJT/jggw8aHcvs2bOZN29eo48Xor3LK+nv3buXU089\nFYB33nmHe+65h/vvv5/Vq1c3Z2xCiFZA0zRmzZrFb37zG6LRKOFwmNmzZ/O73/2uya6RTCab7FxH\nkkqlTsh1hGit8kr6uq6TTCbZtWsXTqeT0tJSnE5npspfCHFy69u3L6NGjeKxxx7jz3/+Mz/4wQ84\n9dRTeeyxxxg+fDjDhw/nqaeeAmDHjh2MGjUqc+yjjz7KQw89BEBBQQEWiwWA8847jwcffJBx48bx\n2muvsX37diZNmsTo0aO56qqr2LZtW9ZYPvvsM77//e8zePBgnn766cz2BQsWMHbsWEaNGsXdd9+N\nYRgkk0nOOOMMZs+ezdixY1m/fj0bNmzg+9//PqNHj2bKlCns37+/mV41IVofcz47DRgwgAcffJBA\nIMCFF14IwO7duykuLm7W4IQQrcfMmTP57ne/i9VqZcmSJaxfv54XX3yRf/3rX6RSKcaOHcsFF1yA\nw+HIeY5v1g44nU4WL14MwA9+8AP+9Kc/ceqpp7JmzRr+4z/+g3/84x8NzrF9+3YWLlyI3+9n6NCh\nTJ06la1bt7J48WIWL16M2WzmV7/6FYsXL+byyy/H7/fTv39/7rzzTmKxGBMmTODpp5+muLiYF198\nkT/+8Y/813/9V9O+WEK0Unkl/enTp/PWW29hMpm45JJLAAgEAkyYMKHJAnnsscdYt24dXq+XOXPm\nABAMBnnwwQfZv38/ZWVl3HHHHbjd7ia7phAif06nkyuuuAKXy4XNZuP9999n7NixmSQ/evRoPvjg\nA4YOHZr3Oa+44goAfD4f69ev5+abb848lqsqfuTIkVitVkpLSyksLKS6upp33nmHDz/8kMsuuwyA\naDRKp06dALBarZntW7du5fPPP2fixIlAumPywf2EaA/ySvoWi4WRI0diGAY+n4+ioiLOPPPMJg1k\n2LBhjB49mrlz52a2LVq0iP79+zN+/HgWLVrEokWLmDJlSpNeVwiRP13X0fUjtwqazWaUUpnfY7EY\nJpMp675OpxNIdxYsKipi2bJlR43BarVmfjaZTCSTSZRSXHfdddx+++319k0mk9jtdjRNy2w744wz\neOmll456HSFORnm16YdCIR5++GEmT57MT3/6UwDWrl3Lc88912SB9OvXr0Epfs2aNZlSw9ChQ1mz\nZk2TXU8IcXzOP/98XnvtNSKRCKFQiKVLl3L++edTVlbGvn37qKurIxqNsmLFiqOeq7CwkA4dOvDa\na68B6RL4J598kncsF198Mf/7v/9LTU0NADU1NXz99dcN9uvduzf79u1j/fr1AMTjcbZs2ZL3dYRo\n6/Iq6c+bNw+Xy8Vjjz3GzJkzATj99NN59tln+eEPf9hswR2sVQAoKirC7/dn3W/58uUsX74cSA8v\nLC0tbbaYmpLZbG4TsbaVOKHtxNpW4oT6sTqdzkxn3lGjRrFx48ZMFf2tt97KxRdfDMBdd93F5Zdf\nTo8ePejfvz8ul6vB8zWZTJSUlFBYWAikhwP/5Cc/4eGHHyYejzNp0qQGTQVOp7PeuUwmE8XFxZx9\n9tncd999TJ48GcMwsFgsPProo5SWlqJpWr1rP//888ycOZNAIEAymeRnP/sZQ4YMaZ4XL4e28v63\nlTih7cTa0nFq6vB6uBymTZvGE088gdls5oYbbmD+/PkAXHfddTzzzDNNFkxlZSWzZ8/OtOlff/31\n9XrnHn7tI9mzZ0+TxdScSktLqaqqaukwjqqtxAltJ9a2Eie0nVjbSpzQdmJtK3FC24m1ueLs3Llz\nXvvlVb3vdDoJBAL1tlVVVWVK4c3F6/VSW1sLQG1tLQUFBc16PSGEEOJkllfSHzFiBHPmzOHjjz9G\nKcXnn3/O3Llz643FbQ4DBw7krbfeAuCtt95i0KBBzXo9IdoDwzD46quv2Lhxo0xWI0Q7k1eb/rhx\n47BYLDz55JOkUin+8pe/MHLkSMaMGdNkgTz00EN8+umnBAIBpk+fztVXX8348eN58MEHWblyJaWl\npZn+BEKIY7d371527NjB4sWLeeGFFzLraHTv3r2lQxNCnCB5JX1N0xg7dixjx45ttkB+9rOfZd1+\n3333Nds1hTjZVVdXs2PHDlauXMkzzzxDXV1dvce3bt0qSV+IdiSvpA+wadMm3n33XXw+H3fddRfb\ntm0jEolw1llnNWd8Qohj5Pf72blzJ++99x7z5s07YsfWhQsXcskll9Qb+y6EOHnlTPobNmxgwIAB\nALz22mssWbKEESNG8N577wHpCTLmz5/PAw88cGIiFULkFA6H2bVrFxs3buTxxx/n888/z7mvxWLh\n8ssvZ8KECfTq1QuzOe97fyFEG5fz0/7CCy+QSCQYNGgQS5Ys4d5776W8vDwzT3aXLl3azNA4IU5G\niUSCr776ik8//ZS//e1vR5y8StM0hg0bxrXXXsvpp59O165dJdkL0Q7l/NTfe++9/PWvf2XQoEFE\nIpEGkwkkk0n50hDiBEulUnz99dd88cUXLFiwgBUrVhyxB/4555zDLbfcwplnnkm3bt2w2WwnMFoh\nRGuTM2tbrdbMPNZnnHEGixYt4qqrrso8/tprrzX5/PtCiIaUUuzbt4/t27fz4osvsmjRoiMua92j\nRw+mT5/OueeeS/fu3XG5XCcwWiFEa5ZXUf3GG29k9uzZrFixgmg0yowZM3A6ndx5553NHZ8Q7VZV\nVRU7duxg2bJlLFiwIOc01ADl5eVMmzaNiy66iFNPPTUzta0QQhwur6RfVFTEH/7wB7744guqqqoo\nKSnhtNNOO+pqW0K0d/F4/Jh6xvt8Pnbu3Mnq1auZN28eFRUVOff1eDxMmTKFSy+9lB49elBWVtYU\nIQshTmJ5N8prmkbv3r3p1atXZpthGJL4hcghFArx5ptvMnToUDwezxH327VrF+vXr+cvf/kL27dv\nz7mvzWZj/PjxXHXVVfTs2ZNOnTrVWzZWCCGOJK+kv337dp588kl27dpFPB6v99jChQubJTAh2rJI\nJMLChQu59957Wbp0aYP5LAKBANu2bePjjz9m3rx5maVes9F1neHDhzN16lR69+5N165dc65PL4QQ\nR5JX0p87dy7nnXcet956q/T+FeIootEoL774Ivfeey8Aa9eu5ayzzsr0vN+yZQsLFizgzTffxDCM\nnOc577zzuPnmm+nXrx+nnHKKTKAjhDhueSX9qqoqrrnmGqlGFOIoYrEYr7zyCr/61a8y2x577DH6\n9OnDwoULWbx4cYPassP16tWLW2+9lQEDBtC9e3ecTueJCFsI0U7klfQHDRrExo0bMzP0CSEaisfj\nLF26tME6El9//TU/+MEPch7XsWNHbrnlFgYPHkz37t3xer3NHaoQop3KK+knEgn+9Kc/0bdv3wZD\ngQ6O5ReiPUskEqxYsYLbbrstr/0LCgq49tprGTlyJD169Ggw+ZUQQjSHvJJ+165d6dq1a3PHIkSb\nlEqlePvtt7nllltQSuXcz263c9VVV3HllVfSr18/vF6vNJkJcZwc4d14Alsw7Y1QrjsIePoQcUq+\nyiWvpD9hwoTmjkOINskwDP79739zww03HLFTHsAzzzzD4MGDMZlMlJaWUlVVdYKiFOLk5Ajvxuv7\nCJ30VNRmI4LX9xGAJP4c8h6nv2fPHnbu3Nlg+s/hw4c3eVBCtAVKKf7v//6Pa6+99ojz3x+0dOlS\nhgwZcgIiE6J98AS2ZBL+QTopPIEtkvRzyCvpv/jii7zwwgt07969wZA9SfqivfL7/djtdv72t79R\nXV3NZ599xqZNm9i1axf79u1rUNW/cOFCpk+fTpcuXVooYiFOLiYjknO7ZiRRuhlTMozSNAzdDtKc\nll/SX7JkCb///e/p3r17c8cjRJvh9Xo577zzMr9rmkYikSAQCBAOh/H5fPj9fvx+P1VVVWzevJm6\nujpJ+kI0AVMyCOhAtmY1HaWlJ7DyBLfgjHyNoZlImt0kTe70/5l/TtDqT3aV6SdgREidZP0E8kr6\nVqtVvqiEOAqlFGazmaKiIoqKihp8ZjRNy6sZQAhxBErhCu/E499Mui5NQ+NQrZqBCZ+3f6ZUH3L1\nIG4pwpwMYk6GsCZqcEa/PnQ1oK+HAAAgAElEQVQ6IGEppKr0IgDc/s14QjvQDtxMnGz9BPJK+hMn\nTuSpp55iwoQJDcYQy9z7QuRHKSWfFyGOgykZptC3AVu8hqitnDrv2dhiVUcslScshSQs9Yeaa0YS\ncyp04EYgCIfdNHhC2+vdRMDJ1U8gr6T/2GOPAbBixYoGj8nc+0IIIZqVUjjDuygIfApo1HrPJuI4\nBTSNiLMrEWfXYxoRo3QzCd1LwpJtIqzsw25NRgRzIkDSknvxrLYgr6T/6KOPNnccQgghRFaaSuAJ\nbiFhKaKu8BxSJkezXSulOzDn6CBYXvUWMWspQVcPYrbyNtkxMK+kf3CdbsMw8Pl8eL1eqaYUQgjR\nfJTCHqsgauuA0q1UlQwhZXI2e6INePrUG/sP6X4C/oIz0FUSV2gnJbVrSJqchFynEnacgtItzRpT\nU8or6YfDYZ566ineffddDMPAZDJx4YUXcuONN8qCIEIIIZqcNV5Fce1aar0DiDi7kjK7Tsh1D7bb\n5+onEHT1xB7dhyu0A6//U9zBbVSUjwCtbRSE80r68+fPJxqNMmfOHMrKyti/fz/PPfccTz31lMy9\nL4QQomkohSkVImV2E7eWUlM0kKitwwkP42A/gaw0naijM1FHZyyJOsyJQDrhK0WB/1Oijk7ErcUn\nNuBjkNetyYYNG/jJT35C586dsVgsdO7cmdtuu42NGzc2d3xCCCHaAT0Vo6j2Q8qq3sGUDIOmEbV3\nbNXt5glLIRHnKQDoRgxHdA/mhD/9oEqhGckWjC67vMfp+/3+TNs+pGcjM5vznsVXCCHaPVkcJjt7\nZA9e/8foRhK/p0+zdtRrLobJnq7mP9D73xn+ioLAZ4Sd3Qg5u2ON17aK9z6vrD18+HAeeOABxo4d\nm6ne/9e//sXIkSObOz4hhDgptKXFYU7UzYlmxCn0fYwjuoe4xUt18YC2PSTusHb9hLWIqK0cV2gH\nrtD29MMHHmvJ9z6vpH/VVVdRVFTEu+++S01NDcXFxYwbN47vfOc7zR2fEEKcFAr8n2RdHMbr/5ik\n2ZUeM94KOoM1583J4dPbGroVzUihYeB39yHo7tUqnn9TSVi81BWdiz8VoXz/W+iqflV/S034k1fS\n1zSN4cOHy+I6QgiRBz0VwR6rxBatxF9wJimzE10lsu+rkpRVv4tCJ24tJG4pIm4tJm4tQunWExKv\nZiQxJwOYkwG8uW5OfJsyCcpbtwndiKF0M0ozY2gWlG7G0NK/K91MSreTsKZnwtONOLbIvnrnNhlx\nFOB39yHk6X1CnmdLMEwONJW9bT/XgkHNKWfSX7lyZV4nkBsBIUS7pxSWRB32WCX2aAWWZLozV9Lk\nwJQKkzI7c076ktTt+AvOxJqowRqvxR3ajhbaBkDY3oW6om8B6RuJbCvFNWZxGGusClu8CnMigCUZ\nwJQKZ6qes89HR2YuegBdJTCnwmjJJLqRRFPJBlPXxqwlVJcMBqC06l30VLTBzYQGuMK7TuqkD7kn\n/DEO3NSZUhEKa9fhLzgzc6PUXHIm/XfeeSfzs1KKLVu2UFhYSElJCdXV1dTV1dG3b19J+kKI9kml\nsEcr0iX6WGWm5Bq3FOP39CVqKydp9mSSdK5JXwKevkQdnYg6OgGgqRSWeB3WRA0p3Z65VofKNwm6\nexHw9AGVwpLwYU4E65WeM1XxCuK2YlImO2g69sjXuIPbqSodkv49ug9X+EuSpnSzQtjRlaTFQ8Ls\noaT6/awJKqUf6lxXW3Re/QeVAoxDNwAqyaEWbAi4e1Po25D1ZWyJ0u6JlnPCH08/gPQNkUpiHJjk\nxxqrwpwMErV3wjDZsp6zsXIm/fvvvz/z81NPPcWgQYMYO3ZsZtuSJUvYt29fkwaTy49//GPsdju6\nrmMymZg1a9YJua4Qov3KVoJOWAvRjDgJazEaUFS3AaWZiNrKiNk7ELWV5aySP9qkLwcpzUTcVkLc\nVpLZpgE+75mZueKtCR+l1atRHJ5a03RSFPo3oAH7Sy5Klxw1E4bJhm4kMEw2Ap7T8Rec0WBJWTjS\nzUmf3C+WpgEmDJMJaJikIs6ueAJbjnozcbI62nufsBaxv2xoZn97dB/u8E6U/2Pi1lIijk5E7J2a\npLknrzb9d955hyeffLLettGjRzNt2jRuvPHG4w4iH/fffz8FBQUn5FpCiPYtV2c2Q7dhmCxUlV6M\n0kzsL72YpNmVdwe0xiwOA+kbgbCze+b3hNlDTdFAimrX5jymrqB/uqQPRO0d02PeD57vCMkj35uT\nY9Wom4mTyLG89/6CMwk7u+GI7sER2UOh7yO8vo+J2UqJ2DsTtXfMTP178OaUzlPziiOvpF9YWMja\ntWv59re/ndm2du1aScJCiGPSmPbnluAJfJa1M5siRW3R4My2lhpepnQLUXvHnG3FKd1B2NU9y5H5\naezNydHOCU1/M3FS0jSSlgIClgIC7j6Yk34ckT04onso8m1E+T4i6OpB0uxpcCN11FMrpXL128jY\ntGkTc+bM4ZRTTqGkpISqqip2797NzJkzOeecc47rueXjxz/+MW63G4BRo0Y1mB9g+fLlLF++HIBZ\ns2YRj8ebPaamYDabSSZb34xN39TUcS6t1Xm8wkRlAsotML1Diu8WGUc/MA/t9TVtTk0Vq167DdPX\nq9HUoS8opZlIdbkQo6jXcZ+/qeLUgnsx71jaoNoc0p3cEv2vP+5rtLfX9ERoK7EeV5xKoUWq0H07\nUbZCTJUb0BKh9GPn3ZLXKfJK+gCBQID169dTU1NDUVER5557Lh7PibnLPTg3gM/n44EHHuCGG26g\nX79+Offfs2fPCYnreDXlXXRzaso4V4UdzPV5iR02A7QNgx97fQxzHn+Hnvb4mja3pohVM5KU71+J\nyWh4Q57UHVR2GHFc54fjj1NPRfD6N+OI7kGhNeiNDq0n1sM1Z+1Je/s7PRGaMs5Oe189dHOaZ9I/\navW+YRjMmDGDP//5z1xyySXHEV7jFRenFy/wer0MGjSIL7744ohJX7ReCwKeegkfIIbOgoCnSZK+\naD1MyVCmZ7stVl1vyFe9/Vq697ZK4Q7twB3ciqYUAXdvkrqjwXj11tr+fMTFYcRJLVfzzpEctfeJ\nruvouk4ikX1iieYWjUaJRCKZnzdt2kS3bt1aJBbReErBppiV/UbD3sIAVTm2izZEpdBT6c+qnorS\nYf+beP2fYEpGCLm6k8rReSylO/D6PsIZ2nkCgz2kwL+ZgsBnxKylVJYNS5eUXd3wefuT1B0o0iV8\nn7e/JFfRqgQ8fTA4tu/OvDryjRkzhgcffJArr7yS4uJitMMmh+jQoXmXPfT5fPzpT38CIJVKcdFF\nFzFgwIBmvaZoOikF70XtvBhyszVhRUNlnfyjVM+/I4poPTQjnukJXlb1DkmTi9riQRgmO7WFA4hb\nijLroCfM3uy9t92n44h+nZmoBKXQMFBZhpM1FVMy3Q6aMrsIuXoSs5cTs5XX20dK0KK1O7xzZL7L\n3+W131NPPQWkO/R908KFC/O8VON06NCBP/7xj816DdF83o/amV1XTCdTktsK6jCjeMJfv03fisFU\nT4APoza+TJq53BXC0npX02w3si664uiENV6bmWJWV3EqykeBphFwn34ocQMRR/2EeaTe2xHXKQcm\neAFbrIJC3yaCrl6End1RehOv5qlSlFavJm4porZ4YHq2PLOzaa8hxAly8Oa0c5775/Vpau7ELk4e\nSsELITcuzeAyV5jz7VHuKaphkC2K6UAiN2vptv0qw0SpnmKqJ8AwZ4S/+gpYH7NxhSvUsk9CZB2n\nXujbgNe3ER2FQidmLSFs7wYYgImo4+hfO0csPR+oQTRMDhLmAryBzbhD25om+SuFLV5FzFoKmom6\nwnNImGXIsWh/julTVFVVlelJX1pa2lwxiTYobGg4dYWmwUdxK4W6wWWEMWlwgT1ab99hzkjWTnu3\neP0EDQ2zBhFD4091RXzfHaSftW0MwTyZeAJbss6TrjSd6sJziVtLmr4EfkDC4qWm5AKs8Rrcgc+P\nO/mbE+lFZGzxKmoKzyXq6NygKl+I9iKvT09tbS0PPfQQn3/+OR6Ph0AgwOmnn86MGTMyPetF+/RV\nwsyLITf/jtqZW7qfcnOK/1dUg7WR1fNuPV3FuydlYnvCwl3VpQy2R7jO46ezOXe7/4la/7u9yNWj\nXlMpYvbm7cdzUNxaTE3JBVjiNXgCW485+WtGAk9wK67QDpRmpq7grHqz0gnRHuWV9OfNm0f37t25\n++67sdvtRKNR/vGPfzBv3jzuvPPO5o5RtEKb4xZeCLr5IObAisEoZxizlk7YjU34h+tlSfJ4eSWL\ngi5eCLn5IFrOGGeIiZ4gBXr9oV/Nuf53e2NO+LBHK48409uJlrAWU1Nyfr3krzQTYdepQJYbPncf\n0KAgsBndiBF2dEv3cm7ihUuEaIvySvpbtmxh5syZmM3p3e12O1OmTGH69OnNGpxoWavCjnTb+14T\npXo5U9wBXCaDF4JuNidseDSDH7oDjHWG8JqaZka9w9k0xURPkEudYf4R9PCvsIuVEScTXT6utH6N\nIxXEnAziDO1E/8YYcJ0UBYHNkvSPkSO6F2f4K/zu3nj9m1vVOPVDyb+WhCXdHl9Q9xGuyK7MRDpm\nI5JZbCZuKaSmaFCzL1UqRFuSV9J3uVzs3r2bU089NbNtz549OJ3S4/Vk9c2Z8/YbZh7yF6LQKDMl\nubnAxyhHGLue14SO9eQ1g5hSaCqJ0i0UmQzu4l1ucBfyx8TZLAy6uI3V6d3QIcekL7oRS/+fiuAK\n7yLs7EbKdPKv6HWsLPFaNGUQt5UQcPcm6OqZHoanmVvlPOkJa1HmZ2d0d4OZ8zQgpVmoKhnSYO15\nIdq7vJL+FVdcwW9/+1uGDx9OWVkZ+/fvZ9WqVUycOLG54xMtJNvMeQoNj5biibJKzI38Ls3eK3wT\nlngdhsmG+UDp3ZwMkrAUUV1yAZBeSrTcaua+4ho2xKz8tu5SLvFo9HaYKa9cmaMq2p451h3cSsTe\nGUxgi1Zii1cRtxYTsxY3yXKVbZFmJPEEt+AK7SBuLabadiFopsz4+OZYdKWpHT7n/OF0lZCEL0QW\neSX9kSNH0rFjR/7973+za9cuioqKmDFjBmeddVZzxydaSK6Z84JKb1zCVwa6EcvRK9zAHdkJQFK3\nkzR7CDtOqVeiqyodkvl5gC3O2eVW9ANxPK2dx2Tew8GhRSwimFhnO5sepJcV3dfhuygt/eduSfpx\nhXbiDm0H0suUxq3FmZsA40BtQFtZEa4xrLEqCn2bMKfChJzd8XvOaOmQGqU19T3IxzebzA4OVxXi\nRMl77MtZZ50lSb4dKdFTVBsN/zyOOnOeUuhGFEsigDkZJOTqAZpGoe8jbLHKTJV7g8OAfR1G5z0c\nSz/sxmOB0ZcdWLidNXQgSAVuHmUQ62I9eJLK9PkPrD0NEHSfRtDVA2uiDmu8Bmu8Bkfka1zhLwFI\nmhwkdQfWhO+k6xyoGQkKAptxhXeRNDmpKh5M3FbS0mE1Wltaoz1bk9lcnxdAEr84YZpnoK1ok2IK\nloRcXO4KcZ0nwBbffqazNpNIn2Agp3vKMvtrRgJLMoA5EcCS9GNOBrAkAumq1QMijk4YJgdhR1di\n1mI8gc9zlswaO+47rDSW0pul9K63XTOO0N9AMxG3lhC3Hkh4ysCSDGCNV2ON16Rnm8vSOdAT2NJm\nk74tWkGh7yN0I0rQ1ZOAp0+zTnV7IrSlNdqfkcWmRCsgSV8A8EXCwp9rC9mdstDNnOQytnI1H2E+\nUILqRJB7eRu/6keEU3GGdlLo/zhzvKGZSZo9RBydSJg9JM0FJCyeTHt5ujRZAmhNXjIr1VPsz1Ir\nUagfw4gCTSdh8ZKweAm5etJp76tZdzMZEYpq1hC3lRC1lZMyuxsb9gnl8W/GE9pGwuyhpui8ek0n\nbV1r7XsQV5BU6Umr1sdsWWvOIHdTmhDNQZJ+O5dS8L9BN88FPRTqBr8pruZbthieii2ZhH+QCYOC\n4OdEXKcStxbh9/QhYS4gafake8Xn0XGqOUpmUz2BetWmaYqAobE6YudCRzTnsbnkais2dBvmZAhH\nrAIvn5I0uYgeWKwlZi2G1lZyVgo0Ld0zX9MJuE9rfTGeJJSCyIEkHzI0bqjswNXuID9wBzndEsel\nGYRUtoVNNX5ZVco4V5Ah9qj0P2wFMn0vvjFV+MmgUUk/Ho+j63pm3L5om/YkTTxYV8SWhJVL7GGm\ne33pGfGUyjkjm26kp8RNWrwELd5GXbepVy87+GE8/EN6pSvIqqiTWXXFTEgEmOQJZOb+z0eutmK/\n5wwizq6YkiFssUrssUpcoS9xh3ZgaCZi1lJi9g5E7B1bdlSAMiiqW0fS7CHg6ZO+KZGpZ5tc0NDY\nGLOxPmZjXcxGD0uSe4trcOmKCe4gZ1nTfVhcuuJHBb4GN6dWDIbYI2xO2Hg15OKiAzeoSUWjR8g0\nhebqcNgWkunJ3vcir6z97LPPcuGFF3Laaaexbt065syZg6Zp/OxnP2PgwIHNHaNoYkrB0rCTJwMF\nmIFfFNZwyYEvG0u8Dq//Y3J937TWXtEH5/M/vIr3u64wT/i8/DPkYXvSws8LazPT/B7N0WokUmYX\nYXMPwq4eaEYSa7wae6wCe7QSR6yCuKWIpG7FnPCjqRQJSyFoWrNNF5xtpIGhWzG0k//G/EQmqIsd\nEbYmLKyP2Vgfs/N5woKBhlMzONsaq7fOxAR3sN75st2cHow1pcBvpJNMbUrnp1Vl3Frga1Qt1fE6\nUtIb6oigIDMzggHogEkDQ0FcaVg0hUlL1yJGlJbZ792Igyf9BcSbOJkez/sfUxpW0muG7E6a+Tpp\nyjpc+WTqe6EppY76LXjLLbfwyCOPYLPZuOeee7jiiitwOp0888wzzJkz50TEeUz27NnT0iEckWNV\nGM+CAKYqg1SpTmCqh8iwEzPRUcTQ+GNdEWtjdgZYo/y0sI5Sk4FuxPH4P8MZ2YWh24jYOuCMfN2g\npOvz9m+VnaQO+ma7rlLwetjJPL+XMlN6XYBuluQRznCclMKcDJA0e9KjFuo2YI9WsK/DpTgiX1Po\n24R2WAfBpnhNvzn3QVOd96DW1lZ+uG8mKAAbBj/2+o47kXzzvCYUZhQxdDQUp1kSfMsW41xbjNMt\n8WMqmR/pNa1Mmng24OEaT4Au5hRfJsxElUYfayLr/k1FKahImbi7uiRn/4Nspnl8jHOH+Cph5sdV\n5ZlCxMaYlXtrjr4wW4GW4u8dK9iWsDDPX8CPCnz0sCTZGrewKuLAoSscmsKuGQf+Vwe2GXwcs/Jc\n0JO5kYBD739Hc5JP41YChp7+p/RDPxs6QUMnjsb/dNiLW1c84/ewOOQmRXpOkiyvEDML6zjXFqWg\nEZOSHdRcn6fOnfNbXDevdzYWi2Gz2QgEAlRUVHDBBekJU1rrF0Fr5lgVxjvXh35g5Jp5v4F3rg/g\nhCR+u5b+4rqlwMcYZwgdhTO0i4LAZ2gqScjVg4D7dJRuIWEtbpZe0SfypkfT4DJXmO6WJP9VW8Se\nlLl5k76mkbQcWrLVV9CPkLMbaBqewJZ6CR/SIwIKfRsPzBmQ/iKJW4vxefsDUFr1DjFrGYGCvqAU\nHSqXoamDZS114GejwVdUax1p0NTv/ZFKZb2tcZ4LeLjKHaSHJZ0AXgi6MUiXSo0D70YKMFT6ZwP4\nUYEv63lTpEuxv/DWMMAWb7AGRFMpN6f4RVFd5vf/Dbp5K+rkDEuMca4Q59ujx9RUlUtMaWyNW1BA\nf1ucBHDb/nJyfzoUP3QH0Q6kxIP/+h5YBdNrSnGdx08Pc/oMnc0ppnl8aFp6v3n+Ar77fg23L9pD\nh5o4FcVWHh3fmaXnpxdtMxSYIPOq70mZWRFxElValr/wIzyvA+//KGeY/wkWYEbh0Q3cuoFHN+hk\nStLbYuDR09sPXm+MK8RQR4Tf1hRn7RisAX+uK0JH0dcSZ5A9xrdtUU5pzu+TZpBX0u/cuTPvvPMO\n+/bt4+yzzwbA7/djtZ78M5k16QQthqLg6UAm4R+kx8CzINBsiS9kaDwTKGCCO0iZKcXdRbXpzkLK\noLR6NdZEHTFrCb6Cs0haPJnjmqNXdHPd9BxKJnspz5JM+lnjPF5WmZk2+LO4hd6WxBG/PJsiQSnd\nSsKa/lLL1U8CFCmTI53yNa3eVMFxSzFJsyv9i6YRtXc69JV7oMeX68AkQ9+U+3oto6nfe6XSPd+/\n+351g0TyxvnFRJXG5wkr4QOd5+IKqlM6upZOLDqgawoTYNEUOulqabMGVTl61MeUlmkKO1Fu9fo4\n3Zrg5ZCLWXXFdDAlucIVYoQjjFNXebWTKwX7Uia2JKx8FreyJW5hRzLdNNHPGmOWrRqrBjMLa/mb\n30tNludfpqeY5AnkjLNAV3z/sCaNMlOKce5Q5ve65TF++vfdOOLpz2Cnmjj/8fcvKdBSMA56WxP8\nrqQ6s/9QRyTdnKAgjkbY0IgqjYjSiCqdiKHxm9piyHJDUGWYGOcKMc4Vwq6pvDpHlpkMykxG1o7B\nNgxuK/DR1ZJkTczOmqiNZwIF7EyY+XlRHUqllxTva403yYJjzSmvpD9t2jSefvppTCYTt956KwAb\nN27M3ACcrJp69baC+QH0muylA9N+A9uHUWLfstWfeaYJBAyddyIOzrDE+Y4zgq4SKM0Cmk7U3pGg\nqwdRe+cTMm2p55nsNz2FD/uwvxej9q70ULKC+X4Ml0bw6vRNiHthAC0ByqqhbBrKRvp/q4bl8zju\nV8NoB2o/zfsNvI/60MIG4THpIXV6XQqHSQMT7FZm/l9tCRO9Aa72hMimOW5OjjR7XE3xoKzH+L1n\n1vv9YA3A4eyRvW1iVjrPguzvfcHf/CjrgZsYDZRGprhnFJtI9EpPrGT9OEaq0ESyi5n1USsb1unc\n8vEerltagS3ZMJH0GpfkifLKzLUG2OI8VJbfzWuuYaBHnZyqGTh1xeWuEGOcId6P2lkccjHP7+V/\nAh7OsMTZFLfmbCd/I+zkg6iNLQkrvgOJ3KEZ9LYk+L4rSF9rnNMth5oNLnJESSota9KbeoSEn4+f\nvLgnk/APcsQVty/ei+97peS6A9c0sKGwmRpWqZcd4X1yNLIK/kh9LyB9czLJE6A6pRM70Gfh65SJ\n/6gpZXpBHWNc4cwNSvFhC5E1V9+Tg4UTXsuvej+vNv22pqna9MsrVmT9Mk3qDio7jEAz4umpXbUs\nw3CUwvppAufrIYJXukn2tGDekaDk3mpMfargyj1QHIcaK7zUGbW2BE1BspOJ0Bgn4RFOlDvb8J78\nxBWsijgZ5Qijaelexm5dYYnXUlLzPjVFA4nbjt7eBk3TBqUFDNyLQ7ifD+ZoLYPQlS78N6Srxgv/\nWIvy6Pimp7/Aym+uxFSZQjuGv1bDrrHv+Y5gKDqP35d1H6UDJlAmjfAoB/6bvaAUna7ch5bl/ixZ\nplP5ZOPWk2+utve20qbf6Yq9x1BJmxa50J65Eew4aR9fXuzmngmn8mXYzOrb1+c8Lu7QCM7wEu9n\nxSg89iGKzdVX4KDjfU23xC28HHLzTtROtpJumZ7kyQ6VPFhXyOdxK32scfpa4vSxxulmTh61eaAp\ne9nr1Sk8/wjgfCOS87Ov3Bq1dxQSG2TPDDPNR3O/T/mKK9gUs9HLkqDIZLAs7OARXxGnWeIMskXR\nSTfTNHWc9Qona8/L65i8e2ts2rSJd999F5/Px1133cW2bduIRCIn5dS8eiqGPbo3Z/Xowe0dKt8k\n7OiC33sWqBTl+99CKTOaT0Pfp6HX6KjuJrSok0TAjio3E/tVCIf3SzTrgexVEkdd+yWh0Q4S4c64\n/hXC+2TgQHW/g8AUT15fWod/SAt1A00papSZruYk/axxPMRRWEhYCojaO5Ey2Zvs9cqHc1UEz/NB\nDBtoWWbiTZXpmYQPUPfL+pPHVM4rT38ZJEGLqUP/4oqyn1Zl/TLRoofuEOqmF6ClgKRKJ/OUQktC\nKgXvBu301uOUnnGweEmuhfswVTW+Hbe5Zo9rdbPSKYV5RxL7hzEs2xPU/io9ckE5NLRIw7u2VJFO\n9a+LD3ZTSN/YKQUKDLdO6sAh1fcV87bFTcDQ+VGxj4r/LKb8vpqs770loiieVYd/spvgRA9ayMCx\nKkL0AjtGydE/T0cr7bW0PtYEv7TW8s7eTlkfP9g88VNvXaPa/7ONhjlWWtDA/UIQ9yshMMj5/hvF\nOrFv2Uh2Sqcjx9tRPM8FiA6wEfuWjfhZVpQzewGotbxPVg0G2g99sZ1ljTPF42dt1M5zQU/WjoFN\nMSIgW+3Z0eSV9F977TWWLFnCiBEjeO+99wCwWq3Mnz+fBx544JgDba0cka9xhndhjVejcbAHZ5Yv\nqQPVpn5PH5IHZmSzbI9DlQuzP45mTWF4DVLdDLAb2FUVjmD6PEa5+UDnq0M0q8LebQdJjwXf4ALU\nbjeuJVHsa2P4b0onQtOeJKkyE1ga/vF882631jABiqucAc4y+Smo3Yw1UUNl2TDQTNQVntM0L9iR\nJBTu/w2S6mwmMtRB6FInsf5WLDsT9arNAQwbBKZ6cp/rIE0DCyiLhjpsIrxUmY55f8NknCo78EWh\na4THuLKesi6l8z+1xWxJWJngCjBJBTCZtJznNLyNr32B5ps9rqnnPjhWWsjAtjGGbW0M+7oYpgPN\nWPFeZrSQQrk1fLcWZH3v/Td4SPawZD1vdUrn3v0lTPQEGdoXhqo4w6lMDwkbYMv93pfq1P6qCKMo\n/X5ZP09Q+ISfqq5m4iUmLFvi2N+PEu9rJdHXilHQ8H297INqrl6ws0VG2eTrSNXbkLPGvNlZtsYp\nub8GLaSIDHUQmOTG+lk8+/t/ff3X1SjQSXYy41wewf2vMMoE8b5WYt+yEhtgSzf3HPbEWuP71Mmc\n4mp3kKvdQXwpnamVHcjV9wDgkTove1Jm/nCgT8P/BDxUpXTcusKtpTshpv8d+t2jG3TK8rd/NHkl\n/SVLlnDvvfdSXl7O4gUl7jQAACAASURBVMWLAejSpUurHxp3NLoRxxbdR8RxCmgalngteipG0N2b\niL0Tlrgfrz/3lLFh16nY/x2hdFEV1s8TGNZuhIc6CI92kuj9jU6OKoVuJOlQuSxrLCYjSqFvU3pX\nh0ZyoovYpAJcyQCJaAEFDyZIFTioube4wbELAh6Gsa3egjOPMZDySIjyyDo0pQi6ezXRq3YUKZX+\nQJrBvjZGvI9BZKgDbBrJUy0kT01/uTdlD+7AVE+jbyQKTQa/L6lqMJ7fkeWcSgPdZ+B8I0z40tb1\n5d8S9P0pnG9HsH0Yw7o5jpYCw6URG2AjOtBG7FwbRtGhUvXB9/ho731Cwa6kJV1Vqhv0sCTxHOgp\n/81OUjnf+2s9JPoe+gzGBlipeLKc1IGbNsu2BO6XQmipdJ+OZGcT8b5W4n0txPtasWyP4/2L/4R3\nOD1WuTqdHW/7e6OkFKb9KVIdzSS6W4gOshMc5yLZM/2Zj3RMp5ujvf+xb6VL+CQU1s1xbOtj2DbE\nKPh7EP4exHBrRL9lo+7nhTjejrToaKh8eE3GUW/OelsTlKYO5ZldSTOfxa0EDa3ecMTD9dLjPG3b\nhyN2bIk/r6QfiaSreQ6XTCbb5Ix8eiqG0jSUbsUW20+RbxNJs4eEtQh/wRmAnmlPSloKsHwWx+X4\nAgrjUGclHDmNuNER7Ap0DeuWBFpE4bulgPAwR+52eM2EYTL9//buPL6pKv//+OsmaZvuO7QILmwK\nDrIICCiMC86oOIPDiOIoAjIsggoUBBVRf6IsIq4wyiYDLsMygsjXURQRRGEEEVQWHTZFpIW2aZum\nbZomOb8/AqGlSUnbpGnM5/l48KC9ubl5N9vn3nPPObfGzlz5qT2IqCgiwl5MRIWZyAoTMeWnd6yy\nQO+IJMLWDbs1kcTluZTfYKCkbTJdnEd50vE5kfqz8+Q/rTajAdaoJhQlXI7D4PlI11+0UiexH5QS\ns6GU3BfSUAk68makQlT1vduya2P8+oH0tZh4E6HBA0lFtI6oYKE5kay8dKZereeyc7d5RxzR26wk\nzSvCcNyOeUh8rQ+lQmmms2oF6m9xqBg99uZ67C0iMJywk7CsmIpLDFj+Ekv5lUZsl0XU+JzU9Nrb\nFHxSGsO7ljjKlI4lTU4So1M8nFxQ4/bAh9de01wtZaeV3hJL2Q0xRBy0EfljBREHbETtKidmk+s5\nUxrV+o9UHmWjy3W4Oh0aXactfHkfBKJzaGNp3gZIeqmQyAMVnHotHSI1CickVVunVp/9CA3bFVHY\nroiieIirM27Utzai9pSjWZyg07x2Dg3kaKi6ON/O2U0xpVXWf6TSe75CgeX0vAIWpWFx6iixa/Ra\nkEt0uZMKPUTUon+pTx355s6dyyWXXMKAAQMYNmwYS5cuZd26dfz000+MGzfO90drIPbdb1Y5p6lz\nlGMszyG6LJtIWz7m+MsoiWuF5rSjd5S6J1I517kfUgAVAVoF5D2dgq1TlOvSdJH43PGktp2uNKeN\niAozEXYzERVmzPGXYdivkbLtALo/H+fE891IGv09MXHVhxGVVERSdOEffMpVk5qaojWrq9jHrrGg\nL1ZYu0ZRNDIBR0Zwdgjr22y+3xbJ7IJkypTGjcZS/lturPplGlVKwmIzcR+UYu0eRcHEJFS0b03+\nDTmRTH23G725lPh5ZgyVelvbIzX0FQrL7bEUD04Au0JX5PTpHHlNrE6Nj0pjWFsSR4FTT7uIcu6M\nt9A5srxWA0rqfcpEKfQ5DiJ/sJH0YpHnTmcaZK/LJPWRPKL2n+317owEFa1DRbt2ApzRGvbmBooe\ncBW+mA9KiH+nGH1x9a/b+nQODbTzPacRP9iwX2BAxeuI3GdDV+DAerWxQUYCAWT2z/bYuffM69SY\n+G3H3KFImldEzKdlvPWnphxIj+aB906Q+XH1kT2e+PTNfN999zF79mw+/fRTrFYr48aNIyYmhilT\nptQ+cANwDa37jkhbHgaH9fQ5eoVdH4sltpV7DnKlM2DXJXjdjqe9SK3C1YRpv+T0U+fhSLYmte10\npXSR2KLSqvS0t3WAvFZtMO5NxFYeSUys53HDMQYbRbVK5zutXBHznxLi1pSgL3Ji7RKF6a44Ki4N\n7bkb2kfaeCEtl0fz0lhfdrbjgHsoVCJcO0qj4gIDSYvNJE028cOjaZjTIihXrmE6lf+/IspGc4Od\nbLuef5jPvSiQqzPP/KJEvi6PqjR+XJ0eQw5/iimhRYSdoxUGNpfFcFushWS9kx9tEXxTHoUOeK8k\nzuN2F5sT6Ga0EqtTFDh05Dv1XGJwzU1Q6tSwoxGBIvL0tKmVRS21VCn4AAabojRJT/Fdp0+bGLRa\nF/zKX3ypOgeXRtj4viIKs1NPx8hyJsUV8LtIW3AuOqNpODINlGUaiH+r2GtfAQDLwDjK8pxoZU60\nMoWuTKFZFVqZ0/Vzmauj6RnRX1rReSj4UL/OocFiOG4nfrmZ6P+WU3xHHMX3xGO7vOE/+440z306\nVLSGZnWijPXrg+NP/ugcWbngFw+KQ3dbLJuLEtlwVSpf+7gJn4p+cnIyM2fO5NChQ+Tl5ZGamkrr\n1q3R6RrPE3ouHU5iy45j18dgiW1FWXQmdkOC73ugdoXeSycJrVThTKz70U19OnPlOnS8VZzAiASN\nuO6xRHRVqP2RaKm26iubIqEZGL8oQ0VpruEwteDx/GPPaGI/KiHu3RL0hU6snSIx/a3q+dNQl6p3\nepyVrBwdi8wJXBtTxjd/SGJNdFOeWPYTzx1P4qDmuSnxwcQCmhvsWJw6rMrze68cjYMVke5BA5Vn\nh+tjLKMFkG038EFJDDdEl5Ksd/JDRST/snjfYQUwKz35Dj2xOjtbrdEsNie6phzVFKstcbxbcrbP\ng+508U+1VHDvhycZUOC5vdBY6ACDxoclMfyvIpKI0zM8Rmic/l9h0CACRZSmuCnW1Wz5oy2C7VYj\nH5TEundQ8pwG8soNXKK38XiqicsCPM1sbZyvn0j5lbX7LOXPSKXJ8JOeO4fGamf7wjRy7uF3G13f\nKea74yj5c2BPHdbE0+ukdKArVTQZnYt5SLyrT5Gf5z4JikoF33xXHJa74rmWs6d3fB2M53MbrKZp\ntGnThjZt2tQpbzAo4FT6dbVralKKqB3lJP7T7P2iM2nB29kpcurZYTVyfXQpHaNsaDoN56cXoO//\nE0RVOpIody3ndxD3bwvOFL276KeNzwWdhj1Tj6OZAXumHnumAUem3tU7XdO8nn+M+U8JUT/YKb8i\nkoJH4rG1/+0U+8ryvczIVnx6drcMvYOOPRQfd23ObZFWorQy0o9YsbWOJOr0/OBRmiLudAe0NpEV\nXjvzpOscVSaR8aRXtJVe0WfnGugfW8KfYkpwAiNPNSHPw3aTdQ4yTk+J2j3KSkaynejTbaFXGa2k\n6p3YTl8khTJF548K6fmBiUirk7JIHTG26gXqZIqrU9Zxu4FvyyOpQMOuNCoU2Kk6XWq05nQX/fdL\nYtlmjcbh4VNlUbpGVfCh/v1EPPFYoDTQWxRpE/Mwj0xsNJ+najv8A+MwnHIQ+34JmhNK+sVguSOu\nXgc//uDtdbI3NZC42Ezyi0XE/l8pRX9PoKJd43hu68RDwT/jTAsC1HNynjMz753Pa6+95tN6DWrX\nQuDsJDq+MhypIHGJmajvbVQ012PtGkXsh6XV9vaLxib6pZOIr0f6JoeOr6xGbj79BVrqdF2z+4zo\nzaUk/vcIulvPTvjj/L9mFPVo6cppU+hKna7x/kqRsMiM4Vc7hhMO9LmOKpPQOKNdOwOGkw50JZ7H\nVBc8nITtd1H1/vsDwV9D4YafbOKlQLsmPTmX8csyUmYXkv//Ulw9jz1olOf07YqYj0qJX2lBX+Sk\nrEcUxffEs3R3NA+9ebzKDGplkRqvDG7O4P7e5xp3uKZSwK5cOwOJp2cky3PouM/LsCUNxbrM7Fr9\nzZ405gsDnVF9auc4lF5H4lIz+jwnpddGYx4ajzMleMXUY18mXK9c6e+NFN8dH7Q+OzWp9vo7FdFb\nykhYVoze5KSstxHzkHgcTYKbvS7v06idVlKnF1Qr+JXV+4I7Dz74oPvnQ4cOsWXLFm6++WbS09PJ\nzc1lw4YN9OnTp1bBG1LloXXno1mdJCw0E/NpGc44jcJRCZT+MQYMGvaWEUG7Ip5S8Lk1mgVFidgU\ndDNaSdM7qxR8OLO325L4F9M954zUcEae/hLRNMwjE8/euUKhP+XAkG3HkO1An+3aGdCOeP5i1xU6\nG23B96faDoWydjdSNDKB8iu8H00Eqqd1vbbrhLi1JdhbGDBNPXuapkVaBLPVhYx6L9s9p/2C2zJp\ne6Meargky+mZjonSKl+AFdJ8GLYUDs70Xj/3i7+8WxRx/y4hbo0F41dWikYlUHZ9cHqfe+zLhGuH\nv3Bissf7NEo6jbLrYrD2NBK35uxzm/dMasidjizvZiRvZqpf+k14Lfrt27d3/7xkyRKmTp1KSsrZ\nMeKdO3dmxowZ/OlPf6p3CH+z+zoj2enpHlWUhuGEg5L+sRTfEVdl2J2/h5f5qtCh4zVzItut0Vwa\nYWNcUgFpeu8dfuqcM0LDcYEBxwUGKn/OvZ1/DOapjYZU60IaoVFyq+vcpi7fQeKCIoruT6wyTv3M\nduvdmcdLXl93HiL32Yh714LpkWSI1Mh7PhVnkq7KabBrY8rgD9Hc17Od33ZQGtWY8kZGGXUU3xNP\n6Q3RJC4x4zjTQTII5/q99WXSFYZeh0M4/dz+LZ7SG2OIXV9CRWvXKSp9th1HU33jPd/vUCQsMVN2\nfQwVrSP81lHSp3YOk8mE0Vi144rRaMRkMvklhL/50qQf+V05iQvN5D+TgjNJT/6zKY2mI822MiP/\nMCdS6tQxJN7MbbGWBo9WnwlvfitqU0grM/xiJ2q3jbSJeZimpXidba7BnSkgdoXhuB3DKQf25oZq\nOyZn+HsHpTGNKW+sHJkGTI+fPbhKWF6M/oTddf2BQHwJOBWR+20Yd5ZjHuoauqxiNLRSD6f2QnyH\n35Gux3yfq/OrVuYk7ZF8Vwvd2MTz3DM4dGYnxh3lOFP17h0Vf/Cp6Hft2pXZs2fz17/+lZSUFPLz\n83nvvfe48krfJvivrz179rB06VKcTic33HADt912W903Zldg0HCk6FHRGrri0+e6vXygAjHpiTdm\np8bCokQ+t8bQymBjfEo+FwXpWs2B6MgULmydosiblUrqMybSpuRTMCmJ8u4Ne62Dygw/VZDwZjH2\nZgbMwxOwdYxyTaAShJ3cuu5IhStHig7slb6f/HTkr8+xE7OpjOjPyjCcdOCM1ij5YwyOZgaKRnue\nLvm3tMOvojTMwxKwX+Da4dUVOdDKVdDP9wOu11gDZ7Ke3JfS6nXhNU98+gtHjBjB6tWrWbRoESaT\niZSUFHr06MHAgQP9GsYTp9PJkiVLePzxx0lNTeXRRx+la9euNG9eu3nG9Tl2Ev7pakYseCQZR3MD\neXNqvsrcuR2kzr1spT8drojgaVMKZqeOv8WZuT3OgiHIDQ/ezj+K87O3iiD3+TRSni0g5dkCzEPj\nKbkttsEmLQHXez7+XxaiN5ehYjTKO1RqHmwkrVqiZiX9z84VEXHQRvLsQsxD4+s0AY5W6iT6CyvR\nm8qI2m9DaWC7IpLiv8Vh7Wl0j2kPix1+nUbZtWcvPR3/joWYT0ux3BaH5a+xGL+yBufvdyiSXilC\nGaDogUS/F3zwsehHRkZy9913c/fdd/s9wPkcOnSIjIwMmjZ1zVjVq1cvdu7cWWPRH37y7PSmmsVJ\n/GoLsetLUHoNy19ja7x0Y45dT65DT55Dz0Ivk6ksKU5wF32rUyNKU7X6/HmairWb0UqriArujjfT\nKkhH98K/nKl68memkvRiIYlLizEct7suFezhokn1VaVXeIoOews9UXsrQAeWAbFYBsSh4kO7eTbs\naRoqViPluULKO0RSNCLBfS2LGu9mcZK4oAjjdis6G9gv0GO+J57S66Jxpns+tRNuO/zFt8ehlTqJ\nX2Uh9gMLWjlop7+GG2w+/9MFP+azMsx/iwvYAUIjaMuomclkIjU11f17amoqBw8erPE+b0w5wKI/\nZ9BGs9Hl3yZ0FkXp9dH88rdEchIjKbdpdIhyTWazxJyADhiWYAZgSn7a6avUeVfkPPvlOexUU66P\nLmVEopkKBXMLk0nROUjSO0nROUjWOUnWu/5P0DnZWua59WAs8ERK4+wjIepORWkUTE7C/o6F+FUW\n14VprAp9vn8uuAIe5nTPd6LPd1J+RQSFE5LrPU2uaBwqWkeQ+0IaMR+XkvBWMenj8yi5JYaKCw3E\nr7ZUOSqtaB2JPsdOeVcjKloj4ic7ZdfHUHp9NBWXRjRoi1MocKbrKZyYTEk/G2mP5bsL/hkBn8//\nnIJvGRS4UymNvuh7mkZAO+cNu3HjRjZu3AjArFmzyDTZePyfx9ABP7SP4/WBzfnvBTHY7RrkQ0aE\nYs0FrslAtHI9OiAtzdX0+UikE6POSdMIxUNHIzhVUf3DkW5wjbVUCoYqJ22jo0iLS6PADr8WRPCd\nFSzO6vfTo1BQZQITcLUevF2axO0XBm9mq5oYDIZqF1xqrBpt1vHpOCqOY1hb4H71DblOkuabiY+P\nx/nHZLTDVjA7oMyBVuaEMieUuv7XTv+sMiJw/i0dAP20Y3BhFLr/lKJ5GGIVdRJSLq3/nO6N9jk9\nR6jkhHpmHQz2P9vRLzxJ7FrXgcK57yl1cRRagYOKNReATkO9k0aEplHbLmth85yecQ3gyPd4kz7P\n6ZfnolpOh0I/4zj6z8qwj2iCcVhTAtkDqNEX/dTUVPLzz74I+fn5JCdXHSvat29f+vbtW2WZDjDF\nGZgx6SLS9U766y2k6x3uf3l5rl25+04POT/TgtXuzAascE+M50lPBscWkZfnat7/o+ZaN+/09Pev\nnu54W640Chw6Cpw6Chx61/9OPasslS4EX8mpChptM1ooNfE15qxNvqh+ERetXME/TpB3pYP0x3KJ\n+MXzqR2lc80nbvtdJAV/cG0lCRv2Cifxp7zMZneqwi/PRWN+TisLlZzgp6zDomi6WYe+oOpQOq1c\n4cy1cerFNJwmzwXMV2H3nAJNvMzn70zWkZeXh/G/ViIP2DD/Lb7W116plvP0EX7kmSP8P+nPFqNa\nqvfkPI1Fq1atyM7O5tSpU6SkpLBt2zYeeughn+6bZLEzK63uTeb1GWIUpSkyDA4ycABnv5Q/K40O\n+wlKwpW3C6ucWV50fwI4zl6uVRk1nEbXldswUK1JtnDc6Su4bSgJ6zkVwpm3sfO6AqfXoZiiZt6G\nK5uHuprcDT9VYNxudf8e+38lKB2Ud4mq3UyFDdikX5lPCZVSfPrpp3z55ZcUFxfz/PPPs3//fgoL\nC+nVq1dAA+r1eu677z6effZZnE4n1113HS1atPDpvmVp9d+n8fcQI5mgJHx5uyLYmeJc15kOZU6F\n8HW+95SovfONXrAMiscy8GxHO+MXZe7LLNub6bF2iaK8SxS2DlGoSi0B517PoOJiA9E7bQ1a8MHH\nor9y5Uq+//57brnlFhYtWgS4mt2XLVsW8KIP0KVLF7p06VKr+9gjNWz3Nr5z5DJBSfgKVHEOiyFW\nwiPZ4QuM885wWmnIa/6sNPQn7ER9U47xm3JiPi4l7v9KURFQfnkk5V2iQEH8O8VVLmCmK7JRcr2x\nQQs++Fj0t2zZwuzZs0lISGDx4sUANGnShFOnar4yWLDY0xv3l16gpmIVjVsgi3OwposWwSU7fI2D\no5mB0mYGSm+NBZsiap+NqG/KifqmnMQ3inHGaNWuZ6CzQdT3Hi6JHmA+FX2n01ltGl6r1VptWWNx\nakn9eywLEQjhNv5ZBJ7s8DUykRrlnaNcV9scDvpcB02Gez5A9tbPJ5B8OvHTuXNnli9fTkWF67yF\nUoqVK1c22DS8QgghRChypOtxpHsutcHoe+HTI957772YTCaGDh1KaWkp9957L7m5uUGZoU8IIYQI\nJcWD43Ge0083WH0vfGrej4mJYfLkyRQVFZGbm0taWhpJSUmBziaEEEKEvMbU98Knor9//37at29P\nYmIiiYln53T64osvuOaaawIWTgghhPgtaCz9eXxq3p87dy5vvfUWdrtrtrCSkhJefPFFVq9eHdBw\nQgghhPAfn4r+nDlz+Pnnn3n00UfZtGkTkyZNIjY2ltmzZwc6nxBCCCH8xKein5KSwsMPP4xSigUL\nFtCpUydGjhzZaIfsCSGEEKI6n4r+Tz/9xCOPPEKTJk2YPHkye/fu5aWXXqKkpCTQ+YQQQgjhJz4V\n/aeffppbb72VyZMnc+WVVzJnzhyioqKYNGlSoPMJIYQQwk986r0/c+ZMmjY9O8ud0Wjk/vvv5+uv\nvw5YMCGEEEL4l09H+pULfmVdu3b1axghhBBCBI5PR/qlpaWsXr2a/fv3U1xcjFLKfdtrr70WsHBC\nCCGE8B+fjvQXL17M0aNHuf3227FYLNx3332kpaXRr1+/QOcTQgghhJ/4VPS/++47Jk6cSLdu3dDp\ndHTr1o0JEyawdevWQOcTQgghhJ/4VPSVUsTEuOYINhqNlJSUkJSURE5OTkDDCSGEEMJ/fDqnf9FF\nF7F//346dOjAZZddxpIlSzAajWRmZgY6nxBCCCH8xKcj/VGjRpGeng7AfffdR2RkJCUlJTzwwAMB\nDSeEEEII//HpSL/ykL2EhARGjx4dsEBCCCGECIwai/6WLVvcP//+978PeBghhBBCBE6NRX/fvn3u\nn6XoCyGEEKGtxqI/ZsyYhsohhBBCiADzWvRPnjzp0wa8TdErhBBCiMbFa9F/6KGHfNrAypUr/RZG\nCCGEEIHjtehLMRdCCCF+W3wapy+EEEKI0CdFXwghhAgTUvSFEEKIMCFFXwghhAgTPhd9u93OgQMH\n2LZtGwBWqxWr1RqwYEIIIYTwL5/m3j927BizZ88mIiKC/Px8evXqxf79+9myZQsTJkwIdEYhhBBC\n+IFPRX/RokXceeed9OnTh2HDhgHQvn17FixYENBwq1at4tNPPyUhIQGAu+66iy5dugT0MYUQQojf\nKp+K/vHjx+ndu3eVZUajEZvNFpBQlfXr148///nPAX8cIYQQ4rfOp3P66enpHDlypMqyQ4cOkZGR\nEZBQQgghhPA/TSmlzrfSrl27eP3117nxxhtZv349AwYM4JNPPmHUqFF07NgxYOFWrVrFli1biI6O\npmXLltx7773ExcVVW2/jxo1s3LgRgFmzZjVIC4Q/GAwG7HZ7sGOcV6jkhNDJGio5IXSyhkpOCJ2s\noZITQidroHJGRkb6tJ5PRR/gyJEjbNq0idzcXFJTU+nbty8tW7asV0iA6dOnU1hYWG35oEGDaNOm\njft8/sqVKykoKPDpyn8nTpyod66GkJaWRl5eXrBjnFeo5ITQyRoqOSF0soZKTgidrKGSE0Ina6By\nNmvWzKf1fDqnD9CyZUu/FPlzTZs2zaf1brjhBmbPnu33xxdCCCHCRb0vuHPnnXf6Lcy5CgoKSE5O\nBmDHjh20aNEiYI8lhBBC/NZ5Lfr5+fnun202G1999RWtW7d2N00cOnSIq666KqDh3nrrLX766Sc0\nTSM9PZ2RI0cG9PGEEEKI3zKvRb/yufOXXnqJcePG0aNHD/eyr776iu3btwc03IMPPhjQ7QshhBDh\nxKche7t376Z79+5VlnXr1o3du3cHJJQQQggh/M+nop+RkcFHH31UZdmGDRtknL4QQggRQnzqvT96\n9Gief/553n//fVJSUjCZTOj1eiZOnBjofEIIIYTwE5+K/iWXXMLLL7/MwYMHKSgoICkpibZt22Iw\n+DziTwghhBBB5nPVNhgMtGvXLpBZhBBCCBFAPp3TF0IIIUTok6IvhBBChAkp+kIIIUSY8LnoFxcX\n8/nnn7Nu3ToATCZTlVn7hBBCCNG4eS36ubm57p/379/P+PHj2bp1K++++y4AOTk5LFq0KPAJhRBC\nCOEXXov+c889R05ODgD//Oc/GT9+PFOnTkWv1wPQunVrDh8+3DAphRBCCFFvXot+VlYWCxYsAFxH\n/R06dKhyu8FgwOFwBDadEEIIIfzGa9HPzMzk4YcfBqB58+bs2bOnyu3ff/89F154YWDTCSGEEMJv\napycJyYmBoDBgwcze/ZsOnfujM1mY+HChezatcu9UyCEEEKIxs+nGfnatm3LnDlz2Lp1K0ajkbS0\nNGbMmEFqamqg8wkhhBDCT3yehjclJYX+/fsHMosQQgghAshr0X/11VfRNO28G3jggQf8GkgIIYQQ\ngeG16GdkZDRkDiGEEEIEmNeiP3DgwIbMIYQQQogA81r09+7d69MGfve73/ktjBBCCCECx2vRf+21\n1857Z03TmDdvnl8DCSGEECIwvBb9+fPnN2QOIYQQQgSYz1fZs9vtHDhwgG3btgFgtVqxWq0BCyaE\nEEII//JpnP6xY8eYPXs2ERER5Ofn06tXL/bv38+WLVuYMGFCoDMKIYQQwg98OtJftGgRd955Jy+9\n9BIGg2s/oX379vzwww8BDSeEEEII//Gp6B8/fpzevXtXWWY0GrHZbAEJJYQQQgj/86nop6enc+TI\nkSrLDh06JBP4CCGEECHEp3P6d955J7NmzeLGG2/Ebrezdu1aPvnkE0aNGhXofEIIIYTwE5+O9K+8\n8koeffRRzGYz7du3Jzc3l0mTJtGxY8dA5xPCZ1lZWTRv3pzrr7++2m2fffYZvXv35uqrr64yt4S3\n5Q0pKyuLK664wmPuq666ihtuuIEbb7yRm2++OQjphBC/JT5fZa9ly5a0bNkykFmEqJc77riDCRMm\nMGTIkCrLHQ4HU6dO5V//+heZmZnccsst/OEPf6BVq1Yel7dt27bBcw8bNoxx48Z5vH316tWkpKQ0\naCYhxG+TT0f6drudlStX8tBDDzF48GAeeughVqxYIR35hF/cfvvtHDp0CACTyeTxiNcXPXr0IDk5\nudry3bt3c/HFeER6owAAHFBJREFUF3PRRRcRGRlJ//792bBhg9flvtq3bx8DBgzg2muvpXnz5lxw\nwQU8//zzdcqdlJRU6/sJIURt+XSkv2jRIk6cOMGwYcNIT08nNzeX9957j8WLFzNmzJhAZxS/cUeP\nHnW3Ih04cIDLLrusyu1/+ctfsFgs1e43bdo0+vTpc97t5+Tk0KxZM/fvmZmZ7N692+tyX1itVu6/\n/35efvllOnfuzHPPPUd5eTkTJ070KfeAAQN8ehxN07jrrrvQNI177rmHe+65x6f7CSGEJz4V/Z07\nd/Lqq68SGxsLQPPmzWnTpg0PPvhgvQNs376d1atX8+uvvzJjxgxatWrlvm3t2rVs2rQJnU7HsGHD\n6NSpU70fTzQux48fJzMzE53O1eh04MAB2rVrV2WdtWvX1usxlFLVlmma5nW5L7Zu3UqHDh3o3Lkz\nAO3atWPz5s1V7l/f3ADvvfceGRkZ5OXlMWjQIFq3bk2PHj3qvV0hRHjyqegnJSVRXl7uLvoANpvN\nY1NqbbVo0YJJkyaxcOHCKsuPHz/Otm3beOGFFygoKGD69Om8/PLL7uIgfhv27dtXpch/9913/PnP\nf66yTn2P9DMzMzlx4oT79+zsbJo2bep1uS9+/PHHKi0Se/fupUOHDj7n9vVI/8yw2LS0NG6++Wb2\n7NkjRV8IUWc+XVq3T58+zJgxg5tuuonU1FTy8/PZsGGDT1+459O8eXOPy3fu3EmvXr2IiIigSZMm\nZGRkcOjQoQbvZCUCa//+/e5rOBw5coSPP/6YKVOmVFmnvkfMnTp14ujRoxw7doyMjAzWrVvH/Pnz\nadWqlcfl4Opc9/LLL5OZmelxm8nJyXz55ZcAHD58mP/85z+sW7fOr7lLS0txOp3ExcVRWloq014L\nIeqtVpfWPfdLbOPGjdx2223+T4WrQ1ebNm3cv6ekpGAymTyuu3HjRjZu3AjArFmzSEtLC0gmfzMY\nDCGRNZA5Dx48SHR0NDfddBMdOnSgXbt2fPDBBzz22GO13tbgwYP5/PPPycvLo3v37kybNo1hw4YB\n8MorrzB48GAcDgdDhw7l6quv9rrc6XTyyy+/0Lp1a6Kjoz0+1vDhw9m8eTM33ngjaWlpvPPOO7Xa\nIa38nHrLfeTIEe644w7A1Zl20KBBDBw4sNbPS33J+9T/QiVrqOSE0Mka7Jya8nRi08+mT59OYWFh\nteWDBg2iW7duADz11FMMHjzYfU5/8eLFtG3b1t2a8Nprr9G5c2efmjYrN9k2ZmlpaeTl5QU7xnkF\nMufVV1/Nhg0biIuL88v2/JH1hx9+YMWKFTz11FN+yeRJqLz2EDpZQyUnhE7WUMkJoZM1UDkrd0qu\nic/j9Otj2rRptb7PmdMIZ5hMJhmr/BtjsVjQNM1vBd9fLrvssoAWfCGECBavRX/ChAm8+OKLANx/\n//1eN+DpNIA/dO3alVdeeYVbb72VgoICsrOzad26dUAeSwRHXFwcX3zxRbBjCCFE2PBa9CvPq++P\noXne7NixgzfeeAOz2cysWbO4+OKLmTp1Ki1atKBnz55kZWWh0+kYPny49NwXQggh6sFr0a88HKl9\n+/bVbnc6naxevdrjbbXRvXt3unfv7vG2AQMG+Dy0SQghhBA1q/Ohs8PhYM2aNf7MIoQQQogAkvZy\nIYQQIkxI0RdCCCHCRI1D9irPyncuu93u9zBCCCGECJwai/75huOFwuxHQgghhHCpseifmYdcCCGE\nEKFPzukLIYQQYUKKvhBCCBEmpOgLIYQQYUKKvhBCCBEmpOgLIYQQYUKKvhBCCBEmpOgLIYQQYUKK\nvhBCCBEmpOgLIYQQYUKKvhBCCBEmpOgLIYQQYUKKvhBCCBEmpOgLIYQQYUKKvhBCCBEmpOgLIYQQ\nYUKKvhBCCBEmpOgLIYQQYUKKvhBCCBEmpOgLIYQQYUKKvhBCCBEmpOgLIYQQYUKKvhBCCBEmpOgL\nIYQQYUKKvhBCCBEmpOgLIYQQYUKKvhBCCBEmDMEOsH37dlavXs2vv/7KjBkzaNWqFQCnTp1iwoQJ\nNGvWDIA2bdowcuTIYEYVQgghQlrQi36LFi2YNGkSCxcurHZbRkYGc+bMCUIqIYQQ4rcn6EW/efPm\nwY4ghBBChIWgF/2anDp1ismTJxMdHc2gQYNo166dx/U2btzIxo0bAZg1axZpaWkNGbPODAZDSGQN\nlZwQOllDJSeETtZQyQmhkzVUckLoZA12zgYp+tOnT6ewsLDa8kGDBtGtWzeP90lOTuYf//gH8fHx\nHDlyhDlz5jB37lxiYmKqrdu3b1/69u3r/j0vL89/4QMoLS0tJLKGSk4InayhkhNCJ2uo5ITQyRoq\nOSF0sgYq55n+b+fTIEV/2rRptb5PREQEERERALRs2ZKmTZuSnZ3t7ugnhBBCiNpptEP2zGYzTqcT\ngJMnT5KdnU3Tpk2DnEoIIYQIXUE/p79jxw7eeOMNzGYzs2bN4uKLL2bq1Kns37+fVatWodfr0el0\njBgxgri4uGDHFUIIIUJW0It+9+7d6d69e7XlPXr0oEePHkFIJIQQQvw2NdrmfSGEEEL4lxR9IYQQ\nIkxI0RdCCCHChBR9IYQQIkxI0RdCCCHChBR9IYQQIkxI0RdCCCHChBR9IYQQIkxI0RdCCCHChBR9\nIYQQIkxI0RdCCCHChBR9IYQQIkxI0RdCCCHChBR9IYQQIkxI0RdCCCHChBR9IYQQIkxI0RdCCCHC\nhBR9IYQQIkxI0RdCCCHChBR9IYQQIkxI0RdCCCHChBR9IYQQIkxI0RdCCCHChBR9IYQQIkxI0RdC\nCCHChBR9IYQQIkxI0RdCCCHChBR9IYQQIkxI0RdCCCHChBR9IYQQIkxI0RdCCCHChCHYAd588012\n7dqFwWCgadOmjBkzhtjYWADWrl3Lpk2b0Ol0DBs2jE6dOgU5rRBCCBG6gn6kf8UVVzB37lyef/55\nMjMzWbt2LQDHjx9n27ZtvPDCC0ydOpUlS5bgdDqDnFYIIYQIXUEv+h07dkSv1wPQtm1bTCYTADt3\n7qRXr15ERETQpEkTMjIyOHToUDCjCiGEECEt6EW/sk2bNrmb8E0mE6mpqe7bUlJS3DsEQgghhKi9\nBjmnP336dAoLC6stHzRoEN26dQNgzZo16PV6evfuDYBSyuftb9y4kY0bNwIwa9YsmjVr5ofUDSNU\nsoZKTgidrKGSE0Ina6jkhNDJGio5IXSyBjWnagQ+++wz9dhjjymr1epetmbNGrVmzRr3788884z6\n8ccfz7utKVOmBCRjIIRK1lDJqVToZA2VnEqFTtZQyalU6GQNlZxKhU7WYOcMevP+nj17WLduHVOm\nTCEqKsq9vGvXrmzbto2KigpOnTpFdnY2rVu3DmJSIYQQIrQFfcjekiVLsNvtTJ8+HYA2bdowcuRI\nWrRoQc+ePcnKykKn0zF8+HB0uqDvowghhBAhK+hF/9VXX/V624ABAxgwYECttte3b9/6RmowoZI1\nVHJC6GQNlZwQOllDJSeETtZQyQmhkzXYOTWlatFjTgghhBAhS9rLhRBCiDARckX/8ccfr/V9LBYL\n06dP56GHHmL69OlYLJYAJKuqLjnffPNNxo8fz6RJk5gzZw4lJSUBSFZdXbKe8f7773PHHXdgNpv9\nmMizuub88MMPGTduHFlZWbz11lt+TuVZXbL+9NNPTJ06lYcffphHHnkkYJNR1SXb9u3bycrK4s47\n7+Tw4cNVblu7di0PPvgg48aNY8+ePf6KCfg363fffceUKVOYOHEiU6ZMYe/evY0y5xl5eXkMHjyY\n999/3x8R3fyd9eeff2bq1KlkZWUxceJEbDZbo8tpt9uZN28eEydOZMKECe6ZX/3F39/3gfxMNYoh\ne/6yd+9eNW/evGrL33zzTbV27VqllFJr165Vb775ZkNHq8Jbzj179ii73a6UcmUOdk6lvGdVSqnc\n3Fz1zDPPqPvvv18VFRU1cLKqvOX8/vvv1dNPP61sNptSSqnCwsKGjlaNt6zTp09X33zzjVJKqV27\ndqknn3yygZN5z/bLL7+oX3/9VT355JPq0KFDVZZPmjRJ2Ww2dfLkSfXAAw8oh8PRKLMeOXJE5efn\nK6WU+vnnn9XIkSMbZc4z5syZo+bOnavWrVvXEDGVUrXParfb1cSJE9XRo0eVUkqZzeYGef1rm3Pr\n1q3qxRdfVEopZbVa1ZgxY9TJkycDnrOmrN6+7wP9mQq5I/3BgwfX+j47d+7k97//PQC///3v2blz\np79jVVOXnN6mJA60umQFWLZsGXfffTeapvk5kWd1yfnxxx/Tv39/IiIiAEhMTPR3LI/qklXTNMrK\nygAoLS0lOTnZ37GAumVr3ry5xwlFAj1dtj+zXnLJJaSkpADQokULKioqqKioqHdG8G9OgB07dtC0\naVOaN29e32jV+DPrt99+y4UXXsjFF18MQHx8vN9GWfn7ObVarTgcDmw2GwaDgZiYmPpGdPPn932g\nP1NB773fEIqKitxfoMnJyQ3SFF1fmzZtolevXsGO4dXXX39NSkqK+8PeWGVnZ/PDDz+wYsUKIiIi\nGDx4cKOd72HIkCE8++yzvPnmmzidTp555plgRzovk8lEmzZt3L+HynTZX331FZdccol7Z7AxsVqt\nrFu3jmnTpvm9ad/fsrOz0TSNZ599FrPZTK9evejfv3+wY1XTo0cPvv76a0aOHInNZmPIkCHExcUF\nO5Zb5e/7QH+mfhNF/7HHHqOiogKr1YrFYuHhhx8G4O67725Ul+P1Nee5UxIHQ01Z27Vrx5o1a+rV\nF8BfzvecOp1OLBYLzz77LIcPH+bFF19k3rx5DdY6UZusH3/8MUOGDKFHjx5s27aN119/nWnTpjWK\nbN6oIAz+qe/n/ZdffuHtt99m6tSpjTLnqlWr6NevH0ajMaD5KqtrVofDwQ8//MDMmTOJiori6aef\npmXLlnTo0KFR5Tx06BA6nY4FCxZQUlLCE088QYcOHWjatGlActYma32moK+L30TRnzFjBgD79u1j\n8+bNjB07tsrtiYmJFBQUkJycTEFBAQkJCcGIed6cAJs3b2bXrl088cQTQSlMZ9SU9dixY5w6dcr9\nJs7Pz2fKlCnMnDmTpKSkRpMTXHvJV111FZqm0bp1a3Q6HcXFxUF5D5wv65YtWxg2bBgAPXv2ZMGC\nBY0mmzepqank5+e7fzeZTO4m9ECpa1ZwvVeff/55xo4dS0ZGRqAiAnXPeejQIb766ivefvttSkpK\n0DSNyMhIbrrppkaXNTU1lfbt27s/T507d+bo0aMBK/p1zfnFF1/QqVMnDAYDiYmJXHrppRw+fDig\nRb+u3/eB/kyF3Dn9uujatStbtmwBXF+sZy7y09h4m5K4sbnwwgtZvHgx8+fPZ/78+aSmpjJ79uwG\nL/i+6Natm7uX9okTJ7Db7cTHxwc5lWcpKSns378fgL179wa8KPlDKE2XXVJSwqxZs7jrrru47LLL\ngh3Hq6efftr92brlllv4y1/+EtCCXx8dO3bk2LFjlJeX43A4OHDgQED6IdRXWloae/fuRSmF1Wrl\n4MGDXHDBBUHNFKwp6EPuSL8uR7+33XYbL774Ips2bSItLY2srKwAJKuqLjm9TUkcaMFsUaiNuuS8\n/vrr+cc//sHEiRMxGAyMHTu2Qf7eujzGqFGjWLp0KU6nk4iICEaNGhWAZHXLtmPHDt544w3MZjOz\nZs3i4osvZurUqQGfLtufWT/66CNycnJ49913effddwHXUCt/dO70Z85A82fWuLg4+vXrx6OPPoqm\naXTu3JkuXbo0upw33XST+3tAKcV1113HRRdd5Jecdc0atCno/TYOoAGYzWZ1//33BzvGeYVKTqVC\nJ2uo5FSqcWdtzNnOFSpZQyWnUqGTNVRyKhVaWZUKoSF7JpOJxx9/nD/96U/BjlKjUMkJoZM1VHJC\n487amLOdK1SyhkpOCJ2soZITQivrGTL3vhBCCBEmQuZIXwghhBD1I0VfCCGECBNS9IUQQogwIUVf\nCODAgQOMGzfO/fvYsWP57rvv6rStyvddtWoVr7zySrV1srOzmTRpEqdOnfJ5u/Pnz2fFihV1ynTH\nHXeQk5NTp/sGwr59+xg9enSDPuZTTz3Fp59+6rftnfueESIUSNEXYcVbMW/Xrh0vv/xyg2QoLS1l\nwYIFZGVl0aRJkwZ5zMrmz5/P5s2bG/xxf2sa8j0jhL+E3OQ8QoS6mJgYnnrqqWDHEEKEISn6QuBq\nbn711Vd5/fXX3csOHz7M0qVLKSwspFu3bvz9738nMjISgF27drFixQpyc3Np3rw5I0aM8GmGr//9\n738sX76c48ePk56eztChQ7n88ss9rnv06FFef/11srOz6dy5c7VZv+qaobKcnBwWLFjAzz//jKZp\ndOzYkeHDhxMbG0tOTg6PPvoo06ZNo2XLlphMJh5++GGysrK4/PLLKS0tZdmyZezevRtN07juuuu4\n4447PM4eZrPZWLRoEV9//TVJSUlcd911VW43mUy88cYbHDhwAKPRSL9+/bjlllsA11z0ixcvJjs7\nm8jISK655hqGDBlS7TEsFgvz5s3j4MGDOJ1OLr30UkaMGEFqaqp7nZMnT/Loo49y4sQJLr/8csaM\nGUNcXBw2m43XX3+dPXv24HQ6yczMZMqUKSQlJWGxWFi+fDnffvstNpuNdu3aMXny5Grvmffee48P\nP/yQsrIykpOT+fvf/06HDh1qzF/T+2Hz5s38+9//xmw2Ex8fz6BBg4J6ES7xGxHs2YGEaEhjxoxR\n3377bbXle/fuVaNGjaqyXlZWlsrNzVXFxcXq8ccfV//617+UUkodPnxYDR8+XP3vf/9TDodDffbZ\nZ2rMmDHKZrNVe4yVK1eql19+WSmlVH5+vho2bJjatWuXcjgc6ttvv1XDhg1TRUVF1fJUVFSo+++/\nX61fv15VVFSo7du3q0GDBvmc4VwDBw5U2dnZ1ZZnZ2erb7/9VtlsNlVUVKSeeOIJtXTpUvftn3zy\niRo/fryyWq3qmWeeUcuWLXPfNnv2bLVgwQJVVlamCgsL1SOPPKI+/vhjj4//1ltvqWnTpqni4mKV\nm5ursrKy3M+3w+FQkydPVqtXr1YVFRUqJydHjR07Vu3evVsppdRjjz2mtmzZopRSqqysTP34448e\nH8NsNqvt27crq9WqSktL1dy5c9Xs2bPdtz/55JNq5MiR6ueff1ZlZWVqzpw57tfm448/VjNnzlRW\nq1U5HA51+PBhVVJSopRSasaMGeqFF15QxcXFqqKiQu3bt08pVfU98+uvv6rRo0er/Px8pZRSJ0+e\ndD/f3vLX9H4oKytT9957r/r111+VUkqZTCZ17Ngxj3+3ELUh5/SF8OKPf/wjaWlpxMXF8Ze//IUv\nv/wSgE8//ZS+ffvSpk0bdDod1157LQaDgYMHD9a4vc8//9w9N7lOp+OKK66gVatWfPPNN9XW/d//\n/ofD4aBfv34YDAZ69OhBq1at3LfXNcO5MjIyuOKKK4iIiCAhIYF+/fq5L/oD0LdvXzIyMnjsscco\nKCjgrrvuAqCwsJA9e/YwdOhQjEYjiYmJ9OvXj23btnl8nO3btzNgwADi4uJIS0vj5ptvdt92+PBh\nzGYzt99+OwaDgaZNm3LDDTe4t2UwGMjJycFsNmM0Gmnbtq3Hx4iPj6dHjx5ERUURHR3NgAEDOHDg\nQJV1+vTpw4UXXojRaGTQoEFs374dp9OJXq/HYrGQk5ODTqejZcuWxMTEUFBQwJ49exgxYgRxcXEY\nDAbat29f7bF1Oh0VFRUcP34cu91OkyZN3BdM8pb/fO8HTdM4duwYNpuN5ORkWrRo4dNrKkRNpHlf\nCC/S0tLcP6enp2MymQDIy8tjy5YtfPTRR+7b7Xa7+3Zv8vLy+O9//8uuXbvcyxwOh8fm/YKCAlJS\nUqo06VfOU9cM5yoqKmLp0qUcOHAAq9WK0+kkLi6uyjo33HADzz33HCNHjiQiIsL9+A6Ho8oFoZRS\nVZrSz/17Kt9W+W/Jzc2loKCAoUOHupc5nU7atWsHwOjRo1m5ciUTJkygSZMm3H777Vx55ZXVHqO8\nvJxly5axZ88eSkpKACgrK8PpdLpPOZybweFwYDab6dOnD/n5+bz00kuUlpbSu3dvBg0aRH5+PnFx\ncdWek3NlZGQwdOhQVq9ezfHjx+nYsSP33nsvKSkpXvPX9H4wGo2MHz+e9evX8/rrr3PppZdy7733\nBv3KcCL0SdEXwou8vLwqP5+5pnVqaioDBgxgwIABtdpeamoqvXv39mmoWnJyMiaTCaWUu/Dn5+e7\njx7rmuFc77zzDgDPP/888fHx7quUnWG1Wlm2bBnXX389q1evpkePHsTFxZGamorBYGDJkiXo9frz\nPk5SUhL5+fnuo9XKz21aWhpNmjTxOLQRIDMzk/Hjx+N0OtmxYwcvvPACS5YswWg0Vllv/fr1nDhx\nghkzZpCUlMRPP/3E5MmTUZVmGq98nfK8vDz0ej0JCQnodDoGDhzIwIEDOXXqFDNnzqRZs2Z07twZ\ni8VCSUkJsbGxNf6N11xzDddccw2lpaUsXLiQt99+mwcffNBr/vO9Hzp16kSnTp2w2WysWLGCBQsW\n8PTTT9f8RAtxHtK8L8KOw+HAZrO5/zkcDo/rbdiwgfz8fCwWC2vXrqVnz56A68j3k08+4eDBg+7r\nc3/zzTeUlZXV+Li9e/dm165d7s5iNpuNffv2VSlEZ7Rt2xadTseHH36Iw+Hgq6++4tChQ+7b65rh\nXGVlZRiNRmJjYzGZTKxfv77K7UuXLuWSSy5h9OjRdOnShYULFwKunZKOHTuyfPlySktLcTqd5OTk\nVDk1UFnPnj1Zu3YtFouF/Pz8Ki0UrVu3Jjo6mvfeew+bzYbT6eTYsWPuv/fzzz/HbDaj0+mIiYkB\n8NhZ0Gq1EhkZSUxMDBaLhdWrV1dbZ+vWrRw/fpzy8nJWrVpFjx490Ol07N27l2PHjuF0OomJicFg\nMKDT6UhOTqZTp04sXrwYi8WC3W73+DeeOHGCvXv3UlFRQWRkJJGRke6M3vLX9H4oLCzk66+/xmq1\nYjAYMBqN/r28qghbcqQvws7MmTOr/D5gwAA6dOhQbb1rrrmGZ555hoKCArp27cpf//pXAFq1asWo\nUaN444033D2yL7vsMndztDdpaWlMnjyZt956i5dffhmdTkfr1q0ZMWJEtXUNBgOTJk1iwYIFrFix\ngs6dO9O9e3f37XXNcK6BAwcyb948hgwZQkZGBn369OGDDz4AYOfOnezZs4e5c+cCMGTIEB5++GG2\nbt1K7969eeCBB3j77bfJysqirKyMpk2b0r9/f6+Ps2jRIh544AGSk5O57rrr+M9//gO4CuCUKVNY\nvnw5Y8eOxW6306xZM+68804A9uzZw/LlyykvLyc9PZ1x48a5R1FUdsstt/DKK68wfPhwUlJSuPXW\nW9m5c2eVdfr06cP8+fM5ceIE7dq1Y8yYMYCrj8KiRYswmUwYjUZ69uzp7in/4IMP8s9//pMJEyZg\nt9u5/PLLq53Xr6io4O233+bXX39Fr9dz6aWXuk99eMtf0/tBKcX69et59dVX0TSNiy++mL///e+1\nem2F8ESusieEEEKECWkvEkIIIcKEFH0hhBAiTEjRF0IIIcKEFH0hhBAiTEjRF0IIIcKEFH0hhBAi\nTEjRF0IIIcKEFH0hhBAiTEjRF0IIIcLE/wcS9NRrSkWw9AAAAABJRU5ErkJggg==\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["from numpy.random import randn\n", "\n", "#pour que la d\u00e9finition du style soit seulement dans cette cellule notebook\n", "with plt.style.context('ggplot'):\n", " fig = plt.figure(figsize=(8,6))\n", " ax1 = fig.add_subplot(1,1,1)\n", " ax1.plot(serie1,color='#33CCFF',marker='o',linestyle='-.',label='un')\n", " ax1.plot(serie2,color='#FF33CC',marker='o',linestyle='-.',label='deux')\n", " ax1.plot(serie3,color='#FFCC99',marker='o',linestyle='-.',label='trois')\n", "\n", " ax1.set_xlim([0,21])\n", " ax1.set_ylim([-20,20])\n", " ax1.set_xticks(range(0,21,2))\n", " ax1.set_xticklabels([\"j +\" + str(l) for l in range(0,21,2)])\n", " ax1.set_xlabel('Dur\u00e9e apr\u00e8s le traitement')\n", "\n", " ax1.annotate(\"You're here\", xy=(7, 7), #point de d\u00e9part de la fl\u00e8che\n", " xytext=(10, 10), #position du texte\n", " arrowprops=dict(facecolor='#000000', shrink=0.10),\n", " )\n", "\n", " ax1.legend(loc='best')\n", "\n", " plt.xlabel(\"Libell\u00e9 de l'axe des abscisses\")\n", " plt.ylabel(\"Libell\u00e9 de l'axe des ordonn\u00e9es\")\n", " plt.title(\"Une id\u00e9e de titre ?\")\n", " plt.text(5, -10, r'$\\mu=100,\\ \\sigma=15$')\n", "\n", " #plt.show()"]}, {"cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["De nombreux autres styles sont disponibles, pick up your choice! ['bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'seaborn', 'Solarize_Light2', '_classic_test']\n"]}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztnXucVOWZ57/NTRQEkUbaADZo0DQq\n2EaEBBkEIYhEzUxu9kyiGzftJhPHyyc7YnDNZHY/SzSTXcnGrMmgzmZcg7pRERIvNCMYE4WUdHNp\noUGYFkGB9hJvaASbs38859BF9an7qTqnTv2+n8/7OX3eOnXqOVXVv3rP8zzv89YADkIIIWJDn7AN\nEEIIESwSdiGEiBkSdiGEiBkSdiGEiBkSdiGEiBkSdiGEiBkSdiGEiBkSdiGEiBkSdiGEiBn9wnjR\nrq4udu3aFcZLCyFExVJfX89JJ52U9bhQhH3Xrl1Mnjw5jJcWQoiKJZFI5HScXDFCCBEzJOxCCBEz\nJOxCCBEzJOxCCBEzJOxCCBEzJOw50AR0At3utilcc4QQIiOhpDtWEk3AEmCQuz/W3QdYGoZBQgiR\nBY3Ys7CIHlH3GOT2CyFEFJGwZ+GUPPuFECJsJOxZeCXPfiGECBsJexYWAh+m9B1w+4UQIopI2LOw\nFPh/7t8OJvLNKHAqhIguEvYcOBF4Cfg5cBB4MFxzhBAiIxL2LPQHLgRagOeAocCEMA0SQogsSNiz\nMBUYjAn7827fZ8MzRwghsiJhz8IcbMbpamAn0AV8JlSLhBAiM4EJe58+fWhtbWXFihVBnTISzAH+\nCLzj7j+HRuxCiGgTmLBff/31bN26NajTRYITgMmYG8bjeeB0YHgoFgkhRHYCEfZRo0Yxf/587r77\n7iBOFxlmAn05Wtifc7dyxwghokogwr548WJuuukmDh8+HMTpIsMc4D1gbVLfC8AhJOxCiOhStLDP\nnz+frq4uWltbMx7X3NxMIpEgkUhQW1tb7MuWhTnAGuDjpL4/A23Izy6EiDZOMW3RokXO7t27nc7O\nTmfv3r3OgQMHnPvuuy/jcxKJRFGvWY42FhwHnL/zeWwxOAfA6RcBO9WCb03gdILT7W6bImCTmhrk\npZ3BveiMGTOcFStWBGlcaK0ZE/ZP+Tz2FfexcyNgp1qwrQmc993P12vvI3FXi0bLVTuVx56GOcAe\noMPnMU1Uii+qvy/iQKDC/swzz3DppZcGecpQ6ANcxNHZMMnsxkRfAdT4ofr7Ig5oxO7DuVjhr3TC\nDpqoFFdUf1/EAQm7D3Pc7aoMxzyPrX96csmtEeVE9fdFHJCw+zAb2AC8nuEYTVSKJ0uBx7EIlDcr\n425Uf19UFhL2JJqAXdiM03HufjrasJx2uWPix1nA01jJ5v1AXbjmCJE3EnaXJmAJFiSrwequLyG9\nuB/CZqFqxB4vGoEzgAewEfujwHxgYJhGCZEnEnaXQtLcngc+DRxTKqNE2bkC+9F+xN3/NVaPf25o\nFgmRPxJ2l0LS3J7DRP3c4M0RIVCDCftTwFtu3zPAm8AXwzJKiAKQsLsUkubmTVSSOyYefAb7IX8g\nqe9j4DHgMmBAGEYJUQASdpeFwAcpfdnS3GZht+0/BjrJHGwV0acJS3V8LKX/11jM5aKyWyREYUjY\nXZYC/+z+fRh4GWgmfZqbF2ztj93CjyVzsFVEm77Al4HfAO+nPPZv2ApacseISkHCnsS72Pqmx2Hp\njplyl+NUU6QJu+PopnrvPGYCI/H/zA8CK4AvAP3KaZQQBSJhT2IisA34KIdj41JTxLvzGIt9GcZS\nnXceV2A/7E+kefzX2HKIM8pmkRCFI2FPYiKwKcdj41JTJE53HoUyAPgrYBk26cyPpzAXjdwxohKQ\nsLscD5xK7sK+EAuuJlOJNUXicudRDHOBYWR2vf0ZKzXwl+ifRkQffUddznK3uQr7Uiy4+jJWV+TP\nZA62RpW43HkUghdbeAyLL2RbsPFhrLzAtBLbJUSxSNhdJrrbXIUdTMTHYT7p96k8UQe7w/g4pa8S\n7zwy4RccTo4t1GBZMT8nc2zhcSyQ+huqO9Asoo+C/C4TgbexRTTypQMb7Q3HZilWEs9hv+7vAEMw\n4arEO490eALuxRHGYtUaD5I+tpDu2i/F3qshSeda4v4dl/dLxAON2F0mkd9oPRlv+bwzArKlnFyP\njT7PBP4By8tfGapFheM3Mr+N3gJ+HHBCmnNkii0sovdIqNoCzaIykLBjt+JnAxsLfL4n7J8Kxpyy\nMRT4JvAg8CrwJPaFmJPpSRHFL23zPmBMmuOdNP2ZYgsKNItKQcIO1GO314WO2HdhwdNKE/ZrsGyg\n/+Hur8dcSZVYydAvbbMv6QX8DfLPaqrmQLOoLCTsFBY4TeYwsJ3KEvb+wHXYdPkNbt9hzA1zMXYX\nUw6CmvWaadTsJ+DX05PVlEsJCYhPiquoDpxyt0QiUfbXzNT+Czjd4Awq4hwPgrM9AteSa/sbcBxw\n5qX0X+n2TyrwvE3gdLrvZ6e7n+nY993X89r7WZ6TrnWmnMdrng252pTL9b0NzmFwXi7yXGpq+bY8\ntDPSxpWlPUTxovyP4HwMzoAIXE8urQ2cF8GpSemvwwRxQZbn+4llvkLdSXoxzvd6mtz3P9fXLqZ5\nP36nR+BzVKuulqt2yhVDfqUE0tGB+XQ/Wbw5JWcWcA7mW3dSHtuHred6cYbn+wUq/wX4BfmVJwgy\nGPlb7FreIXfXSqG0u9uzMh4lRHhUvbAfC4wnGGGHaPvZPX/2KsynnToxyeMpbHbl4DSP+wUqj8EC\nsX6cwtG+9N305M/7UUgwcg6Wivh57Ac2W3XOYtiK/XicWaLzC1EsVS/sZ2JvQrHCvt3dRkHYc51p\n+b/xD1Y+iQVXZ6U5f7oRdero36MG+Fd6RvijganAWnoHIz+gsGDkJcCf6FnVqpR8CPw7GrGL6FL1\nwu5lxBSaw+5xABtphi3sfm6Se7Hp8rm6SZ4D3iO9O+btNP1+KYQfYEKYOrGnBqu7kpyZAraIdL4j\n7RpgHnan0Z3ncwvlRTRiF9Gl6oV9EiZiLwdwrg7CF3Y/N8lAeqbBp+I3+j6EpUH6CfuJWJnbVAFN\nl0L4Tff10722V2+nL/Astu5ovqmWjcDJmJ+9XLQDp6N1UEU0qXphnwhsJr0bIR+iIOz5uknS+bOf\nwgT39JT+72Nxie/hnwOeLNSenzvXiT13AqeROXDrxyWuHU/m+bxiaMfcVanvjxBRoGhhHz16NE8/\n/TRbtmyhvb2d6667Lgi7ykYQGTEeHVgA8RMBna8Q0olovjMtn3K3ybNQTwf+FnP1/BO9BTwduU7s\neRTYC3wnw7n8mA/8EbvGcvGiu5U7RkSVovIq6+rqnMbGRgdwBg8e7Gzbts1paGgIJBez1G0Ulo/8\n7YDON9M936wQrylTPne+E3U6wPlt0v5j4LwDzogC7crltf/BPea0HM9b6x5/a5nf5wHgHALnv4X4\nWatVXwttgtKyZcuc2bNnB2VcSds8TPimBXS+k93z/W2I1zQIE5y3KX6m5WJwDoAzEPuxcsC5qcT2\nnwzOQXB+nOPxX3PtOjeE93oLOI+E+FmrVV8LZYJSfX09jY2NrFu3LsjTlgwvI2ZzQOfbiy2IHKaf\n/QIsA+WLFJ/P/SRW4vZC4H9iqZM/Kd7EjOzFMmOuxnz52biEnklV5aYdpTyKaBKYsA8aNIiHH36Y\nG264gffee6/X483NzSQSCRKJBLW12RYhKw8TscDfuwGeM+wA6izgIyxlsVhGYkHJx7HsoeXuuUvN\nndgapH+d5bi+WKD1cWyYUm5exIK96bJ+hAiTom8P+vXr5zz55JPOjTfeGOjtRKnbZnCWBXzOX4Lz\nSpi3auCsDuA8QRboKqRtxOrZZDpmmmvXF0N6r7/ovn5jiJ+3WnW1srpi7rnnHrZu3codd9wRxOnK\nwgBsZB1URoxHB7a4Q7rp+KXkBOBcYHUA5/LLhy/nakF/xOrZZCrnOx/LuW8pk02pKDNGRJWihX3a\ntGlceeWVzJo1i7a2Ntra2pg3b14QtpWUBswXXQphh3Dym2dgH+jTAZwrzNWCvBII0DN7dgm9xf0S\n4PcE60rLhx2Ya0p+dhE1il7M+g9/+AM1NeValiE4JrnbUgn7p4DWgM+djZnYFP4gQtevYILq119q\nMt0teIHg0dhn+J/LYE86Pga2oRG7iB5VOfO0CfhfmDNqJYWv2uPHTuwfPowA6ixsWv6hAM4V5mpB\nme4WarDPy1v16UaC/fzyRZkxIopUnbB7RbKGYiJRj/9tfqEcxCr/lVvYT8IW5A7Cvw42Ms536big\nSHdX0Ad7b+8Fhrt9owj288uXF7E7mzBiKkKko+qEvRxBwTBSHi90t0H41z386r6Ug3R3Cz/FhDw1\nvbCcQd1UvEU3JoT0+kL4UXXCXo6gYAcWPC3nmzsLWz2o3H79UpDubuE67EfGj3IEdf3QakoiilSd\nsOdaabAYOrAVhcYGeM5szASeoXz1yEtNuruFcnx++dCJBazzDaD6LYYiRFBUnbAvxPzgyQQdFCz3\nMnmjsTuEoPzrUSbMoK4fDrCF/EbsfouhhBknEPGj6oR9KZDAMldKFRTc5m7LJewz3W2Q/vWoEmZQ\nNx35rqYU9uQvEX+KzmOvRIZhq+18oUTnfwvoonzCPgurRR5UMbOo4y3oERXagauwmb/plg1MJszJ\nX6I6qLoR+0DgDHryoEtFusyYdL7VYnyuszA3jFOosaIo8i0tELU4gYgfVSfsZ2IBuWIXr86Gn7Cn\n863+NE1/LuJ+KjbSqwb/elTJNzMmanECET+qTtjPcbelFvbjgBH0jMCvxcrR+vlWv5OmfxHZR/Kz\n3G01+Nejym6sXk2uI/al2NqxYHdZBwk/TiDiRdX52Cdh/4SdJXyNJuBL7t/eCPynBZynHvg/WCVK\n6BnJeyxyj/kYq+q4DREWL5JfZsxud7scuNTdChEUVTdin4QV/iqlP3oR/osvfJzm+Ey55wNS9gcB\nvwDuwYS+Bvt1VrpcuOSbGXM29n24D/snPCfz4ULkRVUKe6ndMOmyG/rg71v9eZr+dD8+x9N72Til\ny4VLO1avZ0SOx0/E7rC8la7OLYVRomqpKmEfixX/KnVGTKasB78c7L9L05/uPOkEX+ly4XGSu91H\nbllNE7E7x73ucz5dOtNElRLZ5Z2Cbl/AljKbXOLXCWpZuXTn6Urp81pnCO+pmn1OB/L4vIe4x3zP\n3f8Ntkxj2NehFv1W1qXxKoVJmD+7PduBRRLU7Mh057kepctFiUVYFlQymVxjXpDVW+RlPbaiV+o5\nhCiUqsqKmQRsBz4sw2sFNTsy03kWYe6XVzBRV7pcOOQ7k3Siu00W9r7Y9/P5AO0S1UtVjdjPofSB\n03IRVq100Zt8Z5KejZUe8FIe17tbBVBFUFSNsA/BBDAuwi6iQ74zSb3AqcerwH4UQBXBUTXC7t3+\nljojRlQfXixkFxa5eo/MMZVUYQdbIEXCLoKiaoS9XKUERHWyFEun/Q2WwphO1Ouxu8fUSpzrseX1\n/Ca2CZEvVSPsk4DXsX86IUrFamzRk0+keTw1cOqxHstkmFQiu0R1UVXCLjeMKDWr3e2FaR4/292m\nptwqgCqCpCqEvS/2DyU3jCg1m4A/0bOqVSoTgZ3A+yn9u7E7SvnZRRBUhbCfjvkuJeyi1BzGFhXP\nJOypbhiP9UjYRTBUhbB7fku5YkQ5WA2cBoxJ6R+IDTLSLWG4HqsQeUzpTBNVQlUI+znAR9iqRkKU\nmjXu9sKU/gmYWzDdiL0V6E9PgFWIQqkKYZ8EbCF9PXQhgmQztrh4qjvGC5xmcsWAAqiieCpe2HNZ\nBFoZMaKcOJif/cKU/onAB1jw1I9dwJvIzy6KJxBhnzt3Lh0dHbz00kssWLAgiFPmRLrFoZPF/STg\nZBQ4FeVlDVbCoj6pbyKW5ng4w/MUQBVBULSw9+nTh5/97GfMmzePCRMm0NTURENDQxC2ZWUR6ReB\n9vACpxJ2UU68fPZkd8wk0gdOPdZjZX1Tl0QUIh+KFvbzzz+fHTt20NnZyaFDh3jggQe4/PLLg7At\nK7mUS1UpAREGL2J56Re6+yOxZfPS+dc91mOifnaW44TIRNHCPmrUKHbv3n1kf8+ePYwaNarXcc3N\nzSQSCRKJBLW1tcW+LEOAg2keOwxMwVwy38d8nq1osWdRXtbQM2LPFjj1aHW3CqCKYiha2Gtqanr1\nOY7Tq2/JkiVMnjyZyZMn88Ybb+T9OslB0lewEXg/LI0xmQ+Bt4DfA/8CDAZq8Pe/C1FKVmN3j6fS\nk8KYzRXTiX1/5WcXxVC0sO/Zs4cxY3qmYowePZrXXnut2NMeRWqQdAwWlPox8A2OXjruPwJnYKP5\n1IkemZYrEyJokuvGTMTqrr+Zw/NeBf4DmTO9hMhGUYur9u3b19m5c6czduxYp3///s6GDRucCRMm\nBLIgq9c6yX/x5u40z+mOwIK0atXT9oJzHzit4Dyew/FN4Byk+IXQ1eLZyraYdXd3N9deey1PPfUU\nW7du5aGHHmLLli3FnvYo8l1TEvJfrkyIUrAGmIXNOs3mhgG7o+yf0qc7TVEIkf3V8Von+Y/Ym7CR\nTvLxGvmolbstoef710X275/uNNUytbKN2MtBvmtKQs9yZS/T43/PtFyZEEHTBPxN0v4Isgfwdacp\ngiKyvzrJrQkboXe7W4281aLeOtGdplqwLVft7EeFsBSNtkVlUUhsyPuO/wJL1d2F3Znquy/yoWKE\nXYhK4xUsRdevPxNLgeHAT4HPAPuCNUtUARXhYxeiEikkNuThzVBVbXZRCBJ2IUpEMQF8LzVSwi4K\nQa4YIUpIobGhP2ELXEvYRSFoxC5ERNmEhF0UhoRdiIiyEWig90xUIbIhYRciomzCarN/KmxDRMUh\nYRcioigzRhSKhF2IiLIdW29Awi7yRcIuRETpxpbYk7CLfJGwCxFhlBkjCkHCLkSE2QR8Aih+lWBR\nTUjYhYgwXgD17IxHCXE0EnYhIowyY0QhSNiFiDCvY9UdJewiHyTsQkQcBVBFvkjYhYg4m4Azgb5h\nGyIqBgm7EBFnE3As8MmwDREVg4RdiIiz0d1OCtUKUUlI2IWIOB3AIaLpZ28COrFZsp3uvggfLbQh\nRMQ5iIl71IS9CVgCDHL3x7r7oMW3w0YjdiEqgChmxiyiR9Q9Brn9Ilwk7EJUAJuAemBo2IYkcUqe\n/aJ8SNiFqACiWFrglTz740TUYwsSdiEqgCiWFlgI/Dml74DbH2e82MJYTEDHuvtREncJuxAVwGvA\nm0RL2JcCvwUct70NNBP/wGklxBaKEvYf/ehHbN26lY0bN/LII48wdGiUPIBCxIsoBlCPAzYDrcB6\n4i/qUBmxhaKEvaWlhbPOOotJkyaxfft2vve97wVllxAihT8DU4iWX3cKsA54zv27GsoeVEJsoWhh\n7+7uBmDt2rWMHj06EKOEEEfTBMzC/mGj4tcdD5yICfvzwGCiFdwtFQuBD1L6ohZbCMzHfvXVV/PE\nE0+kfby5uZlEIkEikaC2VuvBCJEPi4BjUvrC9utOcbdrsRE7wGdCsqWcLAV+krT/LtGLLWSdedrS\n0kJdXV2v/ltuuYXly5cDsHDhQj7++GPuv//+tOdZsmQJS5bYvLREIlGovUJUJVH0604B3gO2Aoex\nAO9ngbtCtKlc7He3292/oyTqkIOwz5kzJ+PjV155JZ///Oe56KKLAjNKCHE0r2DuF7/+sJgKJDBR\nB3PHfDY8c8pKA/AG0AJ8HajBMoOiQlGumLlz57JgwQIuu+wyPvzww6BsEkKksBDz4yYTpl93IFZt\ncm1S33PAqcDIUCwqLxOALcAGYAgwLlxzelGUsN95550cf/zxtLS00NbWxl13VcNNmBDlZynmx+1y\n9/cRrl+3EeiPBU49qsnPfiY9wg5wToi2+FFUdcfx48cHZYcQIgtLgZWYC+AnhOvXnepuk4W9FfgI\nc8csK7tF5eMkLBtoK9COpZ9OAh7J8rwmLNh9CuZCW0jpPkPNPBWigngTeBH4i5DtmAK8TE8QEay8\n8Hoyj9ijXmMlFya42y3Y3IIOso/Yy12GQMIuRIXxO2Aa4f7zehOTUnkOOA8Y4PNYJdRYyYUGd7vF\n3W4ku7CXuwyBhF2ICuNZLGAX1lJ5IzFR9hP257HAaqPPY5VQYyUXJgDvYOmdYH72U4BhGZ5T7nRV\nCbsQFcaz7nZ6SK+fPDEplefdrZ87Joq5+IXgZcR4eAHUTD+05S5DIGEXosLYg/mnw/KzT8HWYG3z\neWwvZptfPnsl1FjJhQlY4NTDW2w8kzvmH+id517KdFUJuxAVyO8Ib8Q+FROz1FrsHukmKi3EfhCS\n+Zho1VjJxjCgjqNH7F3YD1qmEfs+bBLTfmxC18uUNl1Vwi5EBfIslnZ3RsDnzZa10geYjL8bxuM5\nYBQwJqW/1X3+u5i4vY3lW3dROaQGTj02kHnEfjH2QzgOq4A5jtKmq0rYhahAfudugxy155K10gAc\nj3/g1MObqJQ6ar8Ncz98EhO3OqzWyi+AY4uyvHwkpzoms8F9rH+a580FngHKNT9fwi5EBfISdlsf\npJ89l6wVv4lJqWzCBDxZ2C8AvgDcDrzu9n0EXAOcBtxamMllZwJ2balxgY1YiueEXs+wO5cJwFOl\nNe0oJOxCVChB+9lzyVqZAryF/bCkoxv4I0dnxvwYeBW4I+XYZ4B7gL+nMmq5T8AmJKUGQjNlxsx1\nt0+WyigfJOxCVCjPYu6SVF92oeSStZJuYlIqz2G57McBX3afdyv+roi/x34sHsGCilGeldpAbzcM\n2A/dB/j72S/G3sOtPo+VCgm7EBVK0PnsCzFRTaYb+L7792DgLHIX9n6YO+aH2Lqov0xz7J+ABzHf\nez3RnZV6PHb34ifshzEXVKqw9wNmU143DEjYhahYNmEzIIPysy93t29jQvUGFuS8FBOK89xtpowY\nj1HudiXmQ3+cnrrtflzq0xe1Wamfcrd+wg7mZ091xUwBhlJeNwxI2IWoWA4DfyC4EftnMSH/srsd\nAdzo7j9FT/XCfybzSLqJHl96jbu9NstzKmFWqhcYTedS2YBVfUx2jV2M5er/Wwnt8kPCLkQF8ztM\ncIJYRXgGJkLPJ/UtxkrwzqanFsopZHaTFFITphJmpU7AMnn+Pc3jfrXZL8bucN4poV1+SNiFqGA8\nP/sFAZxrBvACvVdq8gsIZhLqQkbfUVshyo8GYBu94xAem7G7KO/9GoG5r8rthgEJuxAVzQtYpkmx\n7phjgfOx9MNU8hXqQkbf3gpRB7BUwpcJd4UoP1KLf6VyANhBj5/dWy263IFTkLALUdEcxLJUig2g\nTsUm2PgJe75CXejoeynwM+yaTiNaon4sVgYgW8picmmBi7HJWOtLaFc6JOxCVDhvAp+muPzvGe7z\nf+/zWL5C7Y2+Xyb/glc7gWPoyaqJCmdgYplpxA4m7KdhmTCfw7KCUiczlYOi1jwVQoRLEzAfyz6p\noSf/G/Ib8c7AyvC+5/OYd5581utcmufre+xwt6cBuwt4fqlIVyMmFS+AeiW2IEkYbhjQiF2IimYR\ntmJRMvnmfx+DuWL83DAeSylPZcKd7vaTJTp/oTRgGUOZSilAT23277rblSWzKDMSdiEqmCDyv8/H\nfhwyCXu52E2Pjz1KTMBEPbWefCqeS6seS42cVWK70iFhF6KCCSL/ewbmC38224Fl4DAWJ4jaiD11\n1SQ/vLLHfd39YwivLIKEXYgKJoj87xlYeYK3gzKqSHYQrRF7f+yHJpt/PUqLdUvYhahgkjNQHMwP\n/J/I3QfeHyslEAU3jMdOoiXs47Esk2zCHqWyCBJ2ISocL7D5l5gAvZXHc8/DSutGSdh3AEOwmZvl\nItOSgLlmxESpLIKEXYiY8DhWkfGqPJ4zw93+LuNR5cXLjCnXqD3TkoDeYw7wGJn95VEqiyBhFyIm\nHMJG75djE2RyYQbQjk1yigpeLnu5AqjpfON3AncDJ2BzBOrJHAwtZmJW0EjYhYgRv8RSF7+Sw7F9\ngWlEyw0DPcJYrhF7Oh/4iZibKplswdBy5ftnIxBh/+53v4vjOAwfPjyI0wkhCmQ98CI28zEbjdiq\nQFET9oOYX7pcI/Z0PvB0pQCiVCM+HUUL++jRo5kzZw67du0Kwh4hRJH8K1bGN9uIN4r+dY9yZsb8\nxqfvABav8CNKNeLTUbSw33HHHdx00004ThilboQQqfxfzJXx9TSPexkg/4T55cOaHZmJnZRnxD4A\n+Dz2frzM0b7x64lOMDRfiioCdumll/Lqq6+yadOmrMc2NzdzzTXXAFBbG8R6L0IIP14DVmHumH/k\naJeCl+XhBQv7U1jRsFKzA0t3HAK8W8LX+Q6WBTOb9MvX5VP8LEo4mVpLS4uzefPmXu2yyy5z1q5d\n6wwZMsQBnM7OTmf48OEZz+W1RCKR03FqamqFtb8GxwFnekp/p9uf2jojYHNy+yvXrsYSvsYJ4LwJ\nzhMRuN5cWx7aWdgLnHXWWc7+/fudzs5Op7Oz0zl06JCza9cuZ+TIkUEap6amVkA7Dpx3wbk7pb8b\nf2HvjoDNyW2ia9eXSvgat7nXPTEC15try1U7C3bFtLe3M3LkyCP7nZ2dnHfeebz5ZpQyYoWoTj7A\nMmS+4bZXgJ9jGSepZX4hegFBb8HoUgVQx2A+9PuwOjlxQ3nsQsSQJqzGeh96ZlP+EAsOfpRybBQD\ngu8D+yhdAPW/uttbS3T+sAlM2MeNG6fRuhARwW8Bjhoshe8bRGN2ZDaCTnlMrgdzFdBCtFZpChKN\n2IWIIekm0YwmOrMjs7GDzCP2TIW7/I5NrgdTA1yU5TmVjIRdiBgSpUqDhbIT84X7xQQyFe7yw68e\nzHGEUyu9HEjYhYghUao0WCheMbBxPo/lu6hFlGqllwMJuxAxJEqVBgslU/nefIU6Dncw+SBhFyKm\nVIovPR2ZyvfmK9RxuIPJBwm7ECKSvIWtw+o3Yl+I1blJJpNQLwX+u/t3pd7B5IOEXQgRWdJlxvwa\n+BATcwfLe88m1O+721OozDuYfJCwCyEiS7pc9kuwAmFfwUT+LbIL9XRspP5qgPZFFQm7ECKy7MBS\nGfum9F+JzUx9CliNjcJPzXK7eJ+ZAAAID0lEQVSu6cCzAdsXVSTsQojIshMrLZyc7XIiVkP9fmxy\n0mq3f2aG85wG1CFhF0KI0PEyY5LdMU3YAhm/dPc7sNH7hRnOM93d/j5I4yKMhF0IEVm8XPbkAOpV\nwAZgc1LfGjKP2KdjdXK2BmlchJGwCyEiy14s+8UbsTcAk+kZrXusAUaRvrbMdKpntA4SdiFEhHE4\nev3Tq4CPgV+lHJfJzz4SGI+EXQghIoOX8tgH+BrwBNCVcsx2bK1XP2G/wN1WS+AUJOxCiIizAxP2\nOZi7JdUN47EG/wDqdGwiU2sJbIsqEnYhRKTZiZXYXYBNRFqR5rjVwMnAGSn9FwBrMRdOtSBhF0JE\nmjHudibQD/himuPWJB3ncTxwDtXlXwcJuxAiwjRhi057DCH9gho7gD0c7Y75DDZrtZr86yBhF0JE\nmEWYGyaZTAtqrOZoYb8Ac8GsDdyyaCNhF0JElnwX1FiDpTc2uPvTgTZ612KPOxJ2IURkyXdBjeR8\n9gHAFKrPDQMSdiFEhMl35aNOTPRnAp8GjkXCLoQQkaKQtVtXAzOAv3D3qy0jBiTsQoiIk+/arauB\nEcA3scqPb5TUumgiYRdCxIoh7vaT2ExVv9TIuCNhF0LEhibgh0n7x5M+7z3OSNiFELFhEZbnnkym\nvPe4ImEXQsSGfPPe40rRwn7ttdfS0dFBe3s7t99+exA2CSFEQeSb9x5X+hXz5AsvvJDLL7+ciRMn\ncvDgQUaMGBGUXUIIkTcLMZ96sjsmU957XClqxP7tb3+b2267jYMHDwLw+uuvB2KUEEIUQiF573Gk\nKGE//fTTmT59OmvXrmXNmjWcd955QdklhBAFkW/eexzJ6oppaWmhrq6uV/8tt9xCv379GDZsGFOn\nTmXy5Mk89NBDnHrqqb7naW5u5pprrgGgtra2SLOFEEJkwim0PfHEE86MGTOO7O/YscOpra3N+rxE\nIlHwa6qpqalVa8tVO4tyxSxbtoxZs2YBMH78eAYMGMAbb1TjBF4hhIgORWXF3Hvvvdx7771s3ryZ\ngwcPctVVVwVllxBCiAIpStgPHTrE17/+9aBsEUIIEQA1mE+mrHR1dbFr166CnltbW1uV7h5dd/VR\nrdeu605PfX09J510Uk7nCz0gkE+r1sCrrrv6WrVeu667+KZaMUIIETMk7EIIETP6Aj8I24h8aW1t\nDduEUNB1Vx/Veu267uIIJXgqhBCidMgVI4QQMaOihH3u3Ll0dHTw0ksvsWDBgrDNKRn33HMP+/fv\nZ/PmzUf6hg0bxsqVK9m+fTsrV67khBNOCNHC0jB69GiefvpptmzZQnt7O9dddx0Q/2s/5phjWLdu\nHRs2bKC9vZ0f/OAHAIwdO5a1a9eyfft2HnjgAfr37x+uoSWiT58+tLa2smLFCqA6rruzs5NNmzbR\n1tZGIpEAgv+eh57mk0vr06ePs2PHDmfcuHFO//79nQ0bNjgNDQ2h21WKNn36dKexsdHZvHnzkb7b\nb7/dWbBggQM4CxYscG677bbQ7Qy61dXVOY2NjQ7gDB482Nm2bZvT0NBQFdc+aNAgB3D69evnrF27\n1pkyZYrz4IMPOl/96lcdwLnrrrucb33rW6HbWYp24403Ovfff7+zYsUKB6iK6+7s7HSGDx9+VF/A\n3/PwLzKXNnXqVOfJJ588sn/zzTc7N998c+h2larV19cfJewdHR1OXV2dAyaAHR0dodtY6rZs2TJn\n9uzZVXXtxx57rLN+/Xrn/PPPd15//XWnb9++DvT+/seljRo1ylm1apUzc+bMI8JeDdftJ+xBfs8r\nxhUzatQodu/efWR/z549jBo1KkSLysvIkSPZt28fAPv27ct59lmlUl9fT2NjI+vWrauKa+/Tpw9t\nbW10dXXR0tLCzp07efvtt+nu7gbi+31fvHgxN910E4cPHwZg+PDhVXHdjuOwcuVKXnjhBZqbm4Fg\n/8eLqhVTTmpqanr1OY4TgiWi1AwaNIiHH36YG264gffeey9sc8rC4cOHaWxsZOjQoTz66KM0NDT0\nOiZu3/f58+fT1dVFa2srM2bMAKrn/3zatGns3buXESNG0NLSQkdHR6Dnrxhh37NnD2PGjDmyP3r0\naF577bUQLSov+/fvp66ujn379lFXV0dXV1fYJpWEfv368fDDD3P//ffz6KOPAtVz7QDvvPMOa9as\nYerUqZxwwgn07duX7u7uWH7fp02bxmWXXcYll1zCwIEDGTJkCIsXL479dQPs3bsXsOVEH330Uc4/\n//xAv+cV44pJJBKMHz+esWPH0r9/f6644gqWL18etlllY/ny5UfKIl911VU89thjIVtUGu655x62\nbt3KHXfccaQv7tdeW1vL0KFDARg4cCCzZ89m69atrF69mi996UtAPK974cKFjBkzhnHjxnHFFVfw\n9NNP87WvfS32133ccccxePDgI39/7nOfo729PfDveeiBhFzbvHnznG3btjk7duxwFi5cGLo9pWq/\n+tWvnNdee805ePCgs3v3bufqq692TjzxRGfVqlXO9u3bnVWrVjnDhg0L3c6g27Rp0xzHcZyNGzc6\nbW1tTltbmzNv3rzYX/vZZ5/ttLa2Ohs3bnQ2b97s3HrrrQ7gjBs3zlm3bp3z0ksvOQ899JAzYMCA\n0G0tVZsxY8aR4Gncr3vcuHHOhg0bnA0bNjjt7e1HtCzI77lmngohRMyoGFeMEEKI3JCwCyFEzJCw\nCyFEzJCwCyFEzJCwCyFEzJCwCyFEzJCwCyFEzJCwCyFEzPj/pjjuM8zjW1AAAAAASUVORK5CYII=\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "print(\"De nombreux autres styles sont disponibles, pick up your choice! \", plt.style.available)\n", "with plt.style.context('dark_background'):\n", " plt.plot(serie1, 'r-o')\n", "\n", "# plt.show()"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Comme sugg\u00e9r\u00e9 dans le nom des styles disponibles dans matplotlib, la librairie seaborn, qui est une sorte de surcouche de matplotlib, est un moyen tr\u00e8s pratique d'acc\u00e9der \u00e0 des styles pens\u00e9s et adapt\u00e9s pour la mise en valeur de pattern dans les donn\u00e9es.\n", "\n", "Voici quelques exemples, toujours sur la m\u00eame s\u00e9rie de donn\u00e9es. Je vous invite \u00e9galement \u00e0 explorer les [palettes de couleurs](https://stanford.edu/~mwaskom/software/seaborn/tutorial/color_palettes.html)."]}, {"cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAFuCAYAAAChjjDKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl4o1d9N/zvLcmyLcmWZFmybMvL\n2J7dnsWzZZJAlplsE0JClk5pWJJCoS00T1jCC/R9eFr6QoEGSlseQhZCICXBEAKBJEOTTDKZkGT2\nffe+75YsS7b2+/1DlsYeb5J1W+v3c11cvUbWcuLO+Otzzu/8jiCKoggiIiJKWrJED4CIiIjmx7Am\nIiJKcgxrIiKiJMewJiIiSnIMayIioiTHsCYiIkpyDGsiIqIkx7AmIiJKcgxrIiKiJMewJiIiSnIM\nayIioiSnSNQHu1wunDlzBkajEXK5PFHDICIiihu/34/BwUHU1tYiJycn4tclLKzPnDmD+++/P1Ef\nT0RElDC//OUvsXnz5oifn7CwNhqNAIIDNpvNiRoGERFR3PT19eH+++8PZ2CkEhbWoaVvs9kMi8WS\nqGEQERHFXbTbvywwIyIiSnIMayIioiTHsCYiIkpyDGsiIqIkx7AmIiJKcgxrIiKiJMewJiIiSnIM\nayIioiTHsCYiIkpyDGsiIqIkx7AmIiJKcgzrOPvTmT58908XEj0MIiJKIQzrOPvZu614/O1mTHj8\niR4KERGlCIZ1HLl9fhzvtCEgAud67YkeDhERpQiGdRyd7hqFxxcAAJzpHk3waIiIKFUwrOPoUNsI\nACAvW4HTDGsiIoqQItEDyCSHWkdQY9LAos/lzJqIiCLGmXWc+AMijrZZsaWyAHWlWlzqH2ORGRER\nRYRhHScX+uwYc/uwdZkedaVaFpkREVHEGNZxcqg1uF+9dZkBdRYtABaZERFRZLhnHSeH20ZQqstF\nqS4XoiiiUKNkkRkREUWEM+s4EEURh1qt2FKpBwAIgoDaUi1n1kREFBGGdRy0DY9jyOHG1mWG8GN1\npVo0DjhYZEZERAtiWMfBodZhAMDWZfrwY7WlWvgDIovMiIhoQQzrODjUakWBWolqoyb8WF0pi8yI\niCgykoW13+/HXXfdhc9+9rNSvWXaONw2gi2VegiCEH6sWJvDIjMiIoqIZGH9i1/8AtXV1VK9Xdro\nG3WhY2QcWyoLpj3OIjMiIoqUJGHd19eHffv24d5775Xi7dJKqB/41mUFM74WKjJzeVlkRkREc5Mk\nrL/97W/jkUcegUzGLfArHW4dgVopx5ri/BlfY5EZERFFIuamKG+99RYKCgpQW1uLgwcPzvqchoYG\nNDQ0THvM4/HE+tEp4VDrCOor9FDIZ/4iEyoyO901ivpy/YyvExERARKE9bFjx/Dmm29i//79cLvd\ncDgc+PKXv4xHH300/Jzdu3dj9+7d017X1dWFHTt2xPrxSc027sHF/jF8aF3xrF8v1ubAoGaRGRER\nzS/msP7Sl76EL33pSwCAgwcP4umnn54W1JnsSJsVwOz71UCwyKzOwiIzIiKaHzeZl9ChthEo5TKs\nL9PN+RwWmRER0UIkvchj27Zt2LZtm5RvmdIOtY5gnUWLnCz5nM+ZWmTGfWsiIpoNZ9ZLZNzjw5nu\nUWyZYwk8hJ3MiIhoIQzrJXKiwwZfQJxzvzokVGR2qothTYkRCIj46BMH8JsjnYkeChHNgWG9RA62\njkAQgE0V8y9ts5MZJdqp7lG83zKMXx1mWBMlK4b1EjncNoLV5nzk52Qt+FwWmVEivXGuHwBwvMMK\nqzMz+h8QpRqG9RLw+AI41mFdcAk8pM7CTmaUOK+f60ehJhsBEdjfOJjo4RDRLBjWS+BMzyhc3kDk\nYc0iM0qQjuFxXOwfw2c/WAWDWol9FxnWRMlI0qNbFHS4NXh5x5U3bc0l3MmMRWYUZ6+fDy6B37LW\njPO9duy7NAh/QIRcJizwSiKKJ86sl8DhthFUFaphzMuO6PmhIjO2HaV4e/1cH1YW5aHcoML1q0wY\ncXpwqsuW6GER0RUY1hILBEQcbrNGPKsOYZEZxZtt3IPDbVbsXGMCAHxweSFkAvDWhYEEj4yIrsSw\nltilgTGMTngXbIZyJV6XSfH21sUB+AMiblpjBgDoVErUl+vxFvetiZIOw1piof3qbVGG9ToLi8wo\nvl4/1w9TXjbWTRY4AsANq0w43T2KgTFXAkdGRFdiWEvsYOsIzPk5sOhzo3odi8wontw+P96+OIgd\nq4sgm1JMdv1KIwDgbc6uiZIKw1pixzts2FyphyBEV03LIjOKp/ebh+H0+HHzmqJpj68pzocpL5tH\nuIiSDMNaQg63D922Cawuzl/U61lkRvHy+rl+qJRybK82THtcEATcsNKE/Y2D8PoDCRodEV2JYS2h\n5gEHAKDaqFnU61lkRvEgiiLeON+PDy43znp96w2rjBhz+XCs3ZqA0RHRbBjWEmqaDOsa0+LCuo5F\nZhQHp7tH0W93Y+cVS+Ah19QUQiETWBVOlEQY1hJqGnRAIRNQYVAt6vUl2hwUsMiMltgb5/ohE4Ab\nV5lm/XpeTha2VBZg30WetyZKFgxrCTUNOFBZqEaWfHHfVkEQUMciM1pir53rx+bKAhSolXM+54ZV\nRlzoG0OPbSKOIyOiuTCsJdQ84EDNIverQ1hkRkupc2QcF/rGcNPq2ZfAQ25YGZx1syqcKDkwrCXi\n8QXQPjK+6P3qkLUl+fAHRFzqH5NoZESXvTF5ccdNc+xXh9SYNCjV5eItLoUTJQWGtUTahp3wB8SY\nw3qZUQ0AaB8el2JYRNO8fq4fy00aVBaq532eIAi4YZUR7zYNwe3jKg9RojGsJRJrJXhIeUGwOK19\n2BnzmIimGh334mDryJxV4Fe6YaUJ4x4/DrfyCBdRojGsJRIK6yrj/DOWhaiUCpjysjN+Zh0IiHhi\nfzM6RzL7+yClfZdCF3dEFtbbqw1QKmRcCidKAgxriTQNOFCqy4VKqYj5vSoN6owP6/dbhvHtVy/g\nF++3JXooaeO1c/0o1GRjg0UX0fNVSgWuqjIwrImSAMNaIk0DjpiXwEPKDSq0j2T2MvhzhzoAAAda\nRhI8kvTg8QXw9sVB7FxtmnZxx0JuWGlEy6CT2zJECcawlkAgIKJlSLqwrjSo0G93Y9zjk+T9Us2Q\nw43XzvZBk63A2Z5RjE54Ez2klHegZRgOty/iJfAQHuEiSg4Mawl02ybg8gYknFkH9707MnS/9oWj\nXfD6Rfw/t61CQASOtHF2HavXz/UjN0uOa2oKo3pdZaEaVYVqLoUTJRjDWgJSVYKHVBpCFeGZF9aB\ngIjnD3Vga2UB7ttkgVIhw4GW4UQPK6WFLu74wPLCWS/uWMj1K014v3kYEx4e4SJKlNiroehyWMfY\nvSykoiB01jrz9gnfbxlG+/A4vrBzBXKy5NhQpsPBVs6sI+X2+dE2NI7GgTE09jvQNODApf4x9I66\n8IWbVizqPW9YZcTT77biQMswbpijnzgRLS2GtQSaBhwwqJXQz9NrORpaVRZ0qqyMnFk/d7ADOlUW\nbq01AwCuqjLgR282wu7yIj8nK8GjSz69oxP405k+HGgZRuOAA+3D4/AHRACAIATP7S83aXBrrRl3\nrCtZ1GdsXVaA3Cw53ro4wLAmShCGtQSaBh2olmgJPKQiA49vDY658T9n+/DJqyvDy7VXVRXgP/cG\n961vXBVdcVS66hgex54zvdhzpg8nOm0AgAqDCqvMedhVW4zlRRrUmDSoNmoWtex9pWyFHNurDXiv\nmdsRRInCsI6RKIpoGnDg9nXFkr5vRYEKxzszq3PUC0e74AuI+OjW8vBj9eV6KOUyHGjJ7LBuGnDg\nT2d68erpPpzrtQMAakvz8cgtK3FrrRnVEm3BzGWlOQ/vNA7C5w9Aschb5Yho8RjWMRpyeDA64ZVs\nvzqk0qDCy6d64PEFoFSk/w/HQEDErw53YOuygmmFejlZcmwo12V0kdlXf3sKvzrcCQCoL9fhH3et\nxq21ZpQVLO7e9MVYVqiG1y+i0zqBZQv0FSci6TGsYyR1JXhIuUGNgBg8FpYJPxxDhWVfnKUI6qpl\nBfjRW00Yc3mRl2H71hMeP1481o3b64rxvz+0BmZtTkLGUT3ZRrd1yJERfx+Jkk36T9mWWNPg0oR1\n6PhWW4ZUhD93sAN6VRZuWWue8bWrqgyT560za1sAAI62W+HxB3DfZkvCghoAqgqDf79bBjPj7yNR\nsmFYx6h5wAG1Uo5iiX+Qlk+GdUcGFJmFCsvuqbfMWhC1MbxvnXlL4e82D0EhE7ClsiCh49CrldCr\nstDMsCZKCIZ1jJoGgpXgghB5v+VIGDXZUCnlGTGzDhWW/eWUwrKpcpXB89bJGtaiKC7Ze7/XPIwN\nZTqosxO/Y7WsUI2WyZUkIoovhnWMmgYckheXAYAgCCgvUKX98a1QYdm2KwrLrnRVVQFOd49izJU8\nfcLP9djx4R/9Gff95P0lCWy7y4vTXTZcHWWL0KVSZdSgdSj9f3kkSkYM6xiMubzos7skP2MdErwq\nM71/OL7XHCws+6tts8+qQ8L71u2L27cWRRHjHh8Gx9xoH3bifK8dR9tHcKh1BB5fIKr38vgC+MHr\nl/DhH/0Z53vtONJuxZlu+6LGNZ9DLSMIiMDV1QbJ33sxqoxqDIy5k+oXJqJMkfi1tRQW2r+Turgs\npMKgwpsXBuAPiJBHca1hKnn+0NyFZVNtLNcjSy4EW16ujKyL1p/O9OGf/nAWdpcXE14/5pr8FuVn\n4xPbK/FXW8sX7EJ3stOGr7xwChf7x3D3xlI8vHMFdv7723jhaCfqLNqIxhWpd5uHkK2QYWN5ZPdP\nL7WqwlBFuBPrIrwTm4ikwbCOwVId2wqpMKjh8QfQZ3ehVJe7JJ+RSKHCsgemdCyby+V968j6hLt9\nfvzzH89ClS3H7euKoVbKocpWQK2UI1epCP953O3Dc4c68G//cxH/9WYj7q634K+vqUSNKW/a+7m8\nfvz765fw5DstMOXl4OkHNoebtNyy1oyXTvbg67evRrYi9o5hIe83D2NLZYGk7xmLqsntHoY1Ufwx\nrGPQNOBAllxAxRI1pwjfvjXkTMuwDncsW2AJPOSqKgN+vK85ovPWvz7cid5RF5791FZ8YLlx3ufe\nVleMS/1jePrPrXjhaBeeO9iB61YY8dfXLsMHlxfiSLsVX3nhFFqHnPjo1jJ8bdfqaX3K791kwR9P\n9uCtCwO4tVaaTnZDDjcu9I3hkVsW1897KVQYVBAEsCKcKAG4Zx2DpgEHKg3qJWu/GDq+1Z6G91qH\nrsLctqwg4laZV1UZ4A+IC+5bu31+/N+3mrG5Qo9rIyzOWlGUh+/csw7vf/VGfOmmFTjXa8cnnz6E\nD/7bW/iLx9+H1x/Af39qG/717nUzLhS5tqYQRfnZeOFoV0SfFYlQ5Xuy7FcDwR7hFn0uK8KJEoAz\n6xg0Dzqwypy38BMXqVibC6VclrLHt1xeP3pHXegdnUCvLfh/e0Zd6Bt1ocs6jo6RcXzp5sivbayf\n3Lc+2DIy7771rw93os/uwqP3rY/6SJ1Bk41/2LEcn7muCq+c6sWvj3TiptVmfOnmFXMen5LLBHxk\nowVPvtOCwTE3jHnZUX3mbN5rHkZetgJ1pdLug8eqqpAV4USJwLBeJLfPj/ZhJz4k8QUeU8llAiwF\nuSnZGOW/9jbi+69fmvF4gVoJc34OygtUuLW2GLvqIv/+5SrlWG+Z/7y1y3t5Vn1NzeJnpdkKOe6u\nt+DuektEz793Uyl+8nYzXjrRjU9/oGrRnxvyXtMQtlUVJN2lGVVGNQ63jUAURcl7CxDR3BjWi9Q2\nNI6AuHTFZSGVBjXaUjCsXz3Th1XmPPzNB6pQrMtBsTYXxdqcmK9svKrKgMfebobD7YNmlpnur48E\nZ9Xf/4voZ9WxqDHlYX2ZDi8c7cKnrl0W02d32ybQNjyOj2+vlG6AEqkyajDu8aPP7kKxNv3qKIiS\nVXL92p5CQpXgS301YXmBCh3DziXtkiW1MZcXF/vsuGWtGfdssuDq6kIsK1RLcrdyeN+6bWZVeHBW\n3YQtlfqE7PXeu8mCC31jONsT25nr95uTb786JHR8iz3CieKLYb1ITQMOCMLSh3WlQQWnx48hh2dJ\nP0dKJzptCIjA5kq95O9dX6GbPG89M6wbDnei3+7GF3auSMgS7YfXlUApl8VcaPZe8xAK1EqsLFq6\neojFqpq8fauF+9ZEccWwXqSmQQdKdbnIVS7tGdgKQ/CHYyp1MjvSZoVMADaUSX8WV6VUYL1Fh4Ot\n0/etXV4/fryvCVsrC7A9QTNSrSoLN60pwh9O9kTdFS1EFEW83zyM7VUGyJKwEY45Pwe5WXJWhBPF\nWcxh3dvbi49//OO47bbbcPvtt+PnP/+5FONKek0DjiXfrwaCZ1sBpFSP8GMdVqw05y/Z3dPbqgpw\nqmsUTrcv/NivDnWg3+7GwzctT2jh072bLBhxevDWxYFFvb51yIneUReujqE4bikJgjB5oUfq/PJI\nlA5iDmu5XI6vfvWr2LNnDxoaGvDcc8+hqalJirElLX9ARMvg0lzgcSWLXgWZkDoza39AxPEOGzZV\nLF2HqyvPWwdn1c3YuqwA26sSG3IfWF4IY97iz1y/F96vTo7LO2ZTZVTz+BZRnMUc1iaTCWvXrgUA\naDQaVFVVob+/P+aBJbNu6wTcvkBcZtZKhQwlutyUaYxysW8MDrcPmyuW7v7lTRV6KGRC+AjX84c6\nMDCWuL3qqRRyGT6ysRRvXRjAsMMd9evfbx5GsTYn3L0uGVUZNeiyjsPt8yd6KEQZQ9I9666uLpw/\nfx7r16+X8m2TTtPgGIClP7YVkkrHt462Bwu/NlVIX1wWolIqsH7yfmuX14/H9jVj27LE7VVf6Z56\nC3wBES+d6InqdYGAiPdbhrG92pDwXzrmU1WoRkBMra0ZolQn2Tlrp9OJhx56CF//+teh0UwPsYaG\nBjQ0NEx7zONJnermKy31BR5XKjeosOd0b1w+K1ZH260w5WXDol/aM7hXVRXg8bdb8NM/t2JgzI3/\n+MuNS/p50VhpzsM6ixYvHO3CX1+7LOLXXewfw4jTk9RL4MCUivBBJ1YkYcU6UTqSJKy9Xi8eeugh\n3HHHHbj55ptnfH337t3YvXv3tMe6urqwY8cOKT4+7poGHCjUKKFTzX+dolQqDSpYx70YnfBCm7s0\nRVtSOdJuxaYK/ZLPDK+qMuD/vtWMH7x+CVdVJc+sOuSeegv+zx/O4lyPHWtK8iN6zbtNQwCS83z1\nVMtCZ62HWBFOFC8xL4OLooh//Md/RFVVFR588EEpxpT0mgYcS36+eqryguAPx2RvO9pvd6HLOrGk\nS+AhoX1rf0DEwzsj7y8eLx9eX4IsuYDfHou80Oz95mEsK1SjJMlvWMvLyYIpL5sV4URxFHNYHz16\nFC+99BIOHDiAO++8E3feeSfefvttKcaWlERRRPOgM25L4ABQWRgsNkr2Cz2OTlZnxyOsVUoFtlcb\ncN0KI65KcAX4bPRqJXauLsLvj3fD61/4zLXPH8DB1pGkWyGYS/D4FmfWRPES8zL45s2bcfHiRSnG\nkhKGHB6MTnjjGtblk/dldyR5RfjRdiuyFTKsLYnPTVFPP7AlLp+zWPfUW7DnTB/evjiInWuK5n3u\n6e5RONy+pF8CD6kyavCnM6lRR0GUDtjBLErxLi4DgrNIU1422pL8bOuRdivWW3RQKuLz1ypLLkNW\nkt1KNdV1K40o1CgjOnMdOl+djKsEs6k2qmEd98LqTN1CUaJUkrw/6ZJU02D8wxoIdjJL5rPWLq8f\nZ7tHsWkJ+oGnqiy5DHdtKMXeC/146UT3vJexvNc8hFXmPBRqYr8LOx5YZEYUXwzrKDUPOKDJVsCc\nnxPXz60wqJO6i9nJTht8ARGbyhnWU/3NB6uwujgf/+tXJ/DRJw+gsX9sxnNcXj+OtFlTZr8aCC6D\nA7x9iyheGNZRClaCq+PetKLSoEK/3Y0JT3J2jTraESwuq49DcVkqKcrPwe/+/hp86yO1ON87htv+\n4x18+9XzcEzpa368wwa3L4Brkvx89VRl+lwoZAJv3yKKE4Z1lJoGHKiO8xI4AJRP3r6VrEVmR9us\nqDKqUaCOz9nzVCKXCbh/WwXe+vL1uKfegif2t2Dn99/Gy6d6Jm/ZGoJMALZWLV2LVqkp5DKUG1Ss\nCCeKE4Z1FMZcXvTZXXE9Yx0S6hWdjMe3RFHE0Q4rNnNWPa8CtRLfvXcdXvz7q2HQKPH5547j4z89\nhP852486iw75S3RL2VKpKtTwQg+iOGFYR6F5cn8u3sVlAFCRxI1RmgedsI1743K+Oh3Ul+vxh89f\ni2/euRYnu2y42D+WMke2pqo2BnvW+wNzF84RkTQk6w2eCULFQYnoh6xVZUGnykrKmfWxcDOU1FnG\nTTS5TMAntldiV10xnjvYgd1byhI9pKgtK1TD4wug2zqB8iS+JYwoHXBmHYXGAQeUChnKlviSirlU\nFKiScs/6SPsIdKosVE0e56HIFWqy8dCO5SiK8+kCKYQqwpt5fItoyTGso9DYP4aqQjUUCWrEUWFQ\nJ+XM+mi7FZvK9ZDJkvdaR5Je6PatVh7fIlpyDOsoNA44sDyBVwJWGFTotk7A41u413S8WJ0eNA86\neWQrAxnUSuTnKNgYhSgOGNYRGvf40GWdwPIEFJeFVBjUCIhAt20iYWO40rHJ89WsBM88giBgmVEj\nWWOUXx5sx+vn+iV5L6J0w7COUPNA8AfSiqLEhXXo+FYydTI70m6FQiZgnUWX6KFQAlQXqiU7vvWD\n1y7hyf0tkrwXUbphWEeocSBYCV5jStwyeHk4rJOnyOxouxVrS/KRq5QneiiUAFVGNXpHXRj3+BZ+\n8jysTg+GnR6c77PP20OdKFMxrCPUOOBAllxARQKPqBg12VAp5UlTZObxBXCy08YjWxlsWaE0PcJD\nF+SMuXzoHXXFPC6idMOwjlBjvwPLCtUJvZJREASUF6iSpjHKuV473L4Am6FksHBFeIxL4c0Dl4vU\nLvbNvOyEKNMxrCPUNDCG5QlcAg+pTKLjW0faRgAAm3ktZsYKX5UZ68x6wAHl5C/CFxjWRDOwg1kE\nXF4/OkbGceeG0kQPBRUGFd68MAB/QIT8inPNXn8A+y8N4sVj3RgYc8GszYU5PxtmbS6KtTkoys9B\nsTYHprxsSc6KH+uwolSXm5INPUgaOVlylOpyYz6+1TToQI1JA9u4Bxf77BKNjih9MKwj0DzoQEAE\nliewEjykwqCGxx9An92FUl2wk9rFvjG8cLQTvzvegyGHGwa1EtUmDU512fDaqAvuK85lywSgVJ+L\na6oLcd0KI66uKYQ2N7pLJERRxNF2K66qSr2e1iStKqM65pl186ADG8r0cLi8nFkTzYJhHYGmyf20\nZFgGDxW4ney04Y1z/XjhaBdOd49CIROwY7UJ924qw/UrjeG9dVEUYRsP3hbWN+pC76gLfXYXLvbZ\n8cqpXvzqcCfkMgEby3T44AojrlthRF2pdsFuZF3WCfTb3dyvJlQVqvHbY90QRXFR97y7vH50WSdw\nb30ZJrx+/LlpCF5/IKH1IUTJhmEdgcZ+B+QyAZWFib+sIBTWf//LYwCAtSX5+D93rMGH15fAoMme\n8XxBEKBXK6FXK7G6OH/a17z+AE502vD2xUHsbxzED16/hB+8fgl6VRauXW7E1mUF2FSux0pz3owl\n91AzFIY1VRk1cLh9GBxzw7SILZHmQQdEMXibndcfgNcvomXQiZXmxP9yTJQsGNYRaBwYQ4VBhWxF\n4s8Sl2hzcffGUuhUSty7yYI1JfkLv2gOWXIZtlQWYEtlAb58y0oMO9z4c9MQ3r44iHeahvDHkz0A\nAE22AhvLddhYrsemCj02lutwpM0KtVKOlQlsv0rJIVRk1jzoXFRYh1auakwaBCbPWF/oszOsiaZg\nWEegccCR0DajU8lkAn6we8OSvLdBk407N5Tizg2lEEURXdYJHG23hv/3ozcbERABQQCyZDJsXVaQ\nsEtNKHlMPb61fRH3cjcPOiETgMpCFQQIUMgEHt8iugLDegFunx/tw+PYVVuc6KHElSAIKCtQoaxA\nhbs2BqvgHW4fTnbacLTdilNdNty3OfXuYCbplWhzka2QoWVwcRXhzQMOlBdcXrmqNmoY1kRXYFgv\noG1oHP6AmBSV4ImmyVbgmppCXFNTmOihUBKRyQQsK1SjZZGNUZoGgse2Qlaa83C03SrV8IjSAtcw\nFxDqCZ4MleBEyarKuLgLPXz+AFqHnKg2Tg/rbtsE7C6vlEMkSmkM6wU09jsgEy7vyxHRTFWFGnSM\njEd913qXdQIefwDVU2bWqyYLyy5xKZwojGG9gKbJ/bScrMRXghMlq+VFGvgDYnglKlJTK8FDQlXg\nbI5CdBnDegGX+scSei0mUSqoLw+etz/WYYvqdaHbtqYug5fqcpGXrWCRGdEUDOt5eCf301hcRjQ/\niz4XhZpsHIuyMKx5wAFjXva0dreCIGClOQ8X2COcKIxhPY/2YSd8ATFpzlgTJStBELCpQhfubBep\npkEHaowz/30Fw3oM4mSTFKJMx7CeR2N/8vQEJ0p29eV6tA+PY8jhjuj5oijOOLYVssqchzGXD72j\nLqmHSZSSGNbzaJwsfqk2sRKcaCGhPvGRLoUPjrkx5vKhepaTFivNwTa63LcmCmJYz6NxwAGLPhcq\nJXvHEC2ktlSLLLkQcZFZqLhstgLOUM95VoQTBTGs59HYP8b9aqII5WTJsbZEG/HMunmWY1shWlUW\nSrQ5uMgiMyIADOs5+fwBtAw5sYK3ShFFrL5cj5NdNnj9CzdHaRpwQJOtQFH+zKtdgctFZkTEsJ5T\np3UCHl9g1t/6iWh2myr0cPsCONez8Iy4adCBaqMagiDM+vWV5nw0DzoiCn6idMewnkNj/2RPcM6s\niSJWX6EDgIiOcDUPOKe1Gb3SKnMevH4RLYOLuyCEKJ0wrOfQOM9+GhHNrlibixJtzoK3Zo25vOiz\nu+b993W57Sj3rYkY1nNo7B9DiTYHmmxWghNFY2OFHscXqAhvnpwtV8/SECWk2qiBQibw+BYRGNZz\nahxwoIZL4ERRqy/Xo9s2gb4rSCMBAAAgAElEQVR5GprMVwkeolTIUG3UsMiMCAzrWfkDwc5KPLZF\nFL1wc5R59q2bBh3IkguoKFDN+14rzXmcWROBYT2rbusE3L4Aw5poEdYU5yNbIZt337ppwIFKgxoK\n+fw/glaa89Btm4Dd5ZV6mEQphWE9i9CdvLxtiyh6SoUM6yzaeWfWzQOOeferQ1ZNFpld4uyaMhzD\nehbhSnAj96yJFqO+XI8z3aNwef0zvubxBdA+Mh7RSYvLFeEMa8psDOtZNPY7YMrLhlaVtfCTiWiG\n+go9vH4RZ3tGZ3ytfdgJf0CMKKxLdbnIy1Zw35oyHsN6Fk0DY1wCJ4pBfXmwyGy2feum0G12ESyD\nC4Iw2XaUZ60pszGsryCKIhoHHLzDmigGxrxslBeocKx95nnrpiivng31CBdFUdIxEqUSScJ6//79\nuOWWW3DTTTfhiSeekOItl8TgmBv99vkvs++2TWDc4+fMmihG9eU6HO2wzgjZ5kEHSnWRXz27ypyH\nMZcPvfOc2yZKdzGHtd/vxze/+U089dRTeOWVV/Dyyy+jqalJirFJqmXQgdv+4x3s/P7b+HPj0JzP\nCxWXcWZNFJtNFXoMjrnRZZ2Y9njToGPenuBXWmnOBwDuW1NGizmsT506hYqKCpSVlUGpVOL222/H\n3r17pRibZDpHxnH/UwchiiKKdTl44GeH8OsjnbM+t6k/FNacWRPFYmP5zOYogYAYvMDDGNkSOACs\nLGJFOFHMYd3f3w+z2Rz+c1FREfr7+2N9W8n02Cbw0ScPYNzjx7Of2oYX/u5qbK824CsvnML3X7s4\nY4mucWAMhRol9GplgkZMlB5WmfOgUspxbEqRWa/dhQmvP6oLcrSqLJRoc1hkRhkt5lsqZiv6uPJ+\n2oaGBjQ0NEx7zOPxxPrRCxqwu3D/UwcxOu7FL/9mG9aUBJfTnn5gC/7f353Bf73ZhM6RcXz33nXI\nVsgBTPYE56yaKGYKuQzrLTocm3KpR1O4h0F0/8bYdpQyXcxhbTab0dfXF/5zf38/TCbTtOfs3r0b\nu3fvnvZYV1cXduzYEevHz2nY4cb9Tx1Ev92FZz+1FessuvDXsuQyfOeeOpQbVPi3/7mInlEXnvj4\nJmhzs9DU78BdG0uXbFxEmWRThR6Pvd2McY8PKqViSiV4tGGdjz83DcHrDyBrgRalROko5r/1dXV1\naGtrQ2dnJzweD1555RXceOONUoxt0UbHvfj4Tw+hY2QcP/3kFmyqKJjxHEEQ8LkbavAff7kBJzps\nuPux93C4zYoxt4+V4EQSqa/QwR8Qcaor2BylacABnSoLhii3mVaZ8+D1i2iZvFqTKNPEHNYKhQLf\n+MY38OlPfxq7du3CbbfdhuXLl0sxtkUZc3nxiZ8dQtOAA098YjO2Vxvmff6dG0rx35/ehhGnB/c/\ndQDA/Nf2EVHkNpZNb47SPOhAjVEzY6tsIZfbjnLfmjJTzMvgAHDdddfhuuuuk+KtYjLu8eGvnzmM\ns92jeOxjm3DdCmNEr9u6rAC//bur8eDPDqPLOo4VvMeaSBJ6tRJVRjWOT1aENw84cNOaoqjfp9qo\ngUImcN+aMpYkYZ0sHnr+BI62W/FfH62P+gdCtVGDP3z+GrQMOVGoyV6iERJlnk3leuy9MIARpwfD\nTk9EbUavpFTIUG3U8PgWZay0qtQw5WfjPz+6EbevK17U63UqZbinMRFJo75CjxGnB2+cDx7pXOw2\nEyvCKZOl1cz62x+pS/QQiOgKmyqCvwD/ZrIR0WLDekWRBn842QOn2wd1dlr96CJaUFrNrIko+dQY\nNcjLUeBwmxXZChlKdLmLe5/JkG8edEg5PKKUwLAmoiUlkwnh1qNVRg3ksugqwUNCYR06q02USRjW\nRLTk6suDTYliORZZYVBDIRMY1pSRGNZEtORC+9bRthmdKksuQ4VBxbCmjMSwJqIlt6lCjw8sL8SO\n1aaFnzyPGpMGTdyzpgzEkkoiWnIqpQLPfmpbzO9TY9LgjfMD8PgCUCo416DMwb/tRJQyakwa+AMi\n2ofZI5wyC8OaiFJGjTHYCpj71pRpGNZElDKqTWoADGvKPAxrIkoZKqUCpbpcFplRxmFYE1FKqTZp\nOLOmjMOwJqKUUmPUoHnQgUBATPRQiOKGYU1EKaXGpIHLG0C3bSLRQyGKG4Y1EaWUcI9w7ltTBmFY\nE1FKCd++xX1ryiAMayJKKQVqJQrUSl6VSRmFYU1EKafGyIpwyiwMayJKOdUmNcOaMgrDmohSTrVR\nA+u4F8MOd6KHQhQXDGsiSjnhinDOrilDMKyJKOXw+BZlGoY1EaWcEm0ucrPknFlTxmBYE1HKkckE\nFplRRmFYE1FKqjFq2BiFMgbDmohSUo1Jg55RF5xuX6KHQrTkGNZElJLCbUdZZEYZgGFNRCmJx7co\nkzCsiSglVRjUUMgEhjVlBIY1EaWkLLkMFQYVw5oyAsOaiFJWjUnDxiiUERjWRJSyakwatA+Pw+ML\nJHooREuKYU1EKavGpIE/IKJjxJnooRAtKYY1EaWsGmMeAFaEU/pjWBNRyqo2qQEwrCn9MayJKGWp\nlAqU6nIZ1pT2GNZElNKqWRFOGYBhTUQpLXihhxOBgJjooRAtGYY1EaW0GpMGE14/ekYnEj0USQzY\nXTjRaUv0MCjJMKyJKKWlW4/wR1+7iPufPACfn2fH6TKGNRGltHQL61Ndo3B6/Gge5NlxuoxhTUQp\nrUCtRIFamRZXZbp9/vAvHae7RxM8GkomDGsiSnk1Rk1azKwv9TngmyyUO93FfWu6jGFNRCmv2qRO\ni7A+2xOcTRdrczizpmkY1kSU8qqNGljHvRh2uBM9lJic6RmFJluBW2vNONdrZ5FZjB56/jge/tXx\nRA9DEgxrIkp56VJkdrbHjjUl+Vhn0cLlDbDILEaH20ZwoGUk0cOQRExh/d3vfhe33nor7rjjDnzu\nc5+D3W6XalxERBELh3UKF5n5AyIu9I5hbUk+6kp1AIBT3LdetAmPH72jLvTZXbC7vIkeTsxiCutr\nrrkGL7/8Mv74xz+isrISjz/+uFTjIiKKWIk2F7lZ8pSeWbcOOTDh9WNtiRZVhWqolXKc4b71orVP\nuTa1sT91/16ExBTW1157LRQKBQBgw4YN6Ovrk2RQRETRkMmElC8yO9sTXJlcW5IPmUzA2hIti8xi\n0DZ0OaybBsYSOBJpSLZn/dvf/hYf/OAHpXo7IqKo1Bg1aEnhPd4z3aNQKmThJf3aUi2LzGLQOjQO\nAFDKZbiUBjNrxUJPeOCBBzA0NDTj8Ycffhg7d+4EADz22GOQy+X48Ic/POt7NDQ0oKGhYdpjHo9n\nMeMlIppVjUmD35/ogdPtgzp7wR9tSedsjx2rzHnIkgfnUOssWjz9bgBNgw6sMucneHSpp23IiUJN\nNorys9GYwisuIQv+jX7mmWfm/frvfvc77Nu3D8888wwEQZj1Obt378bu3bunPdbV1YUdO3ZEPlIi\nonlMrQhfX6ZL8GiiI4oizvbYsavOHH6stlQLADjdNcqwXoTWISeWFapg0atwoGU40cOJWUzL4Pv3\n78eTTz6Jxx57DLm5uVKNiYgoamtLJsMtBfd5u20TGJ3wYs3kfwMAFpnFqHXYiUqDGjUmDXpHXRhL\n8YrwmML6X/7lX+B0OvHggw/izjvvxDe+8Q2pxkVEFBWLPhcGtTIlr5ecWlwWEioyO8WwjprD7cPg\nmBuVhWqsKMoDgJRfCo9pY+f111+XahxERDERBAEbynSpGdbdo5AJwOorlrvrLFr88mA7fP4AFHL2\nsIpUqBK8qlCN5aHtkX4H6sv1iRxWTPj/fSJKGxvKdGgedKRcE4yzPXZUGzXIVcqnPV5XGuxklsrN\nXhKhbTgY1pWFapQVqJCtkKExxY9vMayJKG2sL9NBFINFWankbI992hJ4yNQiM4pcaGZdaVBDLhNQ\nbdSk/PEthjURpY1QFXgqLYUPO9zos7vCBXJThYrMUrFoLpFah8Zhzs8Jr1QsL0r9K1QZ1kSUNrS5\nWagyqlMqrGcrLguRyQSsLWUns2i1DjlQWagK/3lFUR66bRNwuH0JHFVsGNZElFY2WIJFZqIoJnoo\nETkzeYf1mlnCGgjuW5/rYSezaLQNj2NZoTr853S4lY1hTURpZUO5DoNjbvSMuhI9lIic7bHDos+F\nTqWc9et1pVq4fYGUP3oUL6MTXow4Pag0XA7r0PGtS/3RFZmJooh3m4bg8SX+FyWGNRGllQ2T+9Yn\nU2Qp/NwcxWUhdZbUbfaSCOHisikz6/ICFZQKWdQz60OtI7j/qYPh1Y9EYlgTUVpZZc6HUiFLiX1r\nh9uH1iHnrMVlIcsMamiyFexkFqHQsa2qKWEdqghvjHJm/V7zMGQCwme1E4lhTURpRamQYW1JPk50\nJH9Yn++du7gsRCYTsKYkP+KZtd3lxVXf3osn97dIMsZU0zrkhCAAZQWqaY8vN0V/fOtAyzBqS7XI\ny8mScoiLwrAmorSzoUyH092jSV+UFZotzzezBqIrMvv5u23os7vw729cwoA9NfbtpdQ65ESJNhc5\nWdMbzKwo0qDbNgFnhBXhLq8fxzttuKrKsBTDjBrDmojSzoYyHSa8/qRvhHG2x45CjRJF+dnzPm+d\nJbIiM4fbh5++24r1ZTp4/QF8/7VLUg43JbQNOadVgofUmIJFZpHuW5/otMHjC2DbsgJJx7dYDGsi\nSjsbUqQ5ytkeO9aUaOe8Xjgk3MlsgaXw/z7QDtu4F//84bX4xPZK/PpoJ85NnuPOBKIoonXIOe2M\ndcjyouC+c6RV9QdagvvVmysZ1kRES6K8QAW9KiupK8LdPj8a+8fm3a8OCRWZzdd2dMLjx1PvtOAD\nywuxoUyHh25cDm1uFv6/V86lzJnzWFnHvbC7fNOObYVUFKiglMsiLjI70DKMtSVaaHMTv18NMKyJ\nKA0JgoD1SX4DV2O/A76AGFFYR1Jk9vyhDgw5PPiHG5cDALSqLPyvHcvxXvMw3rwwINm4k1nr5LGt\n2ZbBFXIZqozqiGbWLq8fxzpsSbMEDjCsiShNbSjT4dLAWNK2mIy0uCxkXakW53tnLzJzef14fH8z\nti0rwNYpAfOxqypQVajGt149D2+SF9tJoW2esAaA5UV5ETVGOTm5X50sxWUAw5qI0lSy38B1tscO\nTbYCFQUz91dnUzdPkdlvjnah3+7GQzuWT3s8Sy7D13atRsugE88d7JBk3MmsdcgJuUyYcWwrZLlJ\ngy7rBMY98/8Cd6BlBIIAbOHMmohoaW2wxL/ITBRF7Dndi7EI7tM+2zOKNcX5kMnmLy4Lmeu6TI8v\ngJ/sa0Z9uQ5XV8+cCe5cbcL2KgN++MYljI6n1j3f0WoddsKiz0WWfPZoWzFZZNY84Jz3fQ60DGNN\ncX7S7FcDDGsiSlN6tRKVBlVci8zO9tjxd788hs89dxz+wNxFXf6AiPO9Y3Ne3jGbcJHZFfvWvzve\nhW7bBP5hx/JZq8oFQcA/3r4atgkvfvRWY+T/MSmobcg5a3FZSOj41nxL4W6fH8c6rEm1BA4wrIko\njcW7yOxYhxUAsP/SIL6z5/ycz2sdcmLC64+ouCxEJhOw9ooiM58/gB/va0ZdqRbXrzDO+draUi3u\nrbfgmffa0D48/6wyVYmiOOcZ65BKgwpZcmHeIrOTnaNwJ9l+NcCwJqI0tqFMhz67C31xuoHreIcN\nprxsfGJ7BZ58pxW/Pdo16/PO9kRXXBZSV6rFuV57uFjsj6d60D48js/fWLPgWe0v37ISWXIZvrPn\nQlSfmSoGHW44PX5UGuauAVDIZagqnL9H+IGWYQgCsDVJzleHMKyJKG3FuznK8Q4rNpbr8L8/tAbb\nqwz42u9O4/jkbHuqsz12KOWycKOOSNVZtPD4Amjsd8AfEPGjN5uwypyHm1YXLfjaovwc/O111dhz\npg+HWkei+txU0DY0DmD6bVuzqSnSzDuzPtg6jNXmfGhVybNfDTCsiSiNrS7OR5ZciEtYjzg9aBse\nx8ZyPbLkMvz4/noU5Wfjs88enTGzP9szipXmvDkLoeZSN1lkdqZ7FHvO9KJ50InP31gTcZHa33yg\nCub8HPzLy+cQmGdPPRUtdGwrZIUpD53WcUx4/DO+5vb5cbQ9+farAYY1EaWxnCw51hTn40TnzNmt\n1EKfsXFyNq9XK/HUJ7bA6fbhs88egcsbDAdRFHF2gTus51I5WWR2ssuGH73ZhCqjGrfVFkf8+lyl\nHF+5dSVOd4/i9ye6o/78ZNYy5ESWXECpLnfe5y0v0kAUgebBmbPrU12jcHkD2FaVXEvgAMOaiNLc\nhjIdTneNzludLYUTHTbIZQLqLJf3oVea8/DvuzfgZNcovvbiaYiiiJ5RF2zj3kWFdajI7MVj3bjQ\nN4bP31ADeYSz6pC7NpRilTkPzx5oj/rzk1nbkBNlBSooFlitCB3fmq0i/ODkfnUydS4LYVgTUVpb\nX6aD0+OP+LalxTreacMqcx5USsW0x29ea8YXb1qB3x3vxpPvtIQ7l62JsrgspK5UiwmvHxUGFT68\nviTq18tkAjaU6dA5Mr6oz09WbcNOLJvn2FZIhUE9Z0X4gZYRrDLnQ6dSLsUQY8KwJqK0drnIbOmW\nwgMBESc6bOHPutI/3FiD2+uK8Z09F/Czd1shCMDq4rxFfda6yc/4++urF5xFzqVUl4shhye8NJ/q\nAgERbcPOBYvLgGBXt2WFajRecX2qxxfAkfaRpJxVAwxrIkpzywrVyM9R4ETn0rUdbR50YMztw8Zy\n/axfFwQB/3bfOqwy5+NAywiqjZoZM/BI3brWjB/91Ubcu6ls0eO1FAT3dbusE4t+j2TSP+aCyxuI\nKKwBYLkpD40D05fBT3fb4PIm3/nqEIY1EaW1eNzAdbwj+N4by2efWQOASqnAE5/YhEKNEpvmCPVI\nKBUyfGhdSdR71VOV6oJnkbtt6RHW4du2IlgGB4JFZh0j49NWFg60BI+zcWZNRJQgG8t0uNhnX/AC\nh8U63mmFNjdrwbCw6FXY+8Xr8c93rl2ScUTKog/NrNNj3zoU1pWFkV2KstyUB1HEtDqGAy3DWGXO\ng16dfPvVAMOaiDLAhnIdAiJwptu+JO9/fHK/OpLzzlpVFnKy5EsyjkgV5edAIRPQnSbL4G1DTigV\nMpRo5z+2FRKqCA+FtdcfwJG25DxfHcKwJqK0t96ydEVmDrcPF/vH5l0CTzZymYBiXU7a7Fm3Do2j\n0qCKuDlMhUENhUwIH9861TWKCa8fVyXh+eoQhjURpT2DJhtlBblLsm99qtMGUcScxWXJqlSXmzZ7\n1m3D89+2dSWlQobKQnX4+NaBlmEAwNZlnFkTESXUhjI9Ti5BRfjxyV8AQvdnpwqLXpUWe9b+gIiO\n4fEF24xeaUWRJrwMfrB1BCuL8lCQpPvVAMOaiDLEeosW3bYJDIxJewPX8Q4rqo3qpLv4YSGlulwM\njLnh9qX2Wese2wQ8/siPbYXUmPLQPuyEw+3DkbaRpF4CBxjWRJQhQnvKJzqkWwoXRRHHO2wptwQO\nBCvCRRHotcXn+tClEq4Ej2IZHAjOrAMi8NKJbox7/NiWxMVlAMOaiDLE2hItsuQCDrdJdz1k58gE\nhp2elCouCymdPL6V6vvWbcOR3bZ1peWmYAe5Z98P9kjfmqTnq0MY1kSUEXKy5LimphB/OtsHUZTm\nUo/j4Zu2Um9mXaYPnklO9X3r1iEncrPkKMrPjup1ywrVkMsEXOgbw4oiDQo10b0+3hjWRJQxdtUW\no3NkAmd7pDlvfbzDBpVSHj63m0rM2hzIBKT8Weu2oWBPcEGIrqObUiFDpSH4C8u2JK4CD2FYE1HG\nuGlNEeQyAa+e7pXk/Y53WLHOol30hRqJlCWXwZyf+met24bHsSzCzmVXWlEUXApP5mYoIan3N4yI\naJH0aiWurjbg1dO9MS+Fu7x+nO2xp2RxWYhFr0JXCu9Z+/wBdI6MR11cFrLKnA+ZkPz71QDDmogy\nzG21xWgbHseFvrGFnzyPsz2j8AXEOa/FTAWl+tyUXgbvsk7AFxCjPrYV8uC1lfj1Z7fDmJfc+9UA\nw5qIMszNa4sgE4A9MS6Fh2/aSuGwtuhz0Wd3wecPJHooixK+bWuRYZ2fk4XNlck/qwYY1kSUYQo1\n2di2zIBXz/TF9D7HO20o1eXClJ8j0cjir1SXC39ARO9oap61XuwZ61TEsCaijLOrzoymAQca+xe/\nFH6iw5aS56unsuhT+17rtmEnNNkKFGqSt02oVBjWRJRxbllrhiAAr55e3Oy63+5Ct20ipYvLgMuN\nUVK1Irx1yInKQlXUx7ZSkSLRAyAiijdTfg62VBRgz5le/K+dy6N+fXi/OsVn1iW64BJ+MhaZ9dtd\n+P5rF6FSKqBXKVGgzoJerURB6H8qJVqHnCn/C1OkGNZElJFuqzPjn/94Ds2DDlQbo2tqcrzTCqVc\nhrUl+Us0uvjIVshhystOyi5mP3yjEb891g21Ug67yzfn8+6ut8RxVInDsCaijHRrbTCs/3SmD5+7\noSaq1x7vsGFNST6yFfIlGl38WPTJd6917+gEXjjaib/aWo5/uasWXn8A1nEPrE4vRpweWMc9GHF6\nMOby4e760kQPNy4k2bP+6U9/ipUrV2JkRLoG+URES6lYm4v6cl3U3cx8/gBOdaV+cVlIqV6VdHvW\nj7/dAlEEPntdFYBgtzVTXg5WmvOwvdqAXXXF+NhVFfi766tRlMLV+NGIOax7e3vx3nvvoaSkRIrx\nEBHFza66YpztsaN98uamSFzoG4PLG0ibvVKLPhe9oxPwB6S53CRWg2NuPH+oA3fXl4ar1UmCsP7X\nf/1XPPLIIxlRjUdE6eXWWjMAYE8UZ66Pd6Z+M5SpSnW58PpFDIwlx1nrp/7cAq8/gL+7PrqtiXQX\nU1jv3bsXJpMJq1atkmo8RERxY9GrsN6ijaqb2fEOKwo12bBMHntKdaH/jmSoCLc6Pfjv99txx/qS\nRXclS1cLFpg98MADGBoamvH4ww8/jMcffxxPP/30gh/S0NCAhoaGaY95PJ4ohklEtDRuqyvGd/Zc\nQJd1PKJl11AzlHRZTbRMOWu9uTKxY/nZu61wevxRF/xlggXD+plnnpn18YsXL6Krqwt33nknAKCv\nrw933303fvOb38BoNE577u7du7F79+5pj3V1dWHHjh2LHDYRkTRuqzXjO3su4E9n+vDpD1TN+1yr\n04OWISfu3Zw+x4VKdcnRxczu8uJn77Xh1rXm8NWVdNmij26tXLkS77//fvjPN954I1544QUUFKRG\nU3QiIgCoMKixtiQfr57uXTCsD7YOAwA2lqVHcRkA5CrlMKiVCT9r/ez77Rhz+fD5Gzmrng3bjRJR\nxttVV4xjHTb0js4+u/T5A3hsXzMeev4EivKzsb5MG+cRLi2LPjehx7fGPT489U4LblhpRG1pen1v\npSJZWL/55pucVRNRSrptsir8T7NUhTcNOHDvT97Hd/90ATtWm/DKQx+ASple/aQSfa/1cwc7YB33\n4vM3Rt/6NVNwZk1EGa/KqMEqcx72TLnYwx8Q8cT+Zuz6z3fQNuzEf350I358fz0KNdkJHOnSsOhV\n6LZNQBTjf9ba5fXj8f0tuKbGgE0V6bO9ILX0+vWQiGiRdtUV49/fuIQBuwsOtw9f/s1JHOuw4aY1\nRfjWR2phykvfTlkWfS7cvgAGHe64/3f+5kgnBsfc+M+/3BjXz001DGsiIgTvuP7B65fwyAuncKBl\nGDlZcvxw9wbcuaEkbY5pzaVUd/n4VjzD2uML1gJsrtDjqipuo86Hy+BERABqTHlYbtLg7UuDuLam\nEK9/4YO4a2Np2gc1gPD58njvW//ueBd6Rl34/I01GfF9jgVn1kREkx69bz367C7cvKYoo8KjdEpj\nlHjx+QP48b5m1JVqcd0K48IvyHAMayKiSevLdFif6EEkgCZbAZ0qC922+J21fvlUL9qHx/H4xzdl\n1C9Gi8VlcCIiQqkuvmetXzndC4s+FzetLorbZ6YyhjUREcES5Vnrfrtr0Ue9RFHEiU4btlQWQCbj\nrDoSDGsiIkKpToUua2RnrS/02bH9X/fijfMDi/qsPrsLg2NurLewW1mkGNZERASLPhcTXj+s494F\nn/uHEz0IiMC7TTNvZIzEyck7wdenyZ3g8cCwJiKiKRXh8xeZiaKIVyfv/z7eYV3UZ53oHEWWXMDq\n4vxFvT4TMayJiCh8r/VC+9YX+sbQNjyOYm0OzvbY4fL6o/6sk502rC7OR06WfFFjzUQMayIigmXy\nXuuFKsJfPd0LmQB8YecK+AIiTnWNRvU5/oCI092jWG/hEng0GNZERIT8XAXyshXots0d1qIo4pXT\nvdi2zICda4JHro62R7cU3jLogMPt4351lBjWREQEQRBQqs+dd8+6ccCBlkEndtWZUaBWoqpQjWNR\n7lufmCwu25Bmd4IvNYY1EREBCO5bz7cM/sqpXggCcMvk/d8by/U43mGN6rz1qa5RaLIVqCrUxDze\nTMKwJiIiAMEuZvMVmO0504stlQXhm7nqK3QYcnjQMRJ5m9KTXTass2jZDCVKDGsiIgIQvH1rzO3D\n6MTMs9ZNA2O41O/ArslZNQBsqtADQMRL4S6vH+d77dyvXgSGNRERAZj/rPWrp/sAALfVFYcfW27K\ngyZbEXGR2fleO7x+kZXgi8CwJiIiAPOftX71dC82V+hRlJ8TfkwuE7CxXIdj7baI3v9kuLiMYR0t\nhjUREQEILoMDM89atww6cKFvbNqsOmRjuR4X+uxwuH0Lvv/JrlEU5WfDrM1Z8Lk0HcOaiIgAAHpV\nFnKz5DPOWu85M7kEPmW/OqS+XIeACJzqXHh2fbLTxiXwRWJYExERgOBZa8ssZ61fPd2LjeU6lOhy\nZ7xmY3lkRWaj4160DDlZXLZIDGsiIgor1edOm1m3DztxtseOXbUzl8ABQJubheUmzYJFZqe6uV8d\nC4Y1ERGFXdkY5XIV+AglNDUAAAnPSURBVMwl8JBNFXoc77QhEJi7OUqouKy2lJ3LFoNhTUREYaU6\nFWzj3nDB2J4zvVhv0YaLz2ZTX66HbXKZey4nOkdRZVRDm5sl+ZgzAcOaiIjCph7f6hwZx6mu0Vmr\nwKeqrwgubc+1by2KIk502rCBxWWLxrAmIqKwUGOUbts49pzpBYA596tDqgo10OZm4fgcYd076sKQ\nw83ishgwrImIKMwS7mI2gVdP96G2NB/lhrmXwAFANtkcZa4is9B+NcN68RjWREQUVqjOhlIhw6HW\nEZzotOG2BWbVIZvK9WgccMzaV/xElw1ZcgGri/OkHm7GYFgTEVGYTCbAossNN0LZtcB+dUh9hR6i\nePm+6qlOdtqwpjgf2Qq5pGPNJAxrIiKaplSfC39AxOrifCwrVEf0mvVlOsgE4NgVS+H+gIjTXaNc\nAo8Rw5qIiKYJ7VvvmqW96Fw02QqsNOfPqAhvHnTA6fGzzWiMGNZERDRNeUFwNr3Qka0r1ZfrcKJj\nenOUEywukwTDmoiIpvmrreV45sEtqDFponrdpgo9xtw+NA44wo+d7LQhL1uBqgiX02l2DGsiIppG\nq8rC9StNUb+ufvJSj6lHuE522bCuTAuZTJBsfJmIYU1ERJKoMKhgUCvD+9Yurx8Xese4Xy0BhjUR\nEUlCEARsLNeHK8LP9tjhC4jcr5YAw5qIiCRTX6FDy5ATVqcn3LmM12LGjmFNRESS2TS5b32804qT\nXTaY83NQlJ+T4FGlPoY1ERFJZp1FB4VMwNF2K0522rC+jPdXS4FhTUREkslVyrGmJB9vXhhE2/A4\n96slwrAmIiJJ1Zfrcb7XDgC8w1oiDGsiIpJUfUVw31oQgFoLl8GlwLAmIiJJ1ZcHZ9PVRg3yc7IS\nPJr0wLAmIiJJlepyUWFQYduygkQPJW0oEj0AIiJKL4Ig4Hd/fw1ys3h/tVQY1kREJLkCtTLRQ0gr\nXAYnIiJKcjGH9bPPPotbbrkFt99+O773ve9JMSYiIiKaIqZl8AMHDmDv3r344x//CKVSieHhYanG\nRURERJNimlk///zz+MxnPgOlMrg3YTAYJBkUERERXRZTWLe1teHIkSO477778LGPfQynTp2SalxE\nREQ0acFl8AceeABDQ0MzHn/44Yfh9/tht9vx61//GqdPn8bDDz+MvXv3QhCEac9taGhAQ0PDtMc8\nHk+MQyciIsoMC4b1M888M+fXnn/+edx0000QBAHr1q2DTCaD1WpFQcH0g/C7d+/G7t27pz3W1dWF\nHTt2LG7UREREGSSmZfCdO3fiwIEDAIDW1lZ4vV7o9XpJBkZERERBMVWD33PPPfj617+OD33oQ8jK\nysJ3vvOdGUvgREREFJuYwlqpVOLRRx+VaixEREQ0C3YwIyIiSnIJ6w3u9/sBAH19fYkaAhERUVyF\nMi+UgZFKWFgPDg4CAO6///5EDYGIiCghBgcHUVFREfHzBVEUxSUcz5xcLhfOnDkDo9EIuVy6a9T+\n9m//Fj/5yU8ke79Mxu+lNPh9lA6/l9Lh91I60Xwv/X4/BgcHUVtbi5ycnIg/I2Ez65ycHGzevFny\n91UqlbBYLJK/bybi91Ia/D5Kh99L6fB7KZ1ov5fRzKhDWGBGRESU5BjWRERESY5hTURElOTk//RP\n//RPiR6E1GpraxM9hLTB76U0+H2UDr+X0uH3UjpL/b1MWDU4ERERRYbL4EREREmOYU1ERJTkEnbO\nWmr79+/Ht771LQQCAdx33334zGc+k+ghpYyvfe1r2LdvHwwGA15++WUAgM1mwxe+8AV0d3ejtLQU\nP/zhD6HVahM80uTX29uLr3zlKxgaGoJMJsNf/MVf4JOf/CS/n4vgdrtx//33w+PxwO/345ZbbsFD\nDz2Ezs5OfPGLX8To6CjWrFmD733ve1AqlYkebtLz+/245557UFRUhMcff5zfx0W68cYboVarIZPJ\nIJfL8eKLL8bl33dazKz9fj+++c1v4qmnnsIrr7yCl19+GU1NTYkeVsq4++678dRTT0177IknnsD2\n7dvx2muvYfv27XjiiScSNLrUIpfL8dWvfhV79uxBQ0MDnnvuOTQ1NfH7uQhKpRI///nP8Yc//AG/\n//3v8c477+DEiRN49NFH8cADD+C1115Dfn4+XnjhhUQPNSX84he/QHV1dfjP/D4u3s9//nO89NJL\nePHFFwHE5+dlWoT1qVOnUFFRgbKyMiiVStx+++3Yu3dvooeVMrZs2TLjt8C9e/firrvuAgDcdddd\neOONNxIxtJRjMpmwdu1aAIBGo0FVVRX6+/v5/VwEQRCgVqsBAD6fDz6fD4Ig4MCBA7jlllsAAB/5\nyEf4bz0CfX192LdvH+69914AgCiK/D5KKB7/vtMirPv7+2E2m8N/LioqQn9/fwJHlPqGh4dhMpkA\nBANoZGQkwSNKPV1dXTh//jzWr1/P7+ci+f1+3Hnnnbj66qtx9dVXo6ysDPn5+VAogjt4ZrOZ/9Yj\n8O1vfxuPPPIIZLLgj3yr1crvYww+9alP4e6770ZDQwOA+Py8TIs969lOnwmCkICREAU5nU489NBD\n+PrXvw6NRpPo4aQsuVyOl156CXa7HZ/73OfQ0tIy4zn8tz6/t956CwUFBaitrcXBgwfnfB6/j5F5\n/vnnUVRUhOHhYTz44IOoqqqKy+emRVibzeZp92L39/eHf8uhxTEYDBgYGIDJZMLAwAAKCgoSPaSU\n4fV68dBDD+GOO+7AzTffDIDfz1jl5+dj27ZtOPH/t3fHLgfEYRzAv4M/QBlkJcrAynwog//AZLxQ\nnEWZmVD+Af+CWwyWK1cUSW8mo/oNTC7XpYjuHdStXm+9r3N9P9N109NTT9/63T13X18wTRO32w0+\nnw+Hw4Gz/sR6vYamadB1HZfLBZZlod1us4+/FAwGATxmOpfLYbPZ/Mt8e+IYPJFIYLfbQQiB6/WK\n8XgMSZLeXdZHkyQJqqoCAFRVRSaTeXNFn8G2bbRaLYTDYZRKJec++/m64/EI0zQBPH6pO5/PEYlE\nkEqlMJlMAACj0Yiz/kSj0YCu69A0Df1+H+l0Gr1ej338hfP5DMuynOvZbIZoNPov8+2ZL5hNp1N0\nOh1nPUGW5XeX9DEURcFyuYRhGAgEAqhWq8hms6jVatjv9wiFQhgMBvD7/e8u1fVWqxWKxSJisZjz\nfFBRFCSTSfbzRdvtFs1mE/f7HbZtI5/Po1KpQAiBer2O0+mEeDyObrfLlaMfWiwWGA6HzuoW+/ga\nIQTK5TKAx/sUhUIBsizDMIw/n2/PhDUREZFXeeIYnIiIyMsY1kRERC7HsCYiInI5hjUREZHLMayJ\niIhcjmFNRETkcgxrIiIil2NYExERudw3wlGRwNf57OIAAAAASUVORK5CYII=\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["#on peut remarquer que le style ggplot est rest\u00e9. \n", "import seaborn as sns\n", "\n", "#5 styles disponibles\n", "#sns.set_style(\"whitegrid\")\n", "#sns.set_style(\"darkgrid\")\n", "#sns.set_style(\"white\")\n", "#sns.set_style(\"dark\")\n", "#sns.set_style(\"ticks\")\n", "\n", "#si vous voulez d\u00e9finir un style temporairement\n", "with sns.axes_style(\"ticks\"):\n", " fig = plt.figure(figsize(8,6))\n", " ax1 = fig.add_subplot(1,1,1)\n", " plt.plot(serie1)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["En dehors du style et des couleurs, Seaborn a mis l'accent sur :\n", "- les graphes de distribution ([univari\u00e9s](https://stanford.edu/~mwaskom/software/seaborn/examples/distplot_options.html#distplot-options) / [bivari\u00e9s](https://stanford.edu/~mwaskom/software/seaborn/examples/joint_kde.html#joint-kde)). Particuli\u00e8rement utiles et pratiques : les [pairwiseplot](https://stanford.edu/~mwaskom/software/seaborn/tutorial/distributions.html#visualizing-pairwise-relationships-in-a-dataset)\n", "- les graphes de [r\u00e9gression](https://stanford.edu/~mwaskom/software/seaborn/tutorial/regression.html)\n", "- les graphes de [variables cat\u00e9gorielles](https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html)\n", "- les [heatmap](https://stanford.edu/~mwaskom/software/seaborn/examples/heatmap_annotation.html) sur les matrices de donn\u00e9es\n", "\n", "Seaborn ce sont des graphes pens\u00e9s pour l'analyse de donn\u00e9es et la pr\u00e9sentation de rapports \u00e0 des coll\u00e8gues ou clients. C'est peut-\u00eatre un peu moins customisable que matplotlib mais vous avez le temps avant de vous sentir limit\u00e9s dans les possibilit\u00e9s."]}, {"cell_type": "markdown", "metadata": {}, "source": ["# Matplotlib et pandas, int\u00e9ractions avec seaborn"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Comme vu pr\u00e9c\u00e9demment, matplotlib permet de manipuler et de repr\u00e9senter sous forme de graphes toutes sortes d'objets : listes, arrays numpy, Series et DataFrame pandas. Inversement, pandas a pr\u00e9vu des m\u00e9thodes qui int\u00e8grent les objets matplotlib les plus utiles pour le trac\u00e9 de graphiques. Nous allons tester un peu l'int\u00e9gration [pandas/matplotlib](http://pandas.pydata.org/pandas-docs/stable/visualization.html). D'une amani\u00e8re g\u00e9n\u00e9rale, tout un [\u00e9cosyst\u00e8me](http://pandas.pydata.org/pandas-docs/stable/ecosystem.html#ecosystem-visualization) de visualisation s'est d\u00e9velopp\u00e9 autour de pandas. Nous allons tester les diff\u00e9rentes librairies \u00e9voqu\u00e9es. T\u00e9l\u00e9charger les donn\u00e9es de l'exercice 4 du TD sur pandas et disponible sur le site de l'INSEE [Naissances, d\u00e9c\u00e8s et mariages de 1998 \u00e0 2013](https://www.insee.fr/fr/statistiques/2407910?sommaire=2117120#titre-bloc-3)."]}, {"cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Download of etatcivil2012_mar2012_dbase.zip: DONE!\n", "Download of etatcivil2012_nais2012_dbase.zip: DONE!\n", "Download of etatcivil2012_dec2012_dbase.zip: DONE!\n"]}], "source": ["import urllib.request\n", "import zipfile\n", "\n", "def download_and_save(name, root_url):\n", " if root_url == 'xd':\n", " from pyensae.datasource import download_data\n", " download_data(name)\n", " else:\n", " response = urllib.request.urlopen(root_url+name)\n", " with open(name, \"wb\") as outfile:\n", " outfile.write(response.read())\n", "\n", "def unzip(name):\n", " with zipfile.ZipFile(name, \"r\") as z:\n", " z.extractall(\".\")\n", "\n", "filenames = [\"etatcivil2012_mar2012_dbase.zip\", \n", " \"etatcivil2012_nais2012_dbase.zip\",\n", " \"etatcivil2012_dec2012_dbase.zip\", ]\n", "\n", "# Une copie des fichiers a \u00e9t\u00e9 post\u00e9e sur le site www.xavierdupre.fr\n", "# pour tester le notebook plus facilement.\n", "root_url = 'xd' # http://telechargement.insee.fr/fichiersdetail/etatcivil2012/dbase/'\n", "\n", "for filename in filenames:\n", " download_and_save(filename, root_url)\n", " unzip(filename)\n", " print(\"Download of {}: DONE!\".format(filename))"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Penser \u00e0 installer le module [dbfread](https://github.com/olemb/dbfread/) si ce n'est pas fait."]}, {"cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["use of dbfread\n"]}, {"data": {"text/plain": ["((246123, 16),\n", " Index(['ANAISH', 'DEPNAISH', 'INDNATH', 'ETAMATH', 'ANAISF', 'DEPNAISF',\n", " 'INDNATF', 'ETAMATF', 'AMAR', 'MMAR', 'JSEMAINE', 'DEPMAR', 'DEPDOM',\n", " 'TUDOM', 'TUCOM', 'NBENFCOM'],\n", " dtype='object'))"]}, "execution_count": 20, "metadata": {}, "output_type": "execute_result"}], "source": ["import pandas\n", "try:\n", " from dbfread import DBF\n", " use_dbfread = True\n", "except ImportError as e :\n", " use_dbfread = False\n", " \n", "if use_dbfread:\n", " print(\"use of dbfread\")\n", " def dBase2df(dbase_filename):\n", " table = DBF(dbase_filename, load=True, encoding=\"cp437\")\n", " return pandas.DataFrame(table.records)\n", "\n", " df = dBase2df('mar2012.dbf')\n", " #df.to_csv(\"mar2012.txt\", sep=\"\\t\", encoding=\"utf8\", index=False)\n", "else :\n", " print(\"use of zipped version\")\n", " import pyensae.datasource\n", " data = pyensae.datasource.download_data(\"mar2012.zip\")\n", " df = pandas.read_csv(data[0], sep=\"\\t\", encoding=\"utf8\", low_memory = False) \n", " \n", "df.shape, df.columns"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Dictionnaire des variables."]}, {"cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["(16, 4) Index(['VARIABLE', 'LIBELLE', 'TYPE', 'LONGUEUR'], dtype='object')\n"]}, {"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " VARIABLE | \n", " LIBELLE | \n", " TYPE | \n", " LONGUEUR | \n", "
\n", " \n", " \n", " \n", " 0 | \n", " AMAR | \n", " Ann\u00e9e du mariage | \n", " CHAR | \n", " 4 | \n", "
\n", " \n", " 1 | \n", " ANAISF | \n", " Ann\u00e9e de naissance de l'\u00e9pouse | \n", " CHAR | \n", " 4 | \n", "
\n", " \n", " 2 | \n", " ANAISH | \n", " Ann\u00e9e de naissance de l'\u00e9poux | \n", " CHAR | \n", " 4 | \n", "
\n", " \n", " 3 | \n", " DEPDOM | \n", " D\u00e9partement de domicile apr\u00e8s le mariage | \n", " CHAR | \n", " 3 | \n", "
\n", " \n", " 4 | \n", " DEPMAR | \n", " D\u00e9partement de mariage | \n", " CHAR | \n", " 3 | \n", "
\n", " \n", " 5 | \n", " DEPNAISF | \n", " D\u00e9partement de naissance de l'\u00e9pouse | \n", " CHAR | \n", " 3 | \n", "
\n", " \n", " 6 | \n", " DEPNAISH | \n", " D\u00e9partement de naissance de l'\u00e9poux | \n", " CHAR | \n", " 3 | \n", "
\n", " \n", " 7 | \n", " ETAMATF | \n", " \u00c9tat matrimonial ant\u00e9rieur de l'\u00e9pouse | \n", " CHAR | \n", " 1 | \n", "
\n", " \n", " 8 | \n", " ETAMATH | \n", " \u00c9tat matrimonial ant\u00e9rieur de l'\u00e9poux | \n", " CHAR | \n", " 1 | \n", "
\n", " \n", " 9 | \n", " INDNATF | \n", " Indicateur de nationalit\u00e9 de l'\u00e9pouse | \n", " CHAR | \n", " 1 | \n", "
\n", " \n", " 10 | \n", " INDNATH | \n", " Indicateur de nationalit\u00e9 de l'\u00e9poux | \n", " CHAR | \n", " 1 | \n", "
\n", " \n", " 11 | \n", " JSEMAINE | \n", " Jour du mariage dans la semaine | \n", " CHAR | \n", " 1 | \n", "
\n", " \n", " 12 | \n", " MMAR | \n", " Mois du mariage | \n", " CHAR | \n", " 2 | \n", "
\n", " \n", " 13 | \n", " NBENFCOM | \n", " Enfants en commun avant le mariage | \n", " CHAR | \n", " 1 | \n", "
\n", " \n", " 14 | \n", " TUCOM | \n", " Tranche de commune du lieu de domicile des \u00e9poux | \n", " CHAR | \n", " 1 | \n", "
\n", " \n", " 15 | \n", " TUDOM | \n", " Tranche d'unit\u00e9 urbaine du lieu de domicile de... | \n", " CHAR | \n", " 1 | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" VARIABLE LIBELLE TYPE \\\n", "0 AMAR Ann\u00e9e du mariage CHAR \n", "1 ANAISF Ann\u00e9e de naissance de l'\u00e9pouse CHAR \n", "2 ANAISH Ann\u00e9e de naissance de l'\u00e9poux CHAR \n", "3 DEPDOM\u00a0 D\u00e9partement de domicile apr\u00e8s le mariage CHAR \n", "4 DEPMAR D\u00e9partement de mariage CHAR \n", "5 DEPNAISF D\u00e9partement de naissance de l'\u00e9pouse CHAR \n", "6 DEPNAISH D\u00e9partement de naissance de l'\u00e9poux CHAR \n", "7 ETAMATF \u00c9tat matrimonial ant\u00e9rieur de l'\u00e9pouse CHAR \n", "8 ETAMATH \u00c9tat matrimonial ant\u00e9rieur de l'\u00e9poux CHAR \n", "9 INDNATF Indicateur de nationalit\u00e9 de l'\u00e9pouse CHAR \n", "10 INDNATH Indicateur de nationalit\u00e9 de l'\u00e9poux CHAR \n", "11 JSEMAINE Jour du mariage dans la semaine CHAR \n", "12 MMAR Mois du mariage CHAR \n", "13 NBENFCOM Enfants en commun avant le mariage CHAR \n", "14 TUCOM Tranche de commune du lieu de domicile des \u00e9poux CHAR \n", "15 TUDOM Tranche d'unit\u00e9 urbaine du lieu de domicile de... CHAR \n", "\n", " LONGUEUR \n", "0 4 \n", "1 4 \n", "2 4 \n", "3 3 \n", "4 3 \n", "5 3 \n", "6 3 \n", "7 1 \n", "8 1 \n", "9 1 \n", "10 1 \n", "11 1 \n", "12 2 \n", "13 1 \n", "14 1 \n", "15 1 "]}, "execution_count": 21, "metadata": {}, "output_type": "execute_result"}], "source": ["vardf = dBase2df(\"varlist_mariages.dbf\")\n", "print(vardf.shape, vardf.columns)\n", "vardf"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Repr\u00e9sentez l'age des femmes en fonction de celui des hommes au moment du mariage."]}, {"cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " ANAISH | \n", " DEPNAISH | \n", " INDNATH | \n", " ETAMATH | \n", " ANAISF | \n", " DEPNAISF | \n", " INDNATF | \n", " ETAMATF | \n", " AMAR | \n", " MMAR | \n", " JSEMAINE | \n", " DEPMAR | \n", " DEPDOM | \n", " TUDOM | \n", " TUCOM | \n", " NBENFCOM | \n", "
\n", " \n", " \n", " \n", " 0 | \n", " 1982 | \n", " 75 | \n", " 1 | \n", " 1 | \n", " 1984 | \n", " 99 | \n", " 2 | \n", " 1 | \n", " 2012 | \n", " 01 | \n", " 1 | \n", " 29 | \n", " 99 | \n", " 9 | \n", " | \n", " N | \n", "
\n", " \n", " 1 | \n", " 1956 | \n", " 69 | \n", " 2 | \n", " 4 | \n", " 1969 | \n", " 99 | \n", " 2 | \n", " 4 | \n", " 2012 | \n", " 01 | \n", " 3 | \n", " 75 | \n", " 99 | \n", " 9 | \n", " | \n", " N | \n", "
\n", " \n", " 2 | \n", " 1982 | \n", " 99 | \n", " 2 | \n", " 1 | \n", " 1992 | \n", " 99 | \n", " 1 | \n", " 1 | \n", " 2012 | \n", " 01 | \n", " 5 | \n", " 34 | \n", " 99 | \n", " 9 | \n", " | \n", " N | \n", "
\n", " \n", " 3 | \n", " 1985 | \n", " 99 | \n", " 2 | \n", " 1 | \n", " 1987 | \n", " 84 | \n", " 1 | \n", " 1 | \n", " 2012 | \n", " 01 | \n", " 4 | \n", " 13 | \n", " 99 | \n", " 9 | \n", " | \n", " N | \n", "
\n", " \n", " 4 | \n", " 1968 | \n", " 99 | \n", " 2 | \n", " 1 | \n", " 1963 | \n", " 99 | \n", " 2 | \n", " 1 | \n", " 2012 | \n", " 01 | \n", " 6 | \n", " 26 | \n", " 99 | \n", " 9 | \n", " | \n", " N | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" ANAISH DEPNAISH INDNATH ETAMATH ANAISF DEPNAISF INDNATF ETAMATF AMAR MMAR \\\n", "0 1982 75 1 1 1984 99 2 1 2012 01 \n", "1 1956 69 2 4 1969 99 2 4 2012 01 \n", "2 1982 99 2 1 1992 99 1 1 2012 01 \n", "3 1985 99 2 1 1987 84 1 1 2012 01 \n", "4 1968 99 2 1 1963 99 2 1 2012 01 \n", "\n", " JSEMAINE DEPMAR DEPDOM TUDOM TUCOM NBENFCOM \n", "0 1 29 99 9 N \n", "1 3 75 99 9 N \n", "2 5 34 99 9 N \n", "3 4 13 99 9 N \n", "4 6 26 99 9 N "]}, "execution_count": 22, "metadata": {}, "output_type": "execute_result"}], "source": ["#Calcul de l'age (au moment du mariage)\n", "df.head()"]}, {"cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": ["#conversion des ann\u00e9es en entiers\n", "for c in ['AMAR','ANAISF','ANAISH']:\n", " df[c]=df[c].apply(lambda x: int(x))\n", "\n", "#calcul de l'age\n", "df['AGEF'] = df['AMAR'] - df['ANAISF']\n", "df['AGEH'] = df['AMAR'] - df['ANAISH']"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Le module pandas a pr\u00e9vu un [wrapper](http://pandas.pydata.org/pandas-docs/stable/visualization.html) matplotlib"]}, {"cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [{"data": {"text/plain": [""]}, "execution_count": 24, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAF3CAYAAAC123K4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvX14XNV97/td86aXkWyNRmbsWpIt\nR8KJArYay2DXWLcB4tMGB3IbYZOGOD03Kdx7mzYlSSHpc00S6GnqkAMHmntaCOl5oCdpIOYEHNO0\njjGpIcEkAmQ7VsDWxS+SsWVblmxZbzMarfvHaEZ7r7X2njWz531+n+fhQbO81l5r79lrrVnrt37f\nH+OcgyAIgiCI4sOV7wYQBEEQBJEeNIkTBEEQRJFCkzhBEARBFCk0iRMEQRBEkUKTOEEQBEEUKTSJ\nEwRBEESRQpM4QRAEQRQpNIkTBEEQRJFCkzhBEARBFCk0iRMEQRBEkeLJdwN0aGho4MuXL893MwiC\nIAgiJ7zxxhsXOOeLkuUrikl8+fLl6OnpyXczCIIgCCInMMZO6uSj7XSCIAiCKFJoEicIgiCIIoUm\ncYIgCIIoUmgSJwiCIIgihSZxgiAIgihSaBInCIIgiCKFJnGCIAiCKFJoEicIgiCIIoUmcYIgCIIo\nUmgSJwiCIAgHDF+ZxsGBUQxfmc553UUhu0oQBEEQhcgLvadx33OH4HW5EJmdxbc+sQq3dizNWf20\nEicIgiCINBi+Mo37njuEqcgsxqZnMBWZxb3PHcrpipwmcYIgCIJIg8GRSXhd5mnU63JhcGQyZ22g\nSZwgCIIg0qAxUIXI7KwpLTI7i8ZAVc7aQJM4QRAEQaRBsKYC3/rEKlR6Xait8KDS68K3PrEKwZqK\nnLWBDrYRBEEQRJrc2rEUG1obMDgyicZAVU4ncIAmcYIgCIJwRLCmIueTdxzaTicIgiCIIoUmcYIg\nCIIoUmgSJwiCIIgihSZxgiAIgihSaBInCIIgiCKFJnGCIAiCKFJoEicIgiCIIoUmcYIglOQivGI+\nQziWIqXwPEvhHnIJib0QBCGRi/CK+Q7hWGqUwvMshXvINbQSJwjCRC7CKxZCCMdSohSeZyncQz7I\n6iTOGPsCY+w3jLEjjLG/nEurZ4z9jDF2bO7/gWy2gSCI1MhFeMVCCOFYSpTC8yyFe8gHWZvEGWPX\nAPhTANcBWA1gM2OsDcBXALzEOW8D8NLcZ4IgCoRchFfMZQjHcrCxFkJITKfY3UP/0Bh29gygf2gs\nT60rXLK5Ev8AgAOc8wnO+QyA/wDwvwO4DcBTc3meAvDxLLaBIIgUyUV4xVyFcHyh9zQ27NiHO598\nHRt27MOu3tMZvX6hUAghMZ1idQ+P7j2Kmx/Zjy/vPISbH9mP+184nO+mFhSMc56dCzP2AQAvAFgP\nYBKxVXcPgE9zzusM+UY457Zb6p2dnbynpycr7SQIQs3wlemsh1fMZh3DV6axYcc+TEXmV3eVXhd+\ncd+NRTW5pUIuvrNsY7yHkfEwbn5kv5Rn7z1daA3V5qF1uYMx9gbnvDNZvqydTuec/5YxtgPAzwBc\nAXAQwIxuecbYXQDuAoDm5uastLEcKYVOTuSGXIRXzGYdcRvrFOYn8biNNdv3la9+ls+QmOmgek7G\ne3j57XPKcr0DoyU/ieuSVRczzvn3AHwPABhjfwtgEMAQY2wJ5/wMY2wJAOW3xDl/AsATQGwlns12\nlgvkvkGUE/myE1M/00PnOXU01SnLWqWXI9k+nX7V3P+bAfwRgH8BsAvAZ+ayfAaxLXciy5D7BlFu\n5MNOTP1MD93n1Bqqxbb15p3YbeubaRVuINtiL88xxoIAIgD+jHM+whj7OwDPMsY+C+AUgNuz3AYC\n+d1aJIh8cWvHUmxobcjZ1jb1Mz1SeU4P3HYttq1bjt6BUXQ01dEELpDt7fSNirRhADdls15CphRc\nUIjsUcpnJXJpJ7brZ6pnXEjPPZdtSXU8ag3V0uRtAcmulgnxrcV7BRtUvgcOIv+QDTdzWPWzV/sv\nSM+YAwXz3HP9DtB4lDmy5mKWScjFLHMU0i9/Iv+UoxtWLjD2MwDSM67wuABwTM/Mj7/5eu75fAdo\nPLIm7y5mRGFSbC4oRHYhG252MPazgwOj0jN2uxjAGYBoIi1fzz2f7wCNR86hAChEwUOSi9mjWM5K\nOJFOzbfsquoZR2c5ojw3zz1Z/0lmxxefnep66fZR3e+mmL//bEMrcaKguf/5w3j6wKnE523rm/HA\nbdfmsUWlRTHYJp3YawvB3m/1jHtOXDS921s6GzP+3HX6T7CmAls6G/H0a+a2qOz4Ypu3rW8GONLq\no7rfTbF//9mGbOJEwdI/NFa2kou5plBtk07stYVm709mJ89023T7j+o5VXgYAIbpGbMd3/jZjmR9\nVPe7KaXvP1V0beK0nU4ULL0DoymlEzK6W4nBmgqsbqoruMHNSXhKq7JH3ruU9+3VbIXdNH7fuv1H\n1RY3c8Xs9mmSrI/q3n82vv9SC21K2+lEwUKSi84oha3ExkAVpmaiprSpmaiW7bgxUIXJiDlcw3h4\nBn/6dA98bndOn4n4XWy/pT3jZxHEOr5489XKfGL/Udrs+ezcwbv0SNZHVd/NZGRGun8nZzaK5byH\nU2glThQsJLmYPqUk/yma/FIxATJmnohmOTA9w3P6TFTfxYMv9mH75vaMScKq6nh471Fs6Ww05VP1\nH5U87UPdq/FQtznt/o+1Q1ycuxi06lAhfjfiZ6u26T6nUgjPqgOtxImChiQX06NUXMcGRyZR5fVg\nbHp+1Vbl9Wjdx+DIJCo9bkSi1sETc/FMrL6La35nIX5x340ZOYtgVcenrl+GuzauSNp/rORpjWmD\nI5Pw+8zfhd/n0a5DbK/43VR63Mrvwol0bq5ld/MBTeIlTqEeWEqFXEgu9g+NldQPhWLeSjS+s6nK\nmBpRlRXJxTOxu4dM+Uknq0N8p5OFAE21DgBoC9Ui4Pc5bq8K8ie3hk6nlzClYBPNBaXqxrar97Tk\n1lTo37/qnQUg3YeuZKn4DLZ0NuLZnsGcP5NcfBe6dThx7QLS/y7Sba8TinkM1D2dTpN4iVLs7hW5\notTd2IppJ8bunQWQtnuW+Azy9UxyUW+yOjLh2gWk/12k2l4nFPsYSLKrZU6p2ESzjZ0bTilM4sW0\nDWn3zhrd31QypnbvtvgM8vVMclFvsjp0x4VsfRepttcJ5TIG0un0EqWYbaK5JJ9ubLmQgywmyUnd\ndzZVmdBMorp+LiRBdWVNk7UvE8/Y2JZUvoue48N4eM876Dk+bHsPuveVjHIZA2k7vYQpRptoPrj/\nhcMmyclc2MRzYasrRnug7jurypft0J6q5+mkTt3vR/fMhm77ANmuraxX0S9UEqsApHxrltWb6l1W\nX4V3hsYTeTa2BvHPn1uX0eekopjHQLKJEwCKyyaaT3J5Oj0XtrpitgfqvrO5lDHVlSbNtCSoM+lU\n63CnAFK2nfvcDOGoPF+I6arnomLn3evQ2RK0zZOJ97hYx0CSXSUAFK6cZqHRGqpFd2dTTuzguZCD\nzIWsZ74xvtt29yu2OZ170JUmtapTrFf3+3EknepicLPMSZaqxFhU6bqSrfuPXVCmp/Oc7FCNgYX0\nHjuFDrYRRI7Jha0uG3UUsgnA6n5/c/oStj7xmmMXM5VM6PRMFB63eYJR1ana1t6+WU92VffMRmOg\nCuNhc/umIlFJYW1qJqpsn/gMVPc7E1WvrMUV92QkCp8n+fqwq61BSsuHPG0xbbGroJU4QeSYXMhB\nZrqOXMi4OqlDdb/bN7fjwRf7TNd7+rVTad+DuOJ0uRjuF6RTVXX+1c6DuHenILu6uw/bb0kuu6or\nPTwyHsassNM9ywFR62Z2luOB3Ue0noHqfrd0mie7W1cvkcpxAF/adLXp3laG/KY8G1uD0lZ6vuRp\ni1WOOA6txAkiD+RCDjKTdeTCXcdpHeL9qq4nont9K5nQa5aapVNVdbqZCxBWxF6XSypr1QYd6WGr\nbXevED60wuuOzbKYDypj5WKmut9PXb8cd218X6ItvQOj2HXwjFRvfbVPuree48PYf+wCutoalLbw\nfMrTFrPbGU3iBJEnCsFvOE6yg31O5E/jpCOT6mTrNBXZVSdtE5+xTkSweNmR8TCODY3B73PbPjuV\n9LBxUrTadhcPLkdnOeZmcaktL/WdxZ6+IWxqD6GjOWB5v8fPX8GpixNYHqy23e4Xn0tni3r1rSOx\nmwt52mKFTqcTRJmj68LkxK1L1w7pxCVIVUfPiYume9vYGsSvT45kRMI1lXxiO6zctXRdG+988gBe\n7Z/3t97YGgQHpLTbO5u02nLg3WEcNbiArQz5cf2KoOQ69u75camOQ4OjuDQ1v7JfWOnGwa//QdJ7\n0JV1zZc8bb4hFzOCIJKSquxsOm5dqboJpeMSlIoL2O7P34DxcDSle0i1bcmeU4WwzR1HR+635/gw\nuh8/IKX73C6Eo/J9APYyqV4XQ0Q0qAPwugBDNumzHd/btgY3tS+2/HddWdd8ydMWAuRiRhBEUnRd\nmOLounUZSdVNKB23yFRcwMbD0ZTvIdW2JXtOVlg9dyNWrlniNrnR1mvXFg71Qk5OTe42FmdP35Dt\nv9s991y4xZaS6y1N4oQ2peRbScRwIjubCQlPJySTE43y2TkbsHW9mZBwTZZPxzYfp6OpLqmPuco1\nK4ba7p5MJpVZTM5yqv6u7ab2kK1UbCnapvMFHWwjtCg130oiRtyFSbR96ojeBGsqsKWz0VR2S2ej\ntLqJu3+JdkgnqyDV+6iqo+fkRdv2Wd3Dq/0XMmbrV9WxdW0jAFmu9MiZy1rSqStDfpOMadyFy5i2\nrL4Kj+49Ktm/O5cFTHbtdSvqcW5sSrreotpKIV9QmU+sd2XIj/84eh5PH3jDVK/R3p+Nd6JcyapN\nnDF2D4DPIfYT7jCA/wxgCYAfAqgH8CaAT3POw3bXIZt4filmCU9Cj3RkZ3Nh6061XiC1MJlO5FQz\nEdZzZDyceO4Bv0+rLSo51VTs1Sr23tOFk8PjidPpy4J+5VkJnxsIz59hS9xH76mRpGVV9v5isE3n\ni7yHImWMLQXwFwDaOeeTjLFnAdwB4KMAHuGc/5Ax9o8APgvgH7LVDsI5pehbmS6lMOio7kHlwpTs\nXlN9LzLlJpTJMJmp+HXH7eR2PuHxfMfPX0m4f3k9bst8jYEqtIVqEfD7tNvidrE5lzXDbAqGVLa7\nRXoHRhGo9po+q2BwAYr7uKl9ceIg286eAcs6VCI1Oi52hDXZ3k73AKhijEUAVAM4A+BGAH889+9P\nAfg6aBIvaMh+FaMUTAq696CTL1/vRSq2+KmZqCltaiYq2cTTlVO1kk7923/tw+vHRwAAj+3rx7qW\nAK5Mm+u4Mj2jdT2Vj3l0lksn21Wny1PhOy8fw4nh2I+UZ3oG0RJUf4fTgvTqlemZtKVidV0bCXuy\ndrCNc34awLcBnEJs8r4E4A0Ao5zz+Bs9CKC4RsEyJBcyoYVOKcg16t6Dbr58vRep1CuaC1XmQy05\n1VtkOVWVdOrdG1ckJvA4B46PSGtkDuAbP0l+vYe6V+OhbvO9itKnmSA+gcc5PqwXYIQjtpo2EvD7\nJK8At4sh4PclPvcPjZkmcCB2PiBZvHRCJpvb6QEAtwFoATAK4EcA/lCRVfkTkjF2F4C7AKC5uVmV\nhcghuZAJLWRKwaSgew+p3Gu+3gudegdHJlHl9WDMsAqu8nqk7fR05VRV0qlP/fJECnchu4RZSbEa\n7/W+5w5p11DhdplWz+LnTCBukw+OTKLa6zY992qv2/Tc7VwbcxFJsJTIpovZzQCOc87Pc84jAP4X\ngN8DUMcYi/94aATwnqow5/wJznkn57xz0aJFWWwm4YRycTsrNJNCOs89Ey5hTr5v3bI9x4fx8J53\n0HN82DZfMl9fq/vw+9y2rmlGqc/49e3yxe26I+NhG/cvFfZSrMYV7vHzV/DSb4dw/PwVbL7WWkRF\nhAu68eLnTKCKqJbsuTtxbSTMZNMmfgrAOsZYNYBJADcB6AHwMoBuxE6ofwbAC1lsA5EhVDZSXbnK\nUqCQXGLStc3r3oNVPpXbVaZlV41yoo/t68fG1iD++XPr0npOwZoKyZ1qWX0VNn/nVVM7dN3kVPlU\nLlwbW4N4RZAm7T83hjOX5yflJQt8qK3ymqROrVzCjFKn8WeyZIEv6fVWhvzggCmtpUFOWxny4/Jk\nRLpe61W10n2oXMzElXOwpgLN9VWmOgJVHum5p+vaSJjJtovZNwBsBTAD4C3E3M2WYt7F7C0Ad3LO\nbX+ak4tZflG74chuLuXgdpbv0+mZcPfLpHSozjug22YrOdGdd69TRr1KhpWkrBEn7mR20qmjE+HE\n6fS6al/SdqTKzrvXYXBkArsPn8XmaxfjmqV1jurwuRnCUfl7NJ6yt7oP0XXM6ns0onKxowncTN5d\nzACAc/41AF8Tkt8FcF026yUyi9L1ReHmUmw24nTIReQxOzJhm9e9B2M+lbuW7jug22YrOdH9xy6k\nNYnrSJjauZMluwe7ers7mxJttnK5csL+YxfwxU0r8fEPNWWkjtjhPqPfeewZGCOP6bqOWcvCzmN0\nCaTJ2xkku0okRSlpOctj7i8GytHtLNdkwjafjpyok3dA18ZuZU/uamtQSngmuw8d+6qdNGsyuVIr\nxHqzYeftamsw3b/TOsQdWdX3Y2fH1pOFla9POIdkV4mkWNlIATlsYCmvwgsBp7Z5J37iOtKhVvZk\n0Ta9dllAaWNXyYnuOvieZCdes6w+6X20hmol+7RoS966tgmdy+ql56myTaue+9/+ax/OirZkYWWp\naoeVfVllrwZkWdPTl6Zw5z/9ytSWG1qDWmFCb/vdpZIt+vj5cVP7rL4f1X2opGLF73FhpdvUDtV7\nQqQHhSIltFHZUvNtIy5XMhWuU9/+qyf/qbqelW1atClb1aGyO1vZcJPdh4hKrnVkPGxp+40rqzUG\nqnD8/BUtG77u8xQlTa3S1c9JdT3zMzK2r67al7BFA7CQWDWXV33fum0RKYfzM04pCJs4UVqobKn5\nthEXAun+kHHyAyid5+7ET1xX/lMlT2ot4SlcT1GHFVY2XGO9OnZslVzry2+fU+btHRjF8mB14qCX\nnQ0//n8r2VXVvYqSplbpyu9CkWa1PNt/7AJWNy7Er09cRKDai5GJiDKf+IxV37duW0Tiz111sC0d\nHf9yhiZxgnBAuu5e+ZBwTcVPXEeKNGZLlm2popzoFz9ytbI9M4ItOhyNSuppor16vj2y/KeOjKnI\neFhfNvQHvzqJN09dAhBz9bp2qXqCefntITy2rz+Rb11LQCmnOh0x35uVCIuYPhmRl+sTkSgEkTRE\nFKtwAPjxW4OJ9j3TM4jlFhKrYeEZT0Wi0tw8PSO3ZXomCpfYGIGpmSi+f+AEnn3jdCJt2/pmgIOk\nWFOEDrYRRJqkK8WaLwnXVORKdaRIH+pehYe6VyeVJ/32v7+jbI8siQrMzoppeuY+DuCB3fYypj63\nPLHM8piQihGVbKiLITGBxzl8Wi0Revg9c/qB4yO4e+MK03P6P7vep3VfKuSfTjF05dMHRqZMn08M\nT+LGlebDaLeuXiLVMcsB4bWAy8WUaeL3KLV1lpsmcCB2toKkWFOHVuIEkSbpunvlU8JVV65UR4pU\nJQmqujdxWzaO1+1C1GRLdQMMmDAYgD1CHjvEKVqUMd196D1895XjUjnRhU0lG+pxqe3LXjczrXi9\nLqYMRsIBB/Ks2WdRbSX23tOV2MbuHRjFroNnpHxulwszhl0Fr9sFcGBmNmpOc8V2B6xI5XslKVZ7\naCVOEGmSrrtXviVc05UrFaVI4xglQVVlrVbTYqrK3SsVxJLiM13XUq8s19XWYJJ6VbuTWWwPS/em\nbn9XWwNeOXoOf7/vGF45ei5Fedbss6k9ZPpsZVIQv0uVm6EqLdl17CApVnvodDpBOGBX72nJ7UjH\ntp1uuVyh2z6jTCoQczm6vbNJKttz8qLk1nTg3WHJner6FUEpH4CkLlEbW4PggNSW7s4m09mDCjcz\nuTotWeDD+66qlcq1LPJLdf7syFlJmnR0IoJJw2ntKg+Dz+OS3LqqfG7JFU1VtjlYLbmTGT8brynW\nsaqxTsuN7djQuOn4nAvAneuaJVs0ID93lc3aKAsbr1d8B7Z0NuLZnkHTO/H/vnxMatulyYj0nF77\n649I918O6J5Op0mcIBySj9PpuSBZ++xkUlsW1UhljaeORyfCyrI+twthw0EulTxnwO+TXLas3Kms\n0pPhdQFGz7R0r5MqHgbMpFnN97atwcIqb+JUfMuiGuk5pXL9vfd0AUBaz110xwvWVJjeJys3PhXp\nyu4WO+RiRhA5Il03u0J3z0vWvmQyqWLZ1lBtwrb58B71YTdVeE5RnlMlAWtld7dKT4pQLu3rpIiT\nGvb0DWFH9+rEhKd6TqnEMIvLx6bz3ONlje+A8X2ycuNTka7sbrlANvECo9hCexZbe0uFdKRTU82X\nLM1OJjVZvdY2YXV4zpf6zuK+nQfxUt/Z1Ozu6e40Sifnc7Njqekmr2RTeyipVGwqA75OiFGr5yJK\nsQLmELOp2LkL7fxAoUEr8QIiH77DTii29pYKTqRTdfOpQoyq0q4O+SW7tkoSVKy3syWolPAU7dpr\nlwXwye++lqjjmZ5BrAz5pVCXLQ3VWFRbKdlmj50bM9lYvQwwumdvbI2t8MR2tDT4TbbfO65rwp4j\nZyV7rdFGbkeVh0n270nFvvaKq+TnqbKJi/fhZcB/HD2Ppw+8kUjbtr4ZdVUenI3Mt3FRrQ8T4ahk\nT6/2ueVQpIoQo6L07h3XNSnPJ4hSrMvqqxL3EQ+nqgpFqroWrcLtIZt4gZCJEJO5pNjaWyo4kU51\nJrGqJ7uaaojanuPDGQvZKdpndezYqpCbKluyaCMvZnSfk558rJ4UqwpR/jX+o8H4TpTzBE428SIj\nn77D6VBs7S0V7J57/N+t/LUdSaxqyq7qSrHG26AT6jJddNYn8ba1LKqB1+O2lmvNkU08F4jPxU6e\nNf5/S/lYTSlWq+t/cdNKacVvfCdSpdAPi2YDmsQLhHz7DqdKsbW3VLB67pLk6C3tGA+bpVNVEqPK\nEKN8FhFhq3cyEoVLkOaajszC4za3LzrLERWuNzUTldqn2mJ36g8s+pjrLJwnI2q5VqPQC2AtYVqM\nzIq+3hb39vI7snysJMcbicIjKOFF+ezcxG5Ppm3d5Wreo4NtBUIqkpiFQLG1t1RQPfftm2Wp02/8\n5IgkwznLgZHxcNLrfekjK6WyHEBUHPw5x5c+stJU9v6PtUttnp3lkiSqSmY24PdJ+t+O0FiKM8bw\nwO4j5me3q88ir/lzRts6R1Oduf+sWrog43WIkrpuhRwtIMvKHjg+AnGJHZPj/aAgx7saD3Wb36l4\nSNU4mbZ150vKuBCglXgBoSOJWUgUW3tLBfG5pyJ1qpKwFK+XivtPvd9nkhMdHJlElddjWsnG5VSN\nWG3t+30eQe4U0FTnlGVcvW6A28t/xmVDjdvBVhvMXpcY/lS+vtvFHKnOud1u7Lx7nSlS2qHTl9O+\nngrxx4fX7YJXkEkV5WStyurK8QZrKrJq6y5n8x5N4gVGofsOixRbe3NFtgVgxOeeiuuPipHxMI4N\njcHvc6e0rd0xJ8Fq1xbV9mrc9GIUgFFt7TPo26IlGVdFlDURdR6rOs3pqrIuZv45kCq3rVqMumof\nmuurUVftQ1dbQ2JLO3Mkvw/rXQxzWTsTmvhe6Nq60+k75Wzeo0mcIDJMrsOTxrfEdaROVYEk7n/+\nsCSlqXL/UkmRqtyQOpcFTK5e1y2PaZa/IriOPbr3qFSv6BLVUOPFgiqvJM959tKU5CZ12+8uNbVv\n69pGSRJUJDIzO3eaeh4340pZUwAwxGZBZeIU9nxitdeFsWhUkjXVPdg+MjljOqEflz8VUbVvbEqv\n3utbAqbv4rrlAQyNTZlc21Ys8uOq2krpHTg0OGp6BhVuhlf7L2TMFp3pPlAOCwxyMSOIDJKu610m\nXPZUKxjjSlc1gfcPjSndukS3I5X8aSrXc8L3tq0BEFMkiwfq+OzTb0j5REnRXEmllio7714HYP50\n+uDIBP7y2UNSPnHrPV1X02z1gWKFXMwIIg/kMzypyrRhlDpV0TswqkwXbeoq+dNUrueEuJzoTe2L\nAQD37TyozCdtipeQW1g+iLuAxbfA/3H/u8p84hGAdG3R2eoDpQ6dTieIDJLP8KTpSODqhpw02rDj\nsp6qerMRNnJTe8gkuyqGzYwjnrEuhl3GQkaUz9187WJlPvGwm9V7m+z9LGe7thNoJU4QGSRd25xT\nm166tsTWUK22/KnKhr1mWb2WFKtKElUVOvTQ4Khk693x729Lsqsqm3BoYaUkxSqGNlWhkkRVhRM1\nfo6jkj+trpDbpiqrQnW9iOK3yOIFPkkCFoAknaqShRXTlyxQS7Gq5HNVz0oMn7qsXt7K1nk/VbKu\nWzoby25lnSpkEyeILJDL8KRObImqsj63+QCXHRUelyTFqpLbVOVTSbYmk+pMFaO05/DYFL7570el\nPKKkajFIrHpdDJFZ87MTn6fTMwFOwrEaJVszLRVcLpBNnCgZCumwSrouYJmu05imK8WqW5alcJ5a\nV+9EzKeS68wG+49dwOR0BLt/cxYeUa1lDsmtuwhs6Vxon+p5Oj4T4CAcq1GydcnCyoxKBccppHEh\nn9AkThQ0hSSlmO22pBtNbPst7VpSrFZlRYnR6aj+MjQs5I1YlBWvORWJSpNnplfhALR8rMXFZTFI\nrIqPakKxdeL0ec4KX5Aop2vHzw2SrSqUUsGb1e+xyiZeSONCvqHtdKJgKaTttWy3RT+amDpK2PbN\n7Xhwd59pco5LsdqVFd2yMsFtq5fghYNnEp//oD2Ef+sbymwlRNrorqfF/RiPC/ijDzXi2Z7BRJr4\nXdvhdQGVXo/l+1npdSXS7SbnQhoXsknet9MZYysBPGNIWgHgfgBPz6UvB3ACwBbO+Ui22kEUL4Uk\npZjttmhHE7OIEnbN7yyU5E91Ik5l4yf8xrZF+PMb2xL+5LsOvkeTeAHhE84eWEmsut0Ms4b0Kq8H\nn7p+Ge7auCLx3fYOjGpP4n9fuhGsAAAgAElEQVSyYTk2r1pqu3VuJeFqpJDGhUIgay5mnPN3OOcd\nnPMOAGsATAD4MYCvAHiJc94G4KW5z0SBkY67UqbJl9tVJtqiU68xj1U0MVGHOzrLYzKminbEpVNH\nxsPq6ynKZiGGh+RmluloVYQzxN1Xy3fAws2wNVSL7s4mtIZqU3IpXGeQXHXSt8kVzUxOttMZY5sA\nfI1zvoEx9g6A3+ecn2GMLQHwc875SrvytJ2eWwrJ3qSSBH3gtmu1ymb6Pnb1npZcwFTX06lXlQeA\nlnQqOKRnopsmypBubA3i3NiUJGt6eTIiuSGp5E9PDU9ILke3dzZJ9arcvFRuYipXLJVb06TCBqCb\nLx/ouo6p8rVcJbvsqZ77TJRLZQH5euveJ7sUAkjqZrixNYh//tw6qc2ffvKAVFaUcV2ywIeRyZmk\n77vqDIiqj+n2xWJGdzs9V5P4PwF4k3P+HcbYKOe8zvBvI5zzgF15msRzRyHZmzLtOpWJ+0h2Ilan\nXrs8wPxpXQDadnLVISbRJcgq3957unByeDwha9rRHNCqNxv2dCI/7L2nC6MT4YTEal21Tymfu/ee\nLpNin+5ZDhHd992uz5b66fS828QNDfEBuBXAV1MsdxeAuwCguVkdBIDIPIVkb3LSlmzdRzLXMZ16\n7fKsnosKBgAHB0a17ORW6LoE9Q6MoruzKSFrqlsvzd+lQ/wdiPt27+wZsMxnnMR1z3KI6L7vdn22\nHCVWVeTCxewPEVuFx0+2DDHGlhi205XBiznnTwB4AoitxHPQTgKZs0Nn4hdysdjNjPerU69dnmTX\nUoX1tEJ3l62jqQ4v9Z01rcR16s2GPZ3IDx1NdaZ431a27o6muoy8o7rve7HYuvO5K5CLSfyTAP7F\n8HkXgM8A+Lu5/7+QgzYQmuRL/jPTbclVaELV/YqhONcuC5jqDdZUYFl9lSRVqQrpuGVNo8m+vHVt\nEwBIITePnx+3CBs5b2Ou9DCsXR6U7Jz/9w/ekGRNVfW+8NZpGF3K/RX64S9VFLINO1+Iz88FoFUh\nY/vuuXEtudfwzKyWpOzXf3Ik8V48tq8fG1uDSvncI2cua72j4vu4MuTHyYuTpnKq970Yw4nm+wxR\nVm3ijLFqAAMAVnDOL82lBQE8C6AZwCkAt3POL9pdh2ziuSfX8p+ZbksmyupcW1ey1GhL7Dk+jO7H\nD0h5fG6XSTxFLU2q5zvuhloLTXQnspLSFNOtrkcUNuL36FRSVny/1XKv6j6w8+518HrcSe3fgKwy\nWKhk8wxRQdjEOecTAIJC2jCAm7JZbzmQ7e2bdOxN+bJDx1E9k2zazVKRLDXaEuOSlDLJpTR1fce5\nhTlcVEmz+g0vpltdjygunGriie+3Uu7Vog/85r3L+N3m2Blm3XMhhU4hnCEi2dUiJN/bN1bk06aV\nj2eiul9uMUwabYxdbQ1KSUpxgo1EZyURjolIFG5hEp+OROEREpnmhGs1qEeExkj64kRRIL4/KSjq\nKhHlcyfC8vtoJb37zZ++DZ87dYnVQqYQ7PgUT7zIGL4yjfueO4SpyCzGpmcwFZnFvc8dyqsoS5y4\nHbrS60JthQeVXldObFr5eiaq+/327R0xH20D29Y3m0701lX7lNcTTVuidrUVLhfD/Zs/aGrHI3d0\nJMJTxgnVesEgDuo0O5cyufh2xV0bl8WsMj0z3z8f3N2H7be053ysyDT5GvOM0Eq8yCiE7Rs7bu1Y\nig2tDTm1aeXzmaju99aOpdi2bnlCmtI4gQOxrXUVXrcLUYOt2+ViiKrkMIX0So9bKVd5a8dSPP/m\nAHYfPovN1y5Gy6Ja3Pnk66aAJ7RLTgByaFM3kwPDWMGE3XO3y4WZJMFSdCVWi4F8jHlGaBIvMpxu\n3/QPjVlOLkac2NwzbYdO1pZ8uZPZ2d1bQ7WWz9fKfUeKiKnZpvi9Hj9/JeEiFG9Pz4mLeOvUCBbX\n+rDx6quk50STOBFDU4pVgWi60TksXYxb53bk02edopgVIelKkeqWKySbu25bciHDmMnncv8Lh2U5\nVUBK+9GvByQXobpqrySJ+r6raiXXMaOLT5wbWmUXM1U+XVQuUZkPKEqILFngk94B42e7fKMTEemd\nagpWS+5kutK7f/bhNqnv/ahnIKmLma7EarlSULKrTqFJfJ50XRr6h8bSllEsFtnVXLuTOX0uxl2R\ngN8nXV/c4iSIOOIOSjZcAEV3tPj73ntqJCEMFFf5M/Y9QO0+tvvzN2A8HE1LYrUcKQgXMyLzpGv/\ntbLD6sgoFovsaq7dyZw+F+OWu0pyktNGN2GB+GZk5U0RZHvj7/tN7YsTk3ccY9+zkk8dD0exes6U\nlKrEKmENnU4vMtK1/9rJKOpev39oDDt7BtA/NGZbV77Cf+q2RXUfqnzJQoUapSNTCTuqe31GwqaE\nBeKbkZU3xSIUabI+lQnp4XyHQS4maCVeZKQrJ9oaqlXaQ8XDV1bXf3Tv0Zzb04M1FZKk45bORkcS\nsD0nLkr3sWZZvZRPZa9TyamqpCN1wo7qXH/dinr0nLioJZupktdUSZiqpDSNNk4iv+iGZ/UIIUtd\nLKbOpnN+QmUTbw5WS7buRbWVWu+7qk8lG6Osxhmd/kSYIZt4kZKq/deJfXlkPJwXe3qmQ5GmErJT\nV0pSvKZO2NFUwokS5YXo2iVK8WYL0f5t9b6L6VayvXvv6ULA70s6RunY0svVTk428RInVfuvE/vy\ny28rA82lZE+P/3sqh85SbbNxQFCVtUIM2ZmKlKS4jRlv38h4GL0Do6j0uhyFEyXKC3k+zNUiy9wH\nrN93c7pVuNt4aFNjP03mnmlnJwf0xo9SjzGugibxMsGJfdmpPf03py9h6xOvpbxFlkqbxS3r7Zvb\nMRExLyVmLFY0YWEFPBWJwitoSVrJqYoSk5ORGXz/9ZN4tmdQfVMAJiNRadijVTihQrXKzQaicp+V\ndKoouyr2nTji2KBjZnM6fhSSa2wuoYNtZYITecDWUG1SKVGrOrZvbseDL/alJYmq22aV7OoDP+mT\nBiar8VBMnuXAlz6y0lTv1z52DVzC6pkhpqomYjeBq+ojiHwjTsUuF5TvuwgHcOvqJaY0cWzQlUV2\nMn4Ushx1tqGVeBnhRB7wgduutZUStarDqWuWTptT2TrXpd7vM0lCDo5Mwu/zmCRLq7xugAERQ8xu\nHclJgig0xM1znzv2bk8YDOA+i3MbXW2L8Bc3tlmODamMAemOH4XkGptraBIvM3IhDyjWYedKkok4\n4aptOKfomAqifHbOdj5PMRwUJQgRcZWdyrvd0VSH0YkwTl2cwPJgtfTvydzJkskY65jUCiGaWL6g\nSZzQIl2pV6euJLruWaIr2ta1jXj3/LjkUgfAJAe5sTWIc2NTknvNkTOXNepowuvvDpvKtjRU4/oV\nQZN8qldwB7JyGyIIXVRyt22Cu6CV+6D4PnoZEKz14azBFa2+2ouPfHCx6T2+47omHD8/LvWfr//k\nSKKfPbavHxtbg/jnz61L5AnWVKCuyoOzkfnrB6o8WmOArkttuq63pQC5mBFJ0ZVstSMdVxJ99yy1\ny5boJhavwxgopK7ap7w30ZVGdT3RLSfOzrvXoa7ah96BUUyFZ/D/7OrTeEIEUVh4GGCUGki1D3S2\nxH40v9R3Fp99+o2k18+EpHIpnU7XdTGjg21EUuwkW3UJ1lRgdVMdgjUVCfuVEaMrSRxVPjdzxVzA\nkqW5WMyVS1FHZ0sQX9y0Ep0tQct7YELXUF0vJksps//YBbSGatHd2YTD711W5iGIQkdc3in7gIWv\n5P5jFxJ/7+kb0rq+agyIYxw/7NDNV0rQJF6kZFua0CijaOdilk47dO1XVnZo+dS5Im2Wx+x6Seqw\nDgsq1Ku4nihLGaerrQHPvzmAzz31ayyocCvzEEShI9nJVX3Awteiq60h8fem9pDW9e1s2CTFag1N\n4kXIC72nsWHHPtz55OvYsGMfdvWezuj173/+MG5+ZD++vPMQbn5kP54+cELpYnbkzOW02qHrOhas\nqcCWzkZT2ta1TXio21z2oe7V2LpWzNeItcvrTWlrlwWUcb8XVpon2oWVbnz79g6hjlUIVHtN+Rpq\nfMqyn/+XN/GXzx7C3t+ew3d/cVK6/yoPKb0QzvAy+fMNc2c+4mxsDUoDvAvzZ0OM+ZYs8JnSlizw\nYcVVflPa8mAVtq5tMqV98vpmrAyZ860M+RNb6QBwU/tiZT95eGuHlstrtse7Yods4kVGtkOF2tm/\nAdiGzky1HcnsV3b3CsDWxm4lGyna8a3sdd/btgYdzYFEHb2nRpT5CKJQECVaraR8997ThdGJcOJc\nSMuiGkUYXLWtW0xXnUcRxwG7MSWZNGshhUbONWQTL1Hs7MmZiKZlZ/8O+H1oC9UmOp6OXdsOlf3K\n2BYntnPRpm28DyNW9ro9fUPoPTWCH7x+MhE/mSAKG70FWe/AKFoW1eCmD4TQsqhG2X+sznuIm+Cq\n8yjiePRq/3nLdiQjE+NMqUMuZkWGE2lCHXetL958tbLei+NhbNixb17W9Jb2jPtlqqRTde5Vlc9K\nJlW0gW9qD+EZhcLaq8fOJ9Kf6RnE0oWl/aufKAXUOuYiqr48Hp4x5YlYyBtGhLMnk5EofB6XkMfc\nR6dnzNe2akcqUqzl4P+tC63Ei4x0pQlVsoR/tfMg7t1pTnt471HJDr2lsxEP7z1qyvfgi33Yvrk9\nLRlXFar2Pbi7D9tvMdex/Rb5XlX5PrO+RVnPyWGz32xHc0CZ7/SladvPBFFofHnT1aY+8KVN6h/k\n397ztqn/fOMnv8FsmlZVDuBLQr1iHw1H5UNsqjFFV4q1XPy/daGVeBGSjjShKo8qmpbX5cKnrl+G\nuzauSNi/x8NR/PTwWen61/zOQpM0qZOOZXUP1yxdKMmf6uT71r+9raxnT98QbmpfbKq3tsIspyqG\ngySIYkCUCraKPihFIrOIWKZdb7UsUSz20ZoKD775R9diKhK1HVN0pFhpAjdDk3gR4ESaMF7W73Nr\nyYYat6ri9u+A3/r6KhnX/qGxpBrr4n3ZbZvFbdKb2kPoaA5Y5jOKuFhtk29qDyWtl86OE8VIR1Md\nXjl6DrsPn8Xmaxdru09amZ5SqXdkPIxjQ2Pw+9yWfXn9+4KJsWL4yjRtk2cIOp1e4OiG19vVe1qS\nHBTt3Vs6G/Fsz6ApD4Ck5b71iVXoOXnRJMFoJbuqK8+qui9VW77z8jEcFaQk/+zDbVK+Z3sGJInV\nnhMXMWmQhKryMPxd92qp3u3PHzbJoC6sdKPa58YZgwzlkgU+TISjUj6STyXSRSV/GuWynGqFh0nv\nMQApbWG11ySdumSBDxyQ0t53Va3UV1oW+aX+vefIWamsKMW6bX0zwCH1+c5l9VIfFcct1ZhFIUbn\n0T2dTpN4AZOqe4WOtOnuz9+A8XDUtKpPVs5OwtTYDl15Vl3XMSu3LtH96/j5K+h+/IDFUzTjczNT\njGYrVxo3AOP0bJWPIEoB0YV0dCKs7FNGSeH4Sj9d9zHAmZtpqW+rF4SLGWOsjjG2kzH2NmPst4yx\n9YyxesbYzxhjx+b+rz5ZRKTsXqEjbToejkpuXcnK2UmYGtGVZ7W7L2Nb7Ny/jPmMEo+pYnWgR06m\nTXaidOkdGE1IBbeGai37lFFSuDVUa9vndSRQk+UhF7PkZPt0+qMA/o1z/n4AqwH8FsBXALzEOW8D\n8NLcZ0KBE/cKq7J+n9vWT1wpdepQwrSjqQ49x4fx8J530HN82Pa+jHKvVnKNYrpR4jFVXBZzs5xc\n+DtWBJEuooSyVZ/qamsw5bPr8yLJNCpUaeRilpysHWxjjC0A0AXgTwCAcx4GEGaM3Qbg9+eyPQXg\n5wDuy1Y7ihkn4fVUZbd0NmLzd15NK6ynaPfa0tmolDDd2BrUClXYXF9lsnUvq6/Co3uPSra1JQt8\nkm3aeLocADpbgrg65Jds55cmI0lthA01PgxdDkt2yBrB3l3tcyM8MyvZIY2fCSIVxDMVVmcsFi/w\nSe+x6nyG6v0EZNv57WubJLu2KvSuGMp0ZciP05emcOc//cqUb9v6Zul64oFW3ZDCqrRyDTGqS9Zs\n4oyxDgBPAOhDbBX+BoAvADjNOa8z5BvhnNtuqZerTTyOk/B6xtPpm7/zasbDeiYLHerUlizKp+qH\nLFVLThJEKSCe7Ujlff/etjVYFvTbSiir+rzdODAyHrb0SLHqn/L1rSVcAZSdi5muTTybLmYeAB8C\n8Oec89cZY48iha1zxthdAO4CgObm5iS5yw/VxK5Ki7t+VHrdWn7iyjQXm3NFm59NjXYpO/9QXRUp\nK0Qf1ni9xkFjPBxV1EsQhIo9fUNYv6Ie/3bkLDwuoGVRrTw2KPq83Tjg91lH61NqVKiub6FbMTgy\nWXbhRVMhm5P4IIBBzvnrc593IjaJDzHGlnDOzzDGlgBQKhJwzp9AbCWPzs7Ost2zdLIN1XPioml7\nWmR6JipNr5ORKDxuwXc8Ogtxx2ZqJqqUP52MmCUWxRChqSL6sEZmZ/H910/iWYMP+JbORlyZNtcb\nplU4QSjZc+RMQkNh72/P4apaL6ZmzNv4kegsZgTFo8lwFD6PrCsh9kfRrdTqnI344z6ZbgWhJqsu\nZoyxVwB8jnP+DmPs6wDiMeuGOed/xxj7CoB6zvm9dtcp1+10J9tQ4nabCo8LUM11on5TfE43Xs7N\nAI+bSe2Y5WbdZa+b4UPNdXj9+EgibU3zQrxx6pJUr7hmdzHgwduuwYMv9pm03f/2p2o1NoIoBxiA\nv/m4uV/cvXEFHt3Xn7E6rDTc/voP34+H9x5N2h9Ft1KVTzgg60Ko0srBJ1xFIWynA8CfA/g+Y8wH\n4F0A/xmx9+NZxthnAZwCcHuW21C0ONmGYiz5Nrbb5cLMrNxVvW4Xpk0hDd0AAyYMxukKr3vu8uZ2\nuF1AJDqfVulx468/2o7ITDShpnZieAJvnDok1VvhcWHK8KvC7/NIcqpWUpIEUaq4mNkVsqZC7hdP\n/fKEsqz4Y95KUlictMUxII6utGvcZS2OlXSqbhphTVYncc55LwDVL4mbsllvMZNMElR3G0pnh8Uq\nj7iFrbp+qtthvadGMHR5CpcmIzZykFCWNUq7WpUliFKFCR1DtcXc1daAxzRW4i6LSVx0qdSNApiK\ni5lRmtVKPtoqjbCGopgVEC/0nsaGHftw55OvY8OOffhF/wVsWWOOKLZ1bSMe6l5tiurzUPdqPNRt\njvTz7dtXY2Nr0FR2Zcgv5bk65Jfy3LHWfJBw69ombO2U27G1s0nKtyxoHlyW1Vfhk999DZ99+g08\n0zOIzz79Bv7sB2/E5BoNbFvfjEC1+TdloMqjdGO7Qbivja1BLFngM6UtWeDDwkrzYRvxM0EUA78n\nvO9rlwXwav8F01jx3qWphEtZnCoPw7dvN48V/3VLh7KvfEroj3dc16zsP0fOXDbV23fmsrIviyfU\n73/+MG5+ZD++vPMQbn5kP+5/4XBaz4KQIdnVAkFt/07N5SJV2dWR8bBSMlF069J1RfO5XQgrtuBU\niG4uJ4fHLSVWjX7huucEvC4mxT4miFJB3Cb3MEAlWSBKFMfHiuffHEgEStl49VVSn7K6npiu42Km\nK8dMmCkUmzihSSqhQq1cLozbUAcHRpUhO+OyqwC0QxXquqKl4kq2p28IO7pXJzrxd1951zKfGDpU\n55wAJ4U1ooQRz7xYve3x/iOOFR//UBM+/qHYTppqrLC6nphuHI+sJmQ7aVaaxJ1juZ3OGKMJPoOo\n5AWNKO3ffFZy0TKGGE31epHZWURmoglZU91Qhap2qNJS0Rff1B4ySbHaSaw+/+YAPvfUr/H8mwPa\nsrCMtM6JEkbcQbV628V+piKVcLxiup0LWFxCOVDtVf670/MtycbAcsFyO50x9ibn/ENzf/895/zP\nc9oyA8W+ne4knKgqBOiaZfVa1xPDgooyilbhBlXhC1UhCFXhBr/0TK8UXrGhVpZOVYVD7D83JuVT\ntaW2yitJrJ69NKUlQ0kyqUS2EU96W7lrqRDf0SoPw5rl9VJfOTc2JUmiApDSFtVWSmX/+XPrpHpV\nIYR/duSs1B+/+tF2LRcwnbFHFaJYl3IIT+o4FClj7C3O+e/O/Z2Y0PNBMU/imQ4n6kQC1QmiDU5l\nm3/l6Dn85bOy65huWE8xXSxHEOWIKKlqdfZk593rcGkygj19Q9jUHsLCKq9lONHOlvnDcpk4j2PE\nygb+vW1rMDIRUdrNU6FcwpNmIhQpLVkyQKbDieqGBVWVdYL4W09V5+7DZ9VlpRS9zTp6AQlCP6Le\n/mMX0NEcwB9fvwwdzQHbcKJGlOMMc8XOmhjQDQFqZQMfGJlEW6gWAb9P+e9xkm2TU3hSM3Z27/cz\nxg4h9g69b+5vzH3mnPNVWW9dCdAYqJIkDadmotrhREU50cmwLJV6ZXpGup7KzuWEqDCLT0Rk2dXb\n16i3s8RWWEmxiukknEoQMAkgAbBUYmSI7dwZVdxUiGFGGwNVklzy9EwUHrd5oozMzkp9XrWNbWXr\n/uZP34bPbb/9rbNNTuFJzdgt1T4A4GMANhv+jn/+WPabVjqIJgtdt77j569IE7aqJEdMSMFIPBSp\n0UdU9Bvf0tmoffxLnHejsxwP7O7DVGQWY9MzmIrM4tme08qyHuEts9ogENNJxIAg1Fy71LwdfX1L\nAI+/8q6pP/7jfrXHR121vBKOnXafx+ViuH9zu2n82H5LOx580dzn733ukLRibg3VSr7jbldsa96u\n3PCVadz33KGk11eNbeUcntRuJV7FOX8bABhjFZzzxJNkjK0DcDLbjSsFBkcmUeX1YMywoq7yejA4\nMpn0pbPaDlOhctdQSR32D42Zon/99PBZU9u8bmbSPrdD/AHgdjFUe92YiJjjcIMDM7PGaEhquVcx\n3e1imCVfb4KQ+PDKEL62+YMJKWOvx407n3xdK5KfOFYMjkyi0uNGJDo/DlR63JK0q8q9M76NLY5l\nD9x2LbatW47egVFUet346v86bB5nFOVSub6VjGs5YjeJ/wCxUKIA8JrhbwD478JnwgInWz+6UopA\nbAur5/hwolPHD66IUocBvy9hlwr4IW+5pyD+I+ZUSrEq0izlXqV0msAJQkVXWwPqqn1orq9GXbUP\nAb9P23zW0VSXVN5ZJXkcT1flU9EaqkVrqBbDV6a1yqU6VpI8awy7SZxZ/K36TFgQrKlA57KAyc1j\n7bKA1svX2RLE4gU+LXevr//kSKKOx/b1Y2NrEC0NfpObx8bWIH59csRkb6qr8uBsZP76DTU+LKjy\nSq4qKheuBz9+bVKXuK1rGyVXlaDfiwtjYckV7boWsyvNuhVqtzNV+4yfCSJXqFzCdN0YVX1b1S8i\nisvtOvie5BL2rU+skvrjj3oG8IrgYnbkzGXJ7qwqqxKT2tLZaOrfWzobk45l8e1vnevr5CPM6PqJ\nm1zMcu1yVswuZk4kB+3KAkhsi49OhJWuJMnQlVa0cgkTJR0B2SXOqg4niLKwyeO1EUTps/eeLgT8\nviQuqum7jjl17TKu/u3y6+YrdTIhu9rIGHsMsTEy/jfmPpeWV30WcSI5aFe2u7MpUf7hPe+k1TZL\naUVhVrTapBMlHVORb3SCKAtLEzhBzI8Ldv0xVSlnI6nYrFXobn/TNnlq2E3if2X4W1wGF+eyOA+k\nEqoPMP8KtStrtH+nYjs3YumtLcyKLqhFVza1h5La1rJhdxFlYWklThCxccF4cNVKytkqXLCxrGqB\nYWezVq2exevRCjs7UBSzHPDpJw9IdimV9KHKR1Ilu/ru+fG0JEtFe9229c34lwOnJBtcsFa21Q1d\nDktSko/c0SG192//tU8qOzoRkeyGM1Eu1QtASvO407c5EkS2EW3WVjZsFUsWyHLEE+GodPZkYjqq\n1S9u72yS7OTgkNMAaUxR5VPJoqqkoTkgj1snLiY9j1NqMqmZJhOyqzcAWME5f3ru804A9XP//Dec\n832ZamwyinkS17Uj2eUzhvlL1/6twqm9WrSVi9KsBEE4R+xXqbiB6oUVNsu6xrE6t5NMGlpnHChF\nmdRMkwnZ1W/AvG2+ErEt9q8DuNdR64qATEXIsZMINNZhl681VJuwgafiO54Mp9Ot6MJdBJs6BFH0\npCKdwIQhXiWnaoXVmZxk0tCicIyKVGVSVeMxRTGLYWcTX8A57zN8PsY5fwMAGGPfzG6z8ksmI+RY\n2ZFE+cLtt7RjPGyWPhwPy3Kq6dq/VThdNIvlZ0iYhSAyjrjqTsUEOi0ESpmMRCHO4TOKYCqAXqhQ\n1fim075UZFJV47FqC79ct+ftVuKmb5Bz/keGj+rgzyWArvSfLiqJwO2bZfnCr+/6jfQLe5bHpFeN\ntCyqkTqhiwFbOs0vcCqSqpmCpnCCcMYqQU51TfNCqV/NcqDBb47RvWSBT5I6vW31Eun6HGqJVXH8\n2La+WSvSmGp8+/btq6W2bGwNpiWTqhqP/2rnQdy7M3NjdLFjtxJ/mzF2C+f8RWMiY2wzgPR8mooA\np24UKkSJQFUdYOoz1vuPXTCFDRwcmYTfZ5Zx9fs8+NT1y3HXxvfZSqoSBFHY/P7KEO43yKmeGJ7A\nG6fk8L5f+cMPwOOKRQ7cfO1ifPxDTQCQkDrtaKpD78AoXjh4RirrcTHTrlmlxy2NH6mEClVJoN7a\nsdTUlnRPp6vGSjs3uXK0sdtN4vcAeJEx1g3gzbm0NQB+D7EgKCVJtiLk9J4aScT57WgOaMuddrU1\naEskGoOgZDqKGUEQ2aerrQEti2rg9bjRGKhSBisBkDjk2r5kARoD1Yn0uNSpHeJIY5RY1Zm8VZOx\nyrdbbEs6/t+pusmVI5aTOOe8nzG2CsCnAHwQse/+PwA8CeALAP4sJy3MMdmQ/tv0yM9xdE4W9Jme\nQawM+SUp1nUrgjg3NiXJiZ6+NIU7/+lXtlKpgSoPHt17VHIREfOJWLmOhRSuL6p8uj8RxLyplCWI\nQkbXxWxhpVtyHav2uWdZFwQAACAASURBVKV+purvV4f8ifEDiI0LKpll0W21NVSLG1qDkjvq7Z1N\naY9vmTwvpIPVeAyA5Fnn0PITZ4z9LoBPAtgC4DiA5zjn38ly2xLkw8UsU8IEL/WdxWeffkMrr447\niJUEKkEQxY84Boif7dh59zqT6c3ObRWwl1hV4VR21Qmq8bjUxWMcy64yxq4GcAdik/cwgGcQm/Q/\nnLFWFjCZkv7b0zeknVeUE1XZfmj+JojSRRwDxM92qM7PWJ3vSSaxqiIb54V0UY3HJM8aw+50+tsA\nbgLwMc75DZzzv4dafbMkyZQP4qZ2/YP8opxolM/OhfKcx+4LIwiiuBHHAPGzHfHzM/FxK9XzPcl8\nsbN1Xohwht2c8AkAZwG8zBj7LmPsJpRJCNIXek9jw459uPPJ17Fhxz7s6j2d9rVual+MlSG/KW1l\nyC+5YGxb34w71prTtq5twtrlAVPauhWx8KRGlizw4YbWoCltY2sw7Qm/ysOkz6o6CaLcEfvBkgU+\nZdrVijFA1We/fXuH4K7VoRwrNirKnr40ZRq3ftF/QXL/srIdq8Y8Me0X/RewZU2jqZxOKFIiuyS1\niTPG/AA+jti2+o0AngLwY875nqQXZ+wEgDHEVvAznPNOxlg9YlvzywGcALCFcz5id51c2sSzZfd5\nqe9s4nT6Te2LAZgDBAT8PkXYQLUcophOtnOCKD7Efmxnr1YFJzEGQWpZVJO2/Vs15lV4XAA4pg26\nzHZhTGkizzyZkF0FAHDOxznn3+ecbwbQCKAXwFdSaMuHOecdhsZ8BcBLnPM2AC+leK2sYyd/6oSO\n5gD++Ppl6GgOKP9dVa8V4naISkqRxNMIorAR+7HRvizarAN+H9pCtQj451f5ddU+NNdXo67a52jc\nUpV1u1jsTI4xTTHOqCSkcwXJrsaw8xOX4JxfBPD43H/pchuA35/7+ykAPwdwn4PrZZRs2H2U0cmE\nKD9bOhsl2dWwhRyiuDqfiMhHFSgOCUEUNlb+2iK648dkxDx+TEZmJHlnlUuY0hd7lksttPLP1qkj\n0+Ta1a2QyWooUsbYcQAjiL0Nj3POn2CMjXLO6wx5Rjjn6uXpHLl2MVOF20v3BVFtVVG0L4IoDT68\nsgEvvzMflOi6ZQH86qStdTDBX//h+/Hw3qO240wq44fHBRh/33vdDC4G05a41fa3aswDZF9sMW37\n5nY8uLsvp25n+XR1yyWOXcwyxAbO+XuMsasA/Iwx9rZuQcbYXQDuAoDm5uYkuTOLSkYwXVRuGcxC\nYpUgiOLiqtpK7L2nK2Gv/uqPD2uXrff78Iv7brQdZ1IZP9wuF2YMK2qv2zWXbX6nzsolzGrMS5aW\nD7ezfLq6FSJZncQ55+/N/f8cY+zHAK4DMMQYW8I5P8MYWwLgnEXZJwA8AcRW4tlspwonPojGQyjp\nRvkhCKLw2dQewuhEGKcuTmB5sBq3rVqCX5/QW4l3zNm97caZVMYPMV21JR7fsteVTtVJ0zU/Zkqw\nhVzdzGTN7Zgx5meM1cb/BrAJwG8A7ALwmblsnwHwQrbakA/uf/4wbn5kP7688xBufmQ/Hn3pqDLK\nj8plS+U2onIvWVjpNqUtrHQr3Vp0EF8A8kMnCDWqvvI/fnkC3Y8fwGP7+tH9+AH8e9+Qsn+q+ruT\nKGGqseLbt6825XuoexW2djaZ8m3pbMSr/Rcy5kIbrKnQcjvTcWHTbYfqmZDsajYuzNgKAD+e++gB\n8APO+X9hjAUBPAugGcApALfPHZizJB+yq+nQPzSGmx/ZL6XvvacLAb8v8Yvz+Pkr6H78gJRv590x\n7eO420hcfcm4sh+dCCvL+twu00E42rAniPyw8+51ePvMZbxw6AxuW7UE71+ywLK/GxXW7DCuWAFo\nuZOp8qlcx5zYk3Xs02oXNufuaiS7GiNr2+mc83cBrFakDyOmBFdy9A6MWqZ3dzYlXrSnfnlCmW//\nsQv44qaVUsc2RgN6eI9VFFhu84kgiFwR78d3/l4LAOs+K8qk2mHcwj44MKolp6rK53axuRPmye3k\nOujYp7MVTpRkV2PQ7mkG6Wiqs0w3+jR2tTUo83W1NaDn+DAe3vMOeo7PRx4yplmVFXtEWUjrEUQB\n0tXWgP6hMezsGUD/0Jhtf9f1ddaVP02WLzrLY65iirLpoGOftgonKkpKl7Nd2wnZPp1eVrSGarGx\nNYhXhNB/R85clnwaVfn+20vHpPCCHJDSVOEPZwSfctpOJwg9VKFy3Yo+FuVyvg2Kfrzr4HtSWGBV\nKFJV2FGVK6vKJ3pLZyOefs3sJ/5q/wUpnyqMZ8/Ji1LZdFe0wZoKZVuM14vbzY3PZOvaJnQuq6dw\nohkgq37imaJYbOKp2n6On7+SsH8DUNrNCIIoXL63bQ0WVnkT/biu2qc8F6NClEZW2YR1xxS7cQaw\nt5PnwybuJCRquZB3m3i5YDxckart59JkBEOXp3BpMoKDg5dy3HKCIJwSj4cQ78cnhidSKG3eL4uP\nCyPj4cRB1vFwVGtMsRtnktnJ82ETdxISlTBDk7gDxG2u7ZvbJenD6ZkoPG7z0YPI7CzuefYtvHs+\n1uGf6RlEU4BeZIIoNl49dg7P9AwCiPXj5UF9m25EsAlfmZ7B918/iWfnrgeo5VRVY4qVJKpoY860\nj7WuTVwlCUv278xAB9vSZPjKNO577hCmIrMYm57BVGQWD/ykT8rncjHc/7F2k0/jtnXNiQk8zsBI\neYv4E0QxcvpS2PT5xPAkbny/+SDblk6zH7UVHDBN4Eh8Nk/OLhfD/ZvbBZ/w1XioO7nvdKZ9rHWv\nF1OZs/5MpA+txNNEuXXuYnAzN2Zm5w+wVHrcuOZ3FprkFb/1b9rqswRBFBmLasxSrOPhKH56+CzG\npudXoxVuF6YtAhyJeFwMM4ZVe6XHjWuWLlRKturIRWdSVlrneoMjk6j0uBGJzt9/pcddtjKpmYYm\n8TTRjfyj2qra1B5KbMERBFFabGoPmUKHBvyyNCmH3gQey2smPqY48ZNWlVXFLFehK9kah2RSswtN\n4mkS30bSifyjcv3QReX+ot/9CYJIxuIFPpy9PL8tvmSBDxfGwlouZipXtCvhKDbs2Gd2CRNcrO64\nrhl7jpyV6q2t8uLo0HgibWXIj0W1lQk3UwBYuyygnDCdhOe8//nDklvcA7ddm5E6rMZKWoVnBnIx\nc0gyUX9AdukgH26CKF28LmY6tKZy/xJlklNl7z1dptWyk/CcdnLRmaojXp7cyfQhFzOH6EbcSbal\npbKd0wROEKULF3q4yv3L6SgQl3i2c0Wzcx0zjmV2ctHGSdxpCFAn2//0A8AamsQVqLaMOKC1jaRy\nOzMeaCEIorRhwl5blM9iZsY8aYuSo6my/+g5fHnnocTnLZ1LMTUTNeWZmokq7c7iGPXFm69W1iHK\nSOfLtu3ETFAOkIuZgMp17K92HsK9Ow+a0u597pCkd6wq+41dstsZQRCFjRMHqL/6TytNLlf3b/4g\nXC7ZTez6loApTRV6eEvnUqktDMCuQ2dNac/2nMas8MNAZSpVjVH/9WdHlXUE/ObwqfkIAapqr2rs\nLWdoJS5g5TqmE/lHVZY2zwmi+PAIdm2vmyES1evL9X6fyf3LysXqrz/ajshMVAo9vG3dcsE9bci0\nm+fzuEz29USb3S5EDelVXo/WGOV2MVR53ZiIzI9vNRVyWSDz7mnJcLqFXw7QJC7gxHVMVZaOsRFE\n8SFqkaSyMk9lGzpYU2Ebenj4yrRiTFEjrrx1xyjd8S1OLkOAkntacmg7XSAelcfI1rWN2Lq2yZSm\nivyjKnvHdY1YWOk2pS2sdKPKYx4WqjxM+jLoyyGI7OMVNccZsLyh2pTW0lCNJQvM28tLFvik7e9t\n65tx5MxlbNixD3c++To27NiHX/RfSHsb2mo8UtV7x3V6Y5TYloe6V+Gh7tU53SbXRXX/TqKulSLk\nYiaQaiSyZBGHxEhFcUQXk1S26wiCKAz23tMFYP6UeMDvy2jELju3LmOgFLt6k51Ot/O+yTdO3dqK\nGXIxS5NUI5Elt4lbbaeb0xweViUIIg/0Doyiu7Mpsf1tFyUsnYhdySKA6dSrqlO1JZ7LbXJdyCae\nHJrEBZQ2I5sIQcZfr2qbuNXsbJ7cXcx4bI4giGLAqRtWMqlT3euVqu24VO8rk5DZVUBtM1JHCHq1\n/4Jk++pcZnYbWbciqLR/1/vNv58a/F6lbY4giOxh1cdWhvzS56sVaeLEG6ypwJY1ejbc+58/jJsf\n2Y8v7zyEmx/Zj/tfOCzl0b1ePty/ckGp3lcmIZu4BenIqfrcQJiW0wRR9Lhh3hmrsHDrSleaNFtS\np4Vo184EpXpfdpBN3CHJbEYqGxSj8CQEURLo9uJ05U8zIXUa/3fjxDYyHsaxoTH4fe6sTXb5mFAL\n0V5fKNAkniaNgSpcEeRUdeMDEwRR2Ij7k6pVOADsP3Y+LflT0ZZulW5lE/7N6UvY+sRrJinSnhMX\ntSKROYEkUAsPsomnych42JGEy/KguVPXV7stchIEkS1WLbWOm50MF4BdB8+Y0nTlT1tDtUpfb5WN\nXbQJb9/cjgdf7DNJkX75R72mCRwAnn7tFPqHxtK+PxGSQC1MaCWeJlbbYRVul2lFbmVL+/yH2xCo\n9mJP3xA2tYfw4Iu/xcWJiay1lyCIGMvqq3Bbx1J0tTVg/7ELOHRab6ITQ4x6Lfq2V0P+FAAeuO1a\nk8Sq6nQ6IEudqrbYrUx54va8E8jdqzChlXiaWG2HcaEjWR0c7Giqw8IqL0ILKrGwyovbVi3OeBsJ\ngpDZ2Dovc9rV1pBCyeQrbDmXvUtUwO9DW6jWFGxk+Mo0Dg6Mmla4cVv3yHhYucUujjtxrMapdCB3\nr8KEVuJpEt8Oe/o1sw3q3fPjeLV/OJF2fUs9Dg2O4tLUvJ1sYaUbX//JkUS+x/b1mwYWgiAyQ5WH\nYVIIA/o/fzUIYL7feRkQMWTxMqCh1oczl8OJtCULfPjqR9txr2AP/lHPAF4x9PeNrUHc3tkk5VOt\nVHVDHqts3d/6xCqpjp6TF6XxKFOrcGB+a1/n3ojcQS5mDjGKNQBQuo0QBJEfvrdtDfqHxvD8oTNY\n07QwMYGnw957uhDw+2zdTHUlVnXlnX1uhrBCjllsS7yOZOIxmaAc3b3yga6LWda30xljbsbYW4yx\n3XOfWxhjrzPGjjHGnmGM+ZJdo5BpDdUmZBet7OQEQeSHPX1DuPvDbfjpF7pQX1Pp6Fq9A6MI1lQk\n5FPjNmIjRhuxncyqqqybuWJhjw0wMZyaRVviGMejbJHs3ojckgub+BcA/NbweQeARzjnbQBGAHw2\nB23ICCpblTEtk/YngiCcs6k9hJ7jw3h4zzu4qsbZeiEVidVkY4WVvHNU42S7qi2qOlLFSVkif2TV\nJs4YawRwC4D/AuCLLPaz8kYAfzyX5SkAXwfwD9lsRybQtV9dHfLj6NB4otzKkB/vnhuXbG6AbIeL\nFL5lgyAKApUdO8rN57NdAP7HL0+YzqiIxCWRjXbzKg/Dwmovzgo2cSv3L9FG/Gr/Ba2xQmnXFuzf\n8fCiOrZuJz7c5P9dvGTVJs4Y2wngmwBqAXwZwJ8AOMA5b5379yYAP+WcX2N3nXzbxNX2KxcAjmlD\n5yfZVYIoXXbevQ6dLfIB1GRyzKqxQmU7V5VVhR1VTeBOQnaWc7jPQibvNnHG2GYA5zjnbxiTFVmV\nvyIYY3cxxnoYYz3nz5/PShvtMG4tKe1XLhYLUWqAkcceQZQs+49dSJpHd6wwSqfalY3nS2brtiub\nTpt1yxL5J5vb6RsA3MoY+yiASgALAPw3AHWMMQ/nfAZAI4D3VIU5508AeAKIrcSz2E4JcWtp++Z2\nSUoxEp2VlJkiJLtKECWLyqdcGituaZdt3bMc4lpFJZ26/RZ5nFFJtqpw4sNN/t/FTdaWjpzzr3LO\nGznnywHcAWAf5/xTAF4G0D2X7TMAXshWG9JBJS34wE/6pAl7dpbDJZwkdbuZcquBIIjCReyzLgas\nazGHFN7YGpS20lVjxYMv9mH75nYhlPEqPNS9Oql06gO7j2hJtqpwErKTwn0WN/kQe7kPwA8ZY38D\n4C0A38tDGyxRSQvGtsPcmIjM/0qu8LgBBkSi82letwteF0z5CIIoXKp9boCb+6zf58FXP9qOyEwU\n+49dQFdbg9IWbiVDes3vLMQv7rtR8qVOJp3qZi64vcCE4WCNlWSrClGeNZVJ2ElZIr/kZBLnnP8c\nwM/n/n4XwHW5qDcdlK4fiu2wKJ8FOEuajyCIwsVqqzs+kakm7zh229Cq0JnHz19J/ChoWVSjdDET\nx5RUt7UpZGf5QSexBII1FdiyptGUtnVto7Qd9lD3ajzUvUraNlsWrDaVXRny57L5BFFyLKx0S5/j\nrmFxqjxM6msrQ34sXmD2DfcKe+fXLQ9g7fJ6U9raZQHtbejOZeZtd6uydz55AN2PH8Bj+/rR/fgB\n/OUP35K2sFVjSq62tV/oPY0NO/bhzidfx4Yd+7Cr93TW6yQyA8muCti5WwCylKLRveT4+SvofvxA\nTtpJEOWCGJ/LSopUdPF04vK5956upKpn/UNjSpllsWzP8WHluLDz7nVoWVRjO6bkYgInF7PCJO8u\nZsVKqlKKxjQdFxSCIFJD9PmwkiIVXTyduHzqSChb5RHTrcaF/ccuJB1TcgG5mBU3NIkLpOpuYfQn\nTy2sIUEQOoiDlHUIUL3wnDp0NNWlLbMspluNC1bpuZY/JRez4oZCkQrEbeJG6cMtnY3aoQTF0IdV\nHobpGS7JQZJHOUHo0SpIGbc0VOPspSkpvG9oYaWQL2Yjf8eQJvbPja1BDI1NSVLJR85c1pJOVYUj\nFrfhO1uC2NgalEKWqg7N5UP+lEKMFjdkExfQtQ+p8nkYMFP4j5MgiDms7Oai3d1OOjWZJGqcnuPD\nti5r+bZNU4jRwkLXJk4rcQEr30/RV1OVjzOQhxlBFBHMYl8sZnef78xuF5vr4AZdiLlxoTFQhbZQ\nLQJ++yhpnS3q1Xcc3bEnW5B7WnFCk7hAY6BKS/qwMVCFK9MzpjRSXSWI4mLaotOKO5S60qlOtr/J\nNk2kAx1sUyB2YJXJYWQ8TItugigBVLKrX7v1g8mlU2+RpVPvfe5Q2gfSSP6USAdaiQsMjkyiyuvB\nmGGVrZI+1HFBIQii8PG5XaYVud/nSVs61en2N8mfEqlCk7iA3ZaW8WCKlXsJQRDFheiKZiedaiQT\n29+qw2S6tmk6iEYANIlLWLmYfeGHb+HVOReRx/b1Y2NrEAsr3ZKbS3hmVnIxm6Qj6wQh4WVAhJs/\ne9x6LpoVClfOzuX1khsXAFPakgU+nLkcTnzetr4ZB94dNrmYLatXT4oq968tnY0mFzMrd1QVTtzJ\n8uGKRhQm5GImoHLz8LqACB1aI4iCwQ3jOfF5VywxyIjKZet//h/X4cTwBDqa6jA6EbaURDWeJFeN\nC3ZuZ8kmcifuZPl2RSNyA8mupolKghAWMo8EQeQHcekRt0V3tgTxxU0r0dkStJQT9Xrc6O5sQmuo\n1lYS1YjqWrEQxenJlTqROiWZVMIITeICKjsXimC3giDKCfFnddwW3T80hp09A+gfGrO0Wft97qRS\nyWK6VYjiKE/PJu7Enm5XNheSrbmWhU2FQm5btiCbuEA8vOCrBjvauhVBnBubMsk3rgz5cWp4guzf\nBJEmqjMlAKS0iemoZDv/5LpmyRb96N6jprMs29Y3S325ub4Km7/zqsmWLNrJlyzwSaIswZoKyf69\ndW0jOpfVpyVX6kTq1Krsq/0Xsm4nL2RbfCG3LZuQTVzAKrygKM9IdnKCyB9i/7MKT5oMK9lVMZxo\nqiGKdXFywtxYFkDW7eSFbIsv5LalC8muWpCs01j5f8vyjKSxShD5w9z/RJlU/auoZVd7B0YR8Pu0\nfMKdhA11InVqLHtwYDTrkq35loUVMY7lhda2XFJWk7jOdouV/3dEkGecmaUJnCDyRVTof5GZ9LbF\nrGRXL46HsWHHvsRYsf2Wdi055nyRC8nWQpKFFcfy7ZvbC6ZtuaZsDrYNX5nGfc8dSiqR2Bqqxbb1\nzaa0LZ2NcLvNR2loCieIwsHlUnuQ6PiV/EF7yPR5S2cjHt571DRWPLD7CGZnk8sx54tcSLYWiiys\naix/cHcftt/Snve25YOyWYmnst3ywG3XYtu65YnwguPhKH56+Cwi0RnxsgRB5AGXCzAuvCzmcHg1\nbOVXL67Fl//TSqm/G8cKN3PB7QUmDAZ0lRxzPsmFZGshyMJajeXXLFVL5ZY6ZTOJp7oVFPD7EuEF\nA35IZckiThD5Q56zrXpk8p7a1daQtL9H+excKNJ5jG5d4sSRL0nUXIQTzXfIUruxPN9tywdls52e\nylbQC72nsWHHPtz55OvYsGMfftF/AVvWNJryfFrYcicIwhpxoHEBWLzAHH97yQJ1PO6465nx8yev\nN/e/O65rxMqQ35S2MuTHHdeZ+614rZUhP05fmpL6uzhWPNS9Gg91y+PHq/0XTGV39Z6Wxo9dvaeT\nPB0iFQplW79QKDsXs2S/kNXyigwAw7Th8AytxAkif4guZSoJVFW/FbGTTgVk17Fkbl2qOovd1alQ\nKfUAMORiZkGy7RaVvcXNXNL+HU3gBJE/RJcyt4vNbXfP26xV/VZEVc7OdSyZW5eqznJxdco15bh1\nrqLsJnEVxl90SnlFhT2MVuIEkT/EHcSYy5mQpui3Iqpydmdl0hkrysXVicgPZWMTt0Jl/+5cFjDl\nuW55vWQPe/SOjjy1mCCKjyoPkz6rbNgq27nKJl7v95rS6qs92NrZZErburYJWzvNNvGNrUHB1r1K\nKmcVTlQ1Vqhs52KdqYQnJYhUyZpNnDFWCWA/gArEVvw7OedfY4y1APghgHoAbwL4NOc8bH2l7Mmu\nquzfVvKNe+/pMik47fz1KXzz349mvE0EUS743C6Eo0Z7ssvWfp38esnt5JVeF3Z//gaMh6MpyZXq\nyq7qXo8gklEIoUinAdzIOV8NoAPAHzDG1gHYAeARznkbgBEAn81iG2xRhfRjFmFHewdG0XtqBD94\n/SR6T43g+UNnctFEgihhMruAENcjVqFC37s0H7JTN6ynXb5gTUXCfm6XrxwjbCWDnolzsmYT57El\n/pW5j965/ziAGwH88Vz6UwC+DuAfstUOOxoDVZiMmAVcZixkGL/z8jGcGI517Gd6BhH003ECgnBC\nRNjxCjtYhQOA+Ps7Osula16ZnsGfPt0Dn9udkOsUx4DJyIxkw24MVGnJrlr5MP/m9CVsfeK1souw\nZUe5Rh3LNFm1iTPG3IyxXgDnAPwMwP8HYJRzHu81gwDy+q2JK2+rlXh8Ao8zPE7qbQThBHEdzgHc\nunqxKW2LYF+248ubVprs0//X/7ZCWcf0DJ+XU/3JEe0xQDQ9qkyRKh/m7Zvb8eCLfUkln8sJXRls\nIjlZXU5yzqMAOhhjdQB+DOADqmyqsoyxuwDcBQDNzdkRVhkcmUSlx22SU7WSbyQIIvt0tV2Fv7jx\nakkCdWx6vo9WuF3KwCX1fp9JdvOpX55IWp+bueB2AZHo/Cq70uOWXMIGRyZR5fWY2mEluypKk5Zz\nhC0r6JlkjpycTuecjwL4OYB1AOoYY/EfD40A3rMo8wTnvJNz3rlo0aKstEu19aUXMoEgiGwgRhFU\n9VGuCB0aLzsyHsaxoTGMjIfR1daQtL4on5UjohnkVOP2WicRvAop+lc+ydTzJMxk83T6IgARzvko\nY6wKwB7EDrV9BsBznPMfMsb+EcAhzvl/t7tWtk6nA8CnnzyAV/qHE583tgZxaHAUl6bmf5kvrHQj\nPDOLScMp1yoPM30miGJlZciPd4bGTZ8vTUZw9vK808iSBT585IOL8fRrpxJp29Y3mz7HWVjp1uo/\nddVenBHraF+Mpw+Y63j3/DheFfpoyyK/1BZwSGWPnx839e+VIT9OXpw02WEB4F7BNssByV6ryqey\n4apsvbplSxV6Jqmjezo9m5P4KsQOrrkRW/E/yzl/gDG2AvMuZm8BuJNzbmsIydYk3j80hpsf2Z/x\n6xJEMeECTGtb0fUrzs6716Gu+v9v7+6DpKjPPIB/n519gX05WRZcCSywuCsJMYCyCkazFc+Xu1Qw\n4N2KEj1NyhRJnblL0MS8XOIld8mVOQ2+3FWlRL1TK6mcqdUoZy45AnqHJsLVogi6KqyiLggLrKwu\nILAsz/0xL/R0/3qmZ6d7emb6+6mi2Ont6e6d2d7f9O/p53mqU1PdG984gO+t6XWsF4O1/hlQVQGM\n5HfPmsO6lZ0AkDoWAMZzed3KTgwdOY4NOw6gs30SOlqbsjYsAdzTxABnKVYrr6loUZoy5msyNqGX\nXVXVrQDOMSx/E8D5Qe03F1v6h8I+BKLQOcdX8wf7DTsO4ObLZ6OtuQEA8J1fbzOuZ3/2yQCuE7b0\nD6GroyV1LN09/RnX62htSi0zlevMVk41UylWq0yx3mzPLVd8TYIV6Ypt9vgbURQ5/wiY7wvpbJ+E\nnp2DWLX2dfTsHMSSuVOM69mfHcTNovZz1+1cnt8yIedcZMa//cXXJFiRHsTbmhtwlqH0o70loluL\nRKJyYL8SN02lA8Dd63eg676NuPfpPnTdtxH/3TtgXO/aRenZJMsXTjeWXTWdZ59qa0pb9qm2pni8\n2+L6C6anrsCT2pobjM99Zc8HObcFzafVJdtkOvE1CVbkWpFaMSZO5L9YhaTd8Z1LOVV76dRk7PTg\n4eOp+Ld9AAe8txDOpQRqPq0uy71N5ljwNclN6DHxYmX9RWJMnMh/J/MIgttbjFpjp6bBO8lrC+Fc\ncpG9tro0DU6FaJNZTIOil2Nh69BgRGoQt6c53HzZWWEfElHZEUmvY27Pw87EXvbYVALVxFRC+diJ\nUVTG0iOGfsdiwyodWkwlS4vpWKIoMjFxU5m/Vb/f7ijruKxjGsu9EBnMmpQ++C1qbTSuZz9/8gnZ\nuZVA9bJuRYXgPRob6QAAFVRJREFUtsVzAovFhlU6tJhKlhbTsURVZK7E3dIcrl04Ays+NStjmUd7\nHi1RFDXVj8M//+W8VM51VWUM1z2wKe1cqa2OAQocGTmVKV5ZUYFRl5vl7GIVglFrTNxQAtXEVEJ5\nXGUMZ089La0Uq5/TuWGVDi2mkqXFdCxRFZlBPFuaQ3tzAxrrqtFYB8d6vDIngiOlzHROxafObY1C\n8vgIbC2BmmkgznR+jzUW2zcwnPFmuqBSp/L5Wb3Gyf2KpzN9LHyRujt9zZbdnsorfv+JbY6ykdbH\nROXEVCbV9Pt+UVuTo/wpAEfZYlNJ1Cdf3O3Yx/jqmKfSrgtmTPQUczWd32ONzd72xDZHCdd/WPKJ\nQPcJeI8ve/1b5rUsbD7H7PdrQHGhl131k58pZtnKK9pLRhJRbqpjwHHLSVQpgNc2A/Z0tFzTxPy4\nwnRLPV23stM1vc2Pq9pM5Umz/ayAe6lY63Nz3Ucux14sd8qXC6aYuchWXlHTM1yIKEdiu4skl9PJ\nHrrKNU3MjzQmt9TTLf1DxkHcr9SpXOPLXkvF2luqBhHDZvpYeCI3iFuZ4jnCAZwoL/YYeC73lNhP\nv1E9mfhkfUoQMVfrlWSmEq5+7SPXWHc2Xp/LGHb5iUyKmUlTfY0jxezaC6Y7XpRIv0hUVs7wWOr0\ntHGxtGWnjYthtqFEsWm9a85LL5P6+UXTjSVWTSWPrz4v/Xy8+rwWnD8zPZXtvBmNvl71Pblld1pp\n1t49H3gq9ZrPPkzlXwtR7pUlUMtP5GLiVqb4UC7xO6Iw2H9H3X5n7142F8/t2I/fv7oPl33sdFxz\n/gx03bfRsZ69VagpDl1TWQFAceyEuj4v1+2ZSrHa4+n2x0lu8elcZYoRZyv16sc+/I7rF/rudAoO\nY+IemOJDHL+p2Nnv23BL4Hpq2158pXMWPtJYh872Sdiw44DLmukbNMWhYxWS2PGpEdVtv/ZzyLQ9\nN/Z4uv1xklt8OlfZ2mQGvQ+/4/pen8sYdvmI9CBuKtU4ylGcipy9bopbVdN3DhxOXXnf+3Qf5k41\nD0gjtg0cGRlFVcwWhx496WgpWgFzJoct5Gosf+pmxPbD2R8n+dVGuBAxYsahKUiRD/faSzXGWNmF\nysT2/YfTHm/dPez5ufYmJqqK2674eFos9afL5jvi5GdOrkUsZih/ekV6+dM7uuY64s7LOqY5nhuL\nieO+lXzj01aFiBEzDk1BinRM/KX+IUfZyKqYYISX4xSCmKTPBOXSwtNvNbEKHLNcBTfUVOLnX1qI\naY3jHbHU9b17sbZ3AJfPacakhnGOcyrTc61V0Q4fH3V9bl11zJf4tJtCxIgZh6ZcMCbugWmaCyXw\noYbKk5+NQ/JlTxPLNP07f3ojJjWMS30/l/Knbc0NqUF58NCxjM8NYvBOKkSMmHFoCkKkp9Ob6mvQ\nMSM9fWXRrCaXtYn8Y0q5uuDM9N+9ha0TjSlhVfbiJwJjqpcpdcz0XFM61Z1XzXdM/z7Xd8CRJmVP\nnfpD3wEsW+DsDOj1ZquxPpcoqiI9ne5WXpEoaNUxwXHL3Hm+U+f27SVTmHbuP5TqOjahttq1nCgA\nx3R1trKeprSzXMukWgVVEpSoFHE63QO38opEQYvfUBncB+hkClNHaxM6WuNX5N09/cZ1t/QPoauj\nxTFdna2spyntLNcyqVZsa0mUu8gN4l7KKxIFLegZsGQsuWfnYOpKPFM5UdNNV9ZlXtuOZiqTGmTZ\n0aRs7UOJyk2kptNNLfh63n7P0frQ+pgoV+byJKdcf8F0rH1lr6MNZ8P4KmwfOJUWNru5Dqc3jHO0\n+hwYPupY76aL2x3tIH/V0+9oHWpqE2pq9Wlqa2k6VzpmTHTsF8CY22Tm09bSa/tQolLAVqQ2Xssr\nPvSHN/Hz/9uV7yETpbl72VycOBm/6n178DBufGSzp+etW9mJoSPHU1fTrZPrXX+PAaSudHfuP2Qs\nsdr95UWYUFud+n1vrKs2xLq9lV017dd0FQ94a5OZNJZUrFzbhxIVO8bEbTLF20ZOjOKd945gZlMt\nfvvKQIhHSeXqzQNHcPPlswEA9z/7pufnJePVybh2ppaT81ompAa9h//4lnF7G3YcwM2Xz04NbMZY\nt8eyq6b9Jnltkwk4PwCMRa7tQ4nKRWQGcbd42z/9Vy827TwIIF6a8vT6qjAOj8pcZ/uk1NeXz2nG\noz3eZnvscWyvcePO9km49+m+jMfhtj1TXHv0pGLUtt7RE6N5tcl8eff7uHr182OadrcLqn0oUbGL\nTJ64qfThVzpnpQbwpH2HRkI6Qipnuw4eSX192nhvHxQFQGNdep641xKerZPrHcVjJLE82/bu6JqH\nO7rSl912xRzH8XkNxZn28f3PzsE//qYXR0dOYvjYCRwdOYlvdr+EW7u3pi279bGtGDx0LOs+Guuq\n47MFFrEKcbx+ROUmsCtxEWkB8AiAMxC/z2e1qt4jIhMBPApgJoC3ACxT1YNu2/HT5+ZPxYVtk1LT\nd25TjkR+e2rbXiw9twUAXLuJ2Uv+1tdUGtOr7L/HpmnoXQc/RH1NZVoJ01y3Z1226+CHGF+Vvr3x\nVebtmdj3YQpv5ZueVlsVSzu+2qoY09Oo7AV5JX4CwC2q+jEAiwDcJCJzAHwbwHpVbQewPvG4YJrq\na1IxPPvUIlFQFn/ijNTXrr93tivbTOlV1t/jpMFDx/BS/xAGDx3LOV3LtD3rMr87cblN44+e9P4a\nZNteuXcKs77fFF2BDeKqukdVX0h8PQzgVQBTASwB8HBitYcBLA3qGLJJ3ixE0eG1ZKm9O9fs5jrj\nc03rmUqqJq/Cgfjvnakk6vLznV29vF5FGsufdvhXwjTfkqim4/Myje+121fUOoXZX881W3aHfUgU\nkoKkmInITAAbAJwN4B1VnWD53kFVbXR5KoDgyq7++D9fxv1/eNv37VLxqo4Bx0fdHyetW9mJtwcP\np7pznTa+ypiy5Vbu9Nnt+/DUtr1Y/Ikz0gZwK2shlkypY2MpV5opJWwsA1s+JVEzPRfInJ6W67FG\noVMYy9NGQ9GkmIlIPYDHAHxdVT+w9+/O8LwVAFYAwPTp07OsPTZPvbw3kO1S8RJbKRb746Rkatcl\nc+LT4KvWvu5p+8kY7tJzW1wH7yRrSdRMaVhjKVeaKSVsLH/o8ymJmum52dLTchWFTmEsT0tWgd6d\nLiJViA/gv1DVxxOLB0RkSuL7UwDsMz1XVVeraoeqdkyePDmQ41t89hnZV6KyYm+xaX+clCxFmow5\ner1/IhmHXd+7F9/qfgnre719UMwnputWEnVUg41hM14dDr6eZBXYIC7xS+4HAbyqqqss31oD4IbE\n1zcAeDKoY8jm7644O6xdk0f2X9AKmFtnem3FOdGeslVXbdzeK3s+SIs5vvv+UeP2FrZOTFt23oxG\nLL//edz4yGY82rMLNz6yGX921/9k/Tnziema08Tm4o6ueb7FiP0+vnKOVweNrydZBRYTF5GLADwL\nYBtOzVd+F8AmAL8CMB3AOwCuUtX3Mm0rqJj4+t69nstfUjjsvb5MpXLNpUOdMWF7/DrpwesXYEZT\nXcbt5dLa0+TB6xekpuYz8Tse7HeMmPHq4sHXs7yFHhNX1efgyPpMuSSo/eZibS9LrBY7+5BrjaVm\nLB1qiAm7fV5d2zuAn3TNy7i95H5bJ9ejqjKGaY3j8cxrxkiQ6z7sg7jpj7Df8WC/Y8SMVxcPvp4E\nRKjsqkku5S8pHPYrcVPszy0mPDJqz0M2j+KXz2nOuj1TmdCbLzvL889h34epo57Xbl1EREmRKbtq\n8sxrvBIvJjXpYW2MrxTcc838rLE/U4zwlsvOgq1uCE4qMLMp/QPA7OY6xxWysUzoYmeZ0J+ufR0x\ncZb6PHNybcZ9DB46hm89NrbyokREVpG+EmfHsuLy4yvnYnD4KJ7YugdL507Bly9uB4CsJUYBZ1lP\nt6nur17cjsbaqlT+t1uc2muZ0FgVcMSSaF5bFcOqZefgwPBR130wRYiI/BK5Qdwah/zMx5vZO7yI\nzE/EuZODd5LX2J91vUxdrdqaGzzdZGbfr5duX8np/nktE1z3wRQhIvJLpKbT7aUKz5/F2ulemVK4\nTOVFTWlYptKkprQuP/s+tzU3+LoPr92+vKT6MEWIiPxSkLKr+fIjxcxraUq3Mpwm9pSlmkoBIDh2\nwpmatOBH61LLNn/vUtcUJut6b93+WQBA27d/gxOIT5tsMjw3U4nNa1f/Ea/tO4KPnl6L3918MVY8\ntAkb+gbR2daE1V9YCABY+i//i627D2Hu1Ho8+MVFrsf2263v4smte7Bk7hRc98lWAMATL/Q7yota\ny4kmK5Kt793rmF7uGxhOpXX5OYBb+b0PP9O4mCJERG68pphFZhB/qX8I1z2wKb1VYXUMUODIyKlR\nuyZWgWOj5ipedjWVFWkDdm1VDJD0GGlDTSV+/qWFmGeZ3jUdi2m9fH4Or9vzsv2xbouIiMbG6yAe\nmel0r6Up3cpwmtg/AHltpVjIEpt9A8Po7ulH38Bw1m3ne2xJbJFIRFQYkRnEvZamvPOq+cZYqmnZ\nnVfNG1OMtFAlNu9Ztx2X3rUB3+jeikvv2oDbntw2pu3nEq9li0QiosKJzHR6kteYpimWalqWT4w0\nyBKbBw8fN5YEXbey01NseCzHxhaJRET+CL3sarHymq7U1tzgGOxMy/wudel18My2X7c86S39Q54G\n8bH8DMx/Ll28yY6oNEVuELcLq/ylab8K+HYsmfKkg8L859LEErBEpSsyMXGTsMpfmvb7ze6tuLX7\nJd+OpbGuGhW29jMVEl8eFOY/lx6WgCUqbZG+Eg9r+tdYwtPQdSufY9l18EPUVVempYrVVVcG/rPZ\ny5VyAC9uDIEQlbZID+JhTf+6pYnZG29mOhZTQZVs+yjU1HZYLRLDiuuWcjyZIRCi0hbp6fSwpn+b\n6mtw3ozGtGXnz2w0pomZjuW6Bzai676NuPfpPnTdtxF/9cBG4z6WLZiWtmxZx7SSG2S8Ciu1rdRT\n6hgCISptkUsxMyn0lVTfwLBr+ldjXXXGY+nZOYiu+5yDdveXF6VdkUcp3Susn7WcXuNSnk0gKkes\n2JaDpvoazGuZULA/Xlv6h1yXZzuWDTsOeFqejHVaJWOd5Sasn7WcXuNCnwNE5A8O4iHIJ/2rs93c\nec2+PEqxzmK6t6FcX2MiKk4cxEOQT5vMjtYmY7tP+81tUYp1hnlvQ1ReYyIqToyJhyifNpnZ7k5P\nilKsk3enE1G5YCtSIiKiEsUb24iIiMocB3EiIqISxUGciIioRHEQJyIiKlEcxImIiEoUB3EiIqIS\nFdggLiL/JiL7RORly7KJIvJ7EdmR+L8x0zaIiIjIXZBX4g8B+HPbsm8DWK+q7QDWJx4TERHRGAQ2\niKvqBgDv2RYvAfBw4uuHASwNav9ERETlrtAx8WZV3QMAif9PL/D+iYiIykZl2AfgRkRWAFiReHhI\nRF4P83gsJgEw9wOlQuN7UTz4XhQPvhfFI5/3YoaXlQo9iA+IyBRV3SMiUwDsc1tRVVcDWF24Q/NG\nRHq81LOl4PG9KB58L4oH34viUYj3otDT6WsA3JD4+gYATxZ4/0RERGUjyBSzXwJ4HsBsEdklIjcC\nuB3AZSKyA8BlicdEREQ0BoFNp6vqcpdvXRLUPguk6Kb4I4zvRfHge1E8+F4Uj8Dfi5LoJ05ERERO\nLLtKRERUojiIuxCRFhF5RkReFZFXRORrieUsHRsSEYmJyIsi8lTicauIbEq8F4+KSHXYxxgFIjJB\nRLpF5LXE+XEBz4twiMjKxN+nl0XklyIyjudF4eRSXlzi7hWRPhHZKiLn+nEMHMTdnQBwi6p+DMAi\nADeJyBywdGyYvgbgVcvjnwC4K/FeHARwYyhHFT33APidqn4UwDzE3xOeFwUmIlMB/C2ADlU9G0AM\nwDXgeVFID8F7efHPAGhP/FsB4Gd+HAAHcRequkdVX0h8PYz4H6qpYOnYUIjINACfBfBA4rEA+FMA\n3YlV+F4UgIj8CYBOAA8CgKoeV9Uh8LwISyWA8SJSCaAWwB7wvCiYHMuLLwHwiMZtBDAhUS8lLxzE\nPRCRmQDOAbAJLB0blrsB3ArgZOJxE4AhVT2ReLwL8Q9ZFKxZAPYD+PdEaOMBEakDz4uCU9XdAO4E\n8A7ig/f7ADaD50XY3M6FqQD6Lev58t5wEM9CROoBPAbg66r6QdjHE0UishjAPlXdbF1sWJWpFsGr\nBHAugJ+p6jkADoNT56FIxFqXAGgF8BEAdYhP2drxvCgOgfzN4iCegYhUIT6A/0JVH08sHkhOgWQr\nHUu+uRDA50TkLQD/gfh04d2IT0clax1MA/BuOIcXKbsA7FLVTYnH3YgP6jwvCu9SADtVdb+qjgB4\nHMAnwfMibG7nwi4ALZb1fHlvOIi7SMRcHwTwqqqusnyLpWMLTFW/o6rTVHUm4jfuPK2q1wJ4BkBX\nYjW+FwWgqnsB9IvI7MSiSwD0gudFGN4BsEhEahN/r5LvBc+LcLmdC2sAXJ+4S30RgPeT0+75YLEX\nFyJyEYBnAWzDqTjsdxGPi/8KwHTET6KrVNV+YwMFREQ+DeAbqrpYRGYhfmU+EcCLAK5T1WNhHl8U\niMh8xG8wrAbwJoAvIn5BwPOiwETkhwCuRjyb5kUAX0I8zsrzogAS5cU/jXi3sgEAfw/gCRjOhcQH\nrX9F/G72IwC+qKo9eR8DB3EiIqLSxOl0IiKiEsVBnIiIqERxECciIipRHMSJiIhKFAdxIiKiEsVB\nnChCRORKEVER+ahlWbuIPCUib4jI5kT3vs7E974gIvtFZIvl3xwRmWnt3JRY9wci8o1C/0xEUcZB\nnChalgN4DvGiORCRcQB+A2C1qp6pqgsA/A3iNdKTHlXV+ZZ/vQU/aiIy4iBOFBGJPgAXIt6a8prE\n4msBPK+qa5LrqerLqvpQ4Y+QiHJVmX0VIioTSxHvA75dRN4TkXMBfBzAC1med3WigmHSBYn/zxSR\nLZblZyDeVYuICoSDOFF0LEe8cQwQL8u53L6CiPwaQDuA7ar6F4nFj6rqV23rAcAbqjrfsuwHARwz\nEWXAQZwoAkSkCfHub2eLiAKIId4G8YcAOpPrqeqVItIBXlETlQTGxImioQvAI6o6Q1VnqmoLgJ0A\ntgO4UEQ+Z1m3NpQjJKKc8UqcKBqWA7jdtuwxAJ8HsBjAKhG5G/FOTMMAfmRZzx4T/2uwRzVRUWAX\nMyIiohLF6XQiIqISxUGciIioRHEQJyIiKlEcxImIiEoUB3EiIqISxUGciIioRHEQJyIiKlEcxImI\niErU/wNGipWbMyfDAgAAAABJRU5ErkJggg==\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["#version pandas : df.plot()\n", "#deux possibilit\u00e9s : l'option kind dans df.plot()\n", "df.plot(x='AGEH',y='AGEF',kind='scatter')\n", "#ou la m\u00e9thode scatter()\n", "#df.plot.scatter(x='AGEH',y='AGEF')\n", "#ensemble des graphiques disponibles dans la m\u00e9thode plot de pandas : df.plot."]}, {"cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [{"data": {"text/plain": ["Text(0,0.5,'AGEH')"]}, "execution_count": 25, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAE3CAYAAADVBFkIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXt0XNWVJr5LkuXSExnEgDEZGxIw\nND0ZL8Sy48QJAT+weXRIgLETXoE46TUk0BGkA7EBIQeJYDCEzgzdrGZNQsyERyBOTzcrmdVjh4QA\nMcGrDfkZg5tOQvyCtkFlqV5SVen+/jh9XPfu8+1b56pUqpJ0vrWyZG7OPWefx71VtR/fF/M8zyMH\nBwcHBweHaY26ahvg4ODg4ODgUH24LwQODg4ODg4O7guBg4ODg4ODg/tC4ODg4ODg4EDuC4GDg4OD\ng4MD1dgXgh07dlTbBAcHBwcHhymLsM/Zhgm0wwruS4GDg4ODg8PEo+a+EHR1dVXbhAB2795NZ555\nZrXNcAiB26Pah9ujyQG3T7WPcvco7Ed3TYUMHBwcHBwcHKoD94XAwcHBwcHBwX0hcHBwcHBwcHBf\nCBwcHBwcHBzIfSFwcHBwcHBwIPeFwMHBwcHBwYHcFwIHBwcHBwcHcl8IHBwcHBwcagqjo0SpVPDv\nRMB9IXBwcHBwcKgRjI4SDQwQ3Xwz0eLF6u/AwMR8KXBfCBwcHBwcHGoEmQzRunVEO3YQFQrq77p1\n6nql4b4QODg4ODg41Aiamoh27gxe27lTXa803BcCBwcHBweHGkEmQ7RgQfDaggXOQ+Dg4ODg4DCt\n0NRE1N9P1NVFVF+v/vb3T4yHoObUDh0cHBwcHKYr6uqIZs0ieuAB9SUgk1F/6ybg57v7QuDg4ODg\n4FBDqKsjamlR/9Z/J2TciRvKwcHBwcHBoVbhvhA4ODg4ODg4uC8EDg4ODg4ODu4LgYODg4ODgwO5\nLwQODg5jwERxrVeL0326Qa/v/PlnTIl1dudmbHBfCBwcHCJhorjWq8npPp0QXOfYpF9nd27GDveF\nwMHBIRImimu9mpzu0wlTbZ2n2nwmEhXhIRgZGaFvfetbtHfvXmptbaU777yTEokE9fX1UX19PS1Z\nsoS+9rWvVWJoBweHCmOiuNYnmtN9dLRIAjORZDDVRjW58yuBsPkkk0TNzUTptPrv+vrq2FirqMhx\nf/rpp6m5uZmefvppuv322+nb3/429fT00KZNm+iJJ56g1157jXbt2lWJoR0cHCqMieJan0hO9+ns\nZq4md34lIM0nlSK65Ra1v7fcova3UKiOjbWKinwhePvtt+lTn/oUERGdeuqp9Lvf/Y5GRkboP//n\n/0yxWIyWLFlCL7/8ciWGdnBwqDAmimt9Ijndp7ObuZrc+ZUAmk9fH9GTTwb3d/366bG/UVCRkMGZ\nZ55Jv/jFL2jZsmX02muv0dDQEH3oQx86+v+3tLTQ3r174b27d++uhEljRjabrTmbxorW1nZqazue\n2ttn0OBgjoaGDlEyOVhts8rGVNqjyYLW1na6997gWfr3f5fP0lj3KOo4Y8X8+WfQzp2xwDXlZvZo\n9+43x308jmo/mxO1zpUAWjsiCsynrW0GPfqoub/NzROzv+OJSr7vKvKF4LLLLqN/+7d/o2uuuYbO\nPvtsOuOMMyjj+yqWSqWovb0d3nvmmWdWwqQxY/fu3TVn01igXaK33qoehAULGqm/fw7NmTNn0sdJ\np8oeTVZ0dDRSR8ccIpojthmPPbIZZ6xIpZRbeceO4jXlNo9V/GzV0rOp96lS6zzekNZu1qxi/kdH\nRyMlk3h/0+nK7+94o9xnaYd/ERgqctx+97vfUVdXF23evJmWLVtG8+bNoxkzZtCf/vQn8jyPfv3r\nX9M555xTiaEdBExnl6iDQylU023uns2xw3btmppU2ICHESZrWKRSqIiHYO7cufTQQw/R//pf/4va\n2tqor6+PDh48SN/4xjeoUCjQkiVL6L/+1/9aiaEdBEy1TGKHicN0yL6vpuSs9GzG48pzwe2ptf2o\npj2277X6erW/mza5KoMwVOQLwbHHHks/+MEPAtdOOOEEevrppysxnIMFdOat6RKdWHlNh8kF7ZJd\nt067ZNUvZ79LdqqgWpKz6Nlcu1at+/r1wXXv6CBKJGpnP6p9PqK81+rriVpb1b/1X4cgptgj7SBh\nqmUSO0wMnDu78kDP5po16ssAWvda2o9q2+Pea+OLingIHGoP1XSJjgcKBWWzc/dNLCZTqKlc13W1\nXN/Ss4nWvbmZ6PjjiZ56imjePKI//pHo+9+vzH7YPHNh5wOtp+eZfRKN/dmuq1NeEx4KQPs2Wc/H\nRGKKTcchDNol6v87GVAoKLekIxWZeEwW0ppyiYWqTUzEn01p3dNpohtuINq4kejjH1d/b7iBaHh4\nfO2xfebCzgdaz2Qy2GcyWd6zPTqqQij++xMJc98m+/mYKEySjwSH6YxMxnSfOlKRicFkccmW67qu\ntuubQ1r3+nqi3t6gnb294//BZPvM1dUR9fQE7ezpIYrF8HoODgavDQ6W92zb7ttUOx+VggsZONQ8\nmptl96nD2GDr/pwsoaZyQxtNTbIrHmX6VxqSKzwWq0wIR58HLX9s+8zNnEn08MNE3/xmcd0efpho\nwwZ8/0knBa+ddFJ5z3bYvvF25Z6PyRI6Kwc19lg7OJhIp2X3qUN0RHV/ToZQU7mhjeFh7IrPZqvj\nJpZc4ZUI4SD5Y9tnLpMhOnSIaPVqokWL1N9Dh+T7DxwIXjtwoLxnW9o3HkIpd90mS+isXNTgo+3g\nEIQjFRlfTEX3p+S6tv3yMjqKXfFDQ9VZJ2mP6urGP4SDxtq+3e6ZCwspIT2B5ubgtebm8p5tad/4\nl7ZyQ1+TJXRWLmKe53nVNkJjx44d1NXVVW0zApistLhTLSM2LON5PPdoOlQzjI6qX53+xK36eqKX\nX67cGRnv54if73hcfQG47rqg67i3V/3KL/UcSGvy0kvql6//WiXXqZQ9WhNuPJ9taawXX1Rrx0MW\nfGzJHv4sxeNEd91l7tFddwXHiceJGiyD2VHOcrnvxFp5N4wHdbH0OTuJPyIcJEzFjFhNKlJXp/5W\n4kGcLtUMk939KZ3vuXODruu5c+2fA2lNuIt7otYpbI/GO4QjjTU8HHzmYjG8nkSmPVLIA+0Rb3fk\niP27KspZLmfdbKsZJjvq77rrrruqbYTGwYMH6SSedVJlHD58mI4//vhqmxEJ6bRK8tmxQ9X9HjxI\ntHs30dKlRI2N1bZu/DFee5ROK5EUvm7nnz+11q2hgegTn1Bz+/d/Jzr7bOX+bGtTL/1KYDyfI+l8\n33wz0f/3/xXndPPNRLfdZvccSGvS3Bzss9LrVMqeSoxtO1aU90ol9qia61RL79Ryn6Wwz1kXMiiB\nyRgyqIZLuJoYrz2qhXWbqFDPRLs/x/M5Ctsnvna27SSNAKLxJ7Ox7VM6C7ZnJMoeF9t6lE7HYHgg\nHleJe7bueSkEw21Cfb70Eg715PNmeKGurrz1tEEtvBs0XMjAIRImu0u4Wqh2NcNEhXomu/sz7Hzb\nkPukUniNkUu5XDcz309NxGOzx2hs2zMSJfwVPA+xo+chmTTHWbsWrzsHWnutz8Bt4n3qdnzsfF4+\nt6X2qNxna7q8U13IoAQmY8igGi7hamK89qi+Xv1a8a9bX59at4n4FTBRbslquD/H8zmyPd+oXV8f\n0TPPEP3jP1Z+7midL71UJT+Ode1t9y5K+Evqc9EiogcfDHf5S++VQkHdv2dPsW13Nw4PdHcH+5Ta\nLV2K52SzduWe+Vp6p1YyZOCIiaYgJguZTK2h2hKpE0V+UqlxJircYctfj56DeJzo0UeD7cK494nG\nPidEmjN7trz2nAAJjW27d1HIvCRyH/6ZsXOn+gVuoxswcybRCy8oXoC2NlW+2dKCbUJ9Srbbzgnt\nZTlnPuydOpUquiap2Q6lMBnIZGoRE1HNIGGi3JKVJ7epbGVLlJAHfw6y2ejc+2OdEyLNSSSw252H\nMaTQwvCw3d5FCX9J5D4ffIDvt1n34WGiT35S/SpfvFj9DQsPlAoj6LFt5oTOYipV/pkvJ4QzWeBC\nBiUwGUMG0w1TZY8myi1ZiXFKuWQnosrAxv0rzb2xkeiv/9rObW7rZh4ZKRL+hLndURhDCi2sWEF0\n7rml9y5K+Gt42LRzzx6iCy8M2tnToz7o7ruv9HrYzl2qMkChidZWHALSX+DDzkc8TvTVr47/szUZ\nw2+uyqAMTMYqg+mGqbRHE+V+HO9xSmVhT1SVgc0cpNDAeBMT2VZDoOz97dvljH6i8a0yCLPzD38w\niZ5s1iOsz3S6aFNzc7RKEFRlwEmMwiocbEiqomAyknyFfc66HAIHhxqCdkcSFf9WexybDxYdhtix\no3hNk9uMjhZFc8JewrZfUqSxdJXBWJDJKDf1+ecXPwC3bcPERHpO42FnS0vRne1vd+AAtkd/gdA/\n4zyv+G8OHf4iKv5FH6jZLB5r/35FHqTR1UV0+HAw12DbNtXnyEiwTx3aQHP3Q4cBeLt0umizf08b\nGsw58XNTV4f7zGbH/9mqxFmsJlxk2cHBQYRt+Rrier/vPvVi94vmSPHVKLHYcnjlpXFmziT67GeD\ncfTPfpbo2GPD5jQ+dqJ2xx6L7Zk5c+xsmlLZXjxuN/f+ftXW3+6//TclYcz7nDkTaxTk88G2RLhd\nPF56PtJ+ptNqnyZCd2CqaRy4kEEJTCV39FSF26PKIZlUL27/L6CuLpUVrn+hafBfakTqBc3vfeAB\n89eTTqqzaYvGsnX/SuNs2oTn+cAD6t9jmVMUO23XTrIT7QdH2F7azL2ujujrXw+227KF6O67cZ9P\nPBH0OsyerUoK+f0//7npnfj850vPhyj83Phtr2Tm/0RXGbiQgUNNYCqV1zjYIUqpFw9DjI7al3pF\nLQuzDXkgEaQoJW3+M15qTrxs0E9s5LdTeo5s1i7MTpuyRalPVHbY1FTM4Pc8ohkz1Ae3TSlhczNR\neztRZ6dK2uvsVF4D3vakk1QZ6COPFK/V1xN96UvqC0yp/Iewc+Pft0piosJ8EwH3OnewwlQrr3Gw\nQznsjVHKGyeyFDJKSRsfPyr7oa1NvK00DrITMftJZYto7tksLjvMZs1QwMqVwVLCREK5yFGfS5eW\nLjs8cEBeT5uwyHRhEJwouLLDEpgqJW3lopbEPTjcHlUO5bA3Ira6nh71q2/GjGDbiSyFRCVt8bid\nrWhOUdgPbZ+jsLX75CeD64RK96SyRVTyWF+Pyw6XLye6557SZZjXX0/0u9+ZfSJWQT7+xRcTffrT\ndmySiGWxlhgEJwqTjqkwl8vRbbfdRvv376e6ujr69re/TQ0NDXTbbbdRLBaj0047jXp6eqjO+Zsn\nDSaKRW8yYaqFUNB8JPbGWAy7yP2YOZPo4YfVB6B2RT/8MNGGDebYlWDXlM5sS4s5DpGdrRIDny37\noRSymDnTdJHzcX7+c6IrrlBfUEox+510kh0rIJEchuDu7507VR4ADy3E48E+teAQCkPw8RMJohNP\nNOfzzjvmvVKY6phj8PgO0VGRZfvlL39J+XyennzySfrqV79K3/3ud+mee+6hr3/96/SjH/2IPM+j\nrVu3VmJohwrBueaCmGohlLD5cPbGWMze7X3okCpdW7RI/T10SD4z482uaSuCpNXybGxFDHwS++Dw\nsJ3b/tFHzez/ZFL9cvaP88lPqvK+I0dKM/vZuuKzWTlckkwGr61dq+z0hxZuusnsM5GQ2Q95GCIe\nV5UH/vMVdi9HoYArJ2yqLhxMVOQLwSmnnEKFQoFGR0cpmUxSQ0MD7dq1ixYuXEhERJ/61KfopZde\nqsTQDhXCVCuvKReZTNHNWiiov+vWTd4vSFHmY9u22mcmyvh1dcrF7m/b04MJd3p7g3Nfv55ozRpz\nnNFRc51Q21NOUdf97QYHie68M3itt1d9eNr0ecwx5tz7+oiefNK8t64Ol/7V1QWvrVlj2nnHHcpW\n3mehYK5Tb69aE942nw+usefhe1E9XCZj2rR+/eR9DquNipQdHjx4kG644QZKp9M0MDBAf/d3f0c3\n3XQT/frXvyYiopdffpmeffZZuv/++wP37dixg5qRX6iKyGazFLctip3i6Ow8geLxWUfJVLLZAcpm\nM9TWdjy1t8+gwcEcDQ0domRycELtqsYezZ9/Bi1eHAMMZR699dabE2qLH62t7WPajyjzkdq+9JJH\nQ0O5wNjxeJNxZg4ffq9s20866UNUX99y1E1cKKTowIG9Y+5z/vwz6De/idFHP1p0Pb/+OtGiRcE5\ntbfPENdJ//96nDlzThLb+tn6mpqIPv7xYDuZqdAT195PHlUopKi+voGIZgZc6Z/4BLbnxz+O0cqV\nwfDE5ZcHCakkVkHM5ojtROyHGzYEz1jYWdy//0BgP8P2o5rPYSVR7vsunU5PbNnhD37wA1qyZAnd\ncsstdPDgQbr22mspl8sd/f9TqRS1t7fDe2utntzVuCtol/I3vqFiiQsWEPX3H0vHHKM44NW1Rurv\nn0Nz5syZ0BheNfYIscspd3SsaudF79Gtt0bfjyjzQW1VpnuM1q9vDIw9Y4Z5ZubPPxb+8ra1XRPs\nfPObxX77+lrptNPONGhs/ejoaKSOjjlENMf4/7JZotNPVy7nYp9q/rfeWpzTpk3yOnV0NAbGkdY0\nnY4Z46xdGyy90y5/dK+89sH1IOJrZI6j+9y2TZH5aHR1KS0D/97dfz+2CbE5Ijt1lcTGjcU+e3qI\nstngGZPWbXg4Rs3NcwJnRLIpna7ec1hpjAcPgYSKVBm8/vrr1NTURF1dXVRfX0+PP/44nXbaaTR7\n9mw6+eST6Qc/+AEtXLiQTjvttMB9rsqgdhFFM32iKw+qsUe1mN1cCdEfNB/UVhKpsT0fUWxPp3EG\neznnLpvFfS5fTvSd7xSvrV6tYvk2lRNSpQASCLLNvkfVEN3d9muPqgyam4kWLixdOYEEgu6+W92/\na5fZ55Ilpv179xL97d8GqxlWrAjuWz5P9LGPmevW2GjuEbLJtgpmsmLSVRl88YtfpHXr1tEXvvAF\nyuVy1N3dTX/+539Od9xxBz3wwAN06qmn0gUXXFCJoR0qBCljG2mmT4e8gkpkxZeLcipB6uqIOjrs\ntO5RWylT3fZ8NDXhrPR43KxmCCPS4Zn6sZhdJYhkf2trcJxZs4juususRujtNceWqix6e81xePZ9\nPE70yivBa6+/rj4oeZ+trfZrj8apq8OVEyjTv6MjOPZDD6n18Pe5b5+iPeZnJB4nuugi06bm5uAe\nx+NyhQXad1QFM5Gy5VMJFflC0NLSQg899JBx/fHHH6/EcA4TAEnEA7kLJ6uwR1TUGkNZOUIro6PK\nDb9und+9r162yL3P20qu9MOHg/dK9ujM8t7e4PgDAxRwhff3q3t52w0b1Acyd5FrWeNSc5JEdlKp\noIu7r49o7tyg6M9f/qVpZ1+f+mDSlQsaXV2Siz0o2pNMEj32mEnJ+9GPmn3+3/8bxZUfDIvo9dSV\nE/r6xo1EN96oEhv97v2BAXM+Bw8q7QP/tQceUF4XmzOSSgVDExs3FissgqEFc997elTlBRc8chgb\npqhTxWG8IWVsH3OMqzyoFZST1V9ulUEmg7P0W1tLZ+4T4az0dNrMIF+3TrmUeds778TZ7keO2M2p\noQFn2qOsfJ7Rj7Lv169X3gmU6d/cXHpN6uvxeiI7m5rMths2KOpgPvb27XbrKVU5NDXZzScWM8/I\n9u12ayyNjSo89HWH8YHTMnCwguQiJ6ott3m1US5ZUTn3lxPGiBJuQO59yZW+YQO+xueJXPYSuU6U\n8MRJJxFt3Rp0PaMwRGOjaud3U7e2YsIhRGwkhTsaG013dk8PXhN/yCEel4mSslnTFc/bfu976sOS\ntzt82FyPqGvP+5T2Ha3Jueea9/PQxJw50XUceLiGqLRkt4OJafzqdogKRBwz3mQykxnlkhWNB9nR\nWPcjCvEUIo5JJIqudD+xz/795jVE2IPIcSRyHYlIh4cnNMe/n9xn5Uq8xsPDSmVv6VKVYLd0qerP\nhtgoTAuAk+ZIBEiI3Gf1arNdLqc+RP1tUyncpw4PhGkRLF0abe2RneedZ46N1uTGG/H93d3Bdslk\ntH3nfWYyY5eInu5wWgYl4KoMah+1skfl6j1UUy8iSpXByIjJfS9pBDQ3m9fq6815ouz9iy9W1956\nK5ht3tKCs/fb24Oc+ij7/rOfVb9oue0rVqhfr/75/8Vf4Gz3pqZgRQFaD509z7Pizz2X6DOfsePu\nX706OJ/+frUXtpn2qE9UebBqlTnPlSuVdoBNn5KWAV+Tt97C4y9eHLyG5iPtO7Lpmmtw1QXSQpiM\nmHRVBg4O0xHl6j1UUy8iSrghikbA6Kh2EXuUTseOZrXz+4891nSlt7So8jzkjpbc6aWy7086Sa5Q\n4Jz8SLfg5z8nuuyyoIs6TCIajcWz8uNx9WWGu/KbmnBFAB/r0UeJrrsuOPeODtynFELh6/ngg2Yo\noKMDh1BQGAHZuXOnCgfw9UA28WoGad87OsyQQ5gks0M43BcCB4dxQjlZ/uNxf7mwrZqwsbOlpUgg\npLLvY0ez71tazPsPHDCz57dswVn66TS+zq8995w5zgcf4Ez14WHVrz8rvq+PaNmyYLb7fff55xRO\n2JNOm2M98IB5f18f0SWXKI+GP9MeVS40N+OxtJdFY+vWovxwqT6zWbyevE+0nqhyQfMloLbJZLBq\nA1WS9PWpMIDNvv/sZ+YaywRMrgqhFKZxxNfBYXxRLnd/tbn/bWFrZzaLs+8LBfP+Y44xM9Db29Wv\nQpRpjzLw29qC19razHbxOM5ULxSwRkA6HbxGZM7pySdN23XlAB/L8/CacI7/wUG5nU1FQX091keQ\n+kTZ/7xPtJ49PeqLoK0+wlNPla4kWb8+OA//+eLnpqkJa0usXm1X3eIQREW0DMaKHTt2iBzL1UKl\naXEnu4RuLdhfS/TS1awyiHJ/lHFQW88zs7g5CVA8LvHx4/uJzGs9PcodHuS+J/rxj8ng3r/sMvUl\nhJP7+PUJwvq8807z+l13KZe0vjZvHp7TSy+pX7+cSIdz/7/yCtYD4Bz/c+eqnA7UzmbuSHdA1kdQ\ne6zuL4Z2Egm1hv61e+YZPLZ/jfR6oj3m40s2vfQSrhLI54PzRH3KmgmT690qYTyoi6XP2SmwPJMX\nk11Cd7LbXwmUW3VRzv22+xFl31DbZNLMnk+l7KR+tesWSdbGYkEZXCkjP5s1JYhXrMA2aX0Cf7Y5\nz2rXFQE8K76725T7leaUyZhSxSgrPixTnldtSGvH537eeWamfdSqjeLaxY6uHVFpSeZly8w10uvJ\nZbOzWTubdHUIPx86BFVK+nnBAlzdkk6TQwm4LwRVxGSX0J3s9k812O5HuSRER47YXQtz3dqMH49j\ntzMiqEkm7V3kPAwgkd5I7mxOTIQIf3p7saQyumZLgKQlibmdSIIYkQC1txN9+9t4P2zWDhEGoTWS\nyILQ3FtbTTsR0dO6dXIICq0TImVyorWl4ZIKq4hqZpWPBya7/VMNYfvBiXikTHubPlGmvkQm09qK\ns8VRW0QYhPjwUQY7ItKRyHUQgRGqCJgzB68TyqpvaiJ6/vmg7gDi5Ef6BlL2Ptcd0FoGNnNat47o\nxRdNfQKpaqO7m+jkk4Ou+HL2vbnZdO9LGgWXXWbaGYWYiK+TDmnxPQpTwuSohVBoNTANpli7iEIG\nU4uY7PZPNUj7kUoFXfkSkc7wsF2fg4Pm/Vqylo+tue+561ZyE/OQg3Y3678NDfh+RCIkucgljn8+\np0wGk+skk6Y7+6yzgtdOP13xE3D3/sCASeB08KAd4c68eXLIQZqTn2jp/fflEExnZ2lXvK7QsCER\nymRwCOe888zQysBA0M79+6MRE+nqAX1G6uvVOeHnxhbTORTqiIlKoJKkN7UooRsFtWJ/rRATVRto\nPxBxy+WXm+Q8e/YoqV9O3IL6XLXKJJ1ZswbLAre1qV+2/vMRRcIXkTIhWeFLLrEn12lsNElvmpqI\nvvWt4PhXXGGuk0Sug64tX25H4CRJHfN927MHkwht2KB+JXMJ4vr64DgS0RKSFUZ2XnSROR+JRKip\nySSf+uxni+EO/5wuuihIbHTJJeqLA3+vtLbi860/+McL1SQIs0EliYlclUEJuCqDcNSC/bVUZYAw\nkZUHvC3K9A/LNkf9ctevlMEuZe8rezzKZGJHwxK/+Y2Z/S/ZpMf0VzPwTPu2NrlKgLut77rLrsrg\nlFNwRv/ll5sVBZdfrr4UcNuRTRs2BOe0bx/RRz5i2vn220E3/r59yvNw4IAKM+jriQTR7NnBrPx4\nnOjdd4PtUNWFDkOgygeU6Y/26MUXg7ZLfYadO7TH6MyjMAT69V/OMzc6KleC1MK72VUZTGFMdi2A\nyW5/pTHR+gZ8P2wzu7XrlaNQwK5f1KfEp9/SQvTWW28etWtkBGf/o2xx7jYfGFB8/twVn0ya469e\njasZbLn3h4eL5D5cC4HrAWSzpu1hGgd+mzo7zXmmUqYbv7NTfSByLYN4XO2T/9roKNY84OuuQxs2\nmf5oj9auNdf49NOjnTukb0CE3ys2oYByn7npHAp1r28Hhwqi3EqMcu9HZC6IBKivDycVZjJ2RDzt\n7fZ95vM4W5xXJEjZ97mcmWn/1FPm+KecgsdZtMjMtEdVBrmcfeWC59n12durvAr8fl4lII0zMiJf\n919D7aQ+83m7TP8o0s+I7AhVOaA9LrdSqRLPTC0ShFUCLmRQArXujnao7T0q1/04Hu7LQsGOBAjJ\nw0rjczex5Pauq8MhA8lF7XfFt7TI7n0bm1BoA7motSvehkTI1u1dyhXPwwsvvhgk95loYqI9e4Lh\nCdu1a26WwyJFsiM5ZBEWwhkrodZ4PDO1EAqV4EIGDg6TFOW6H8u9f3TUjgRI0oqXKgJ4n5Lbu+i6\njR113YZVGfhd8UgaV7vcbWwKy0rntqO2KIM+LNzC3ebS3vGKAG27DTFRNmuGMXTIohxiogcfVImN\nCxeqv7ZrFxYWOXKkdMhC2mNU8WIbChgPl/90DYW6KoMScBnstY9a3qNyKzHKvb/cjGmU0X/zzbgi\ngGfaf/azynXO26FMealPLo1/IXJ8AAAgAElEQVSrZYUXLy59/5lnEn3hC2ZWeixG9J3vmDZ96lPB\ntitXmpLIUkXA3r1Ef/u3wT5XrrSrCJDmzrP8deUAqghYvjw4JzR3yfZ4XOVk8EoSvh59fepD/rvf\nDUoN65BBKelnSXoa7TGqeLE9y+jM9vQor4RftnqywlUZVBG17I6eTghz4VVrjyqhG4CAXP5SFjYa\nS3JbZ7PBdkTmvURmVruUbc5d4WEuapTRb8Pxr93JqEpB4tnnoY3TTsMVATYu7tdfV7+ieTvJvW9T\n+RDmntcVFGH6CFLbyy5Tv8rD1kOHNrJZNX//nHSiZJh7P2zfooQs+B739ppVE3V1dmc5HpcrXirx\nfE40XMjAYVqjFolCothUrj6BrW5AoWBeRxUBEglQMmleQ1ntUkUAd4WHuah5RYBERqPlcv3uZFSl\nkEziigAU2kgmzXFGRvA6f+QjwWsf+QjOiu/vN/tEWgznnWdXtbFggbrXT9izbVu4FgIPI+RywfsH\nB82x581Tc+ehgETCrFxA7v2w0IJtyILvsUT+lMvZn2VO/nToEA4Z1OK7pZpwIYMSqGV39HRBKVdh\nNfZooshL0DiXXopd8eefb7ppEXGMrct/924lXmNDWoNc4YgYqKdH5SwsWWK6sz/5SUX8U4qcZ/ly\nO3e05KJeuTJIhNPTo1zJqE9OpPPmm3idrr/e7LOpyXS7X3+93R719KhqED+pU1+foj7m7nC0TjqM\n4LcJ7bu0ntJ54O79K69U3hHunm9qMsMlF15oEg4h2yXyp2XLzJCHbbhFCrPVOgkRQiVDBhXRMvjJ\nT35CW7ZsISKi4eFh2r17N23evJn6+vqovr6elixZQl/72tcqMbTDOKDWXGhRuPcljPecoug4lEss\nZMvRj/j4v/99Uw9AWs85czBvv8Qf7+fE/9731Icn4qnnfPwnnohtGhoy+ecRxz+yCfHsz54trxPi\n87fl6Ufr1NSEdQdyueB1ZPujj6ovCuh+/7VsFmshzJolr1OpscM0AmbPNufJP0fa29UYaD0l3QK+\n78h2SW+Cr3MUfQP0zDk9liAq8pr/3Oc+R5s3b6bNmzfTWWedRbfffjv19PTQpk2b6IknnqDXXnuN\ndu3aVYmhHcpELbrQhoftufcRKjEn20zmcqWGkXs+zBWPuPcRuQ/K7M5kzGthLmHkkvW7rVetwqQ1\nyD1fKJihiUSC6Omn8djcJsSzHyYhbENMJPH0cxd3d7dJ4qPnmcuNrfJB3++/RoTDEFLIgfcZ1k6q\n2uDnQcsia4QRUnHyqE9+Uq0Hl7iOos1gG25BYR30zE1nEiKEioYMfve739E//uM/Und3Nz355JP0\n1a9+lWKxGA0MDNA777xDZ599dqC9CxlUH7XoQhsZMTnUdSazTcigEnOyzf6PMrbUFnHfc/e6xMcv\nuV9RZvcnPkF0//3BaxdfbLr3tR4Ad2fzTPtrr8XuXOSivvpq7La+9NKg21tnxXO3+YUXmtnuUqZ+\nPE702msmn78NTz9ycV92GQ5NoHkiF7vk8l+61KyGQJULK1bg6oEdO4h++MPSoYmWFrPKQAov8HCL\nFAaIx+XwhP/cj46aY+v733ijtD6C7R5Jz1yt6LFEwaStMvja175GV111Fc2bN49uvPFG+vGPf0xE\nRM888wzt3buXuru7A+137NhBzc3NlTJnTMhmsxSfRkLa8+efQYsXx0AmsEdvvfWmVR+tre3U1nY8\ntbfPoMHBHA0NHaJkcrBiNpXao/GYEwKaJxEFrrW3z6Af/zhmZL9fcYU59vz5Z9Cdd8aM7OjeXu8o\nBbCWB372WdwnmiciwkGZ3XfdFSTHUZnZHuXzHo2MxBhPfqwkT35Tk5Tt7dEHH8QoHo+uZaBIhDz6\nzW9igbGkTH3Ox69d8f4+Ewmik07yhLUvTZYkZ9qbfc6da94/d66sMbBwodknn3uUygdOgKT3Y8+e\nmBUxEV/PRILoxBO9wNgNDQVqbKyH5/7yyz0aGsodfT7a2mbQ9u0xS7IifL5ffNGjTKb4fDQ3E338\n4/bP+3i/r8YDYTaV+5mUTqfFKoOK5BAQEQ0ODtLvf/97+tjHPkbJZJJSPl9TKpWi9vZ2eF+tlfhN\nt7JD7YLbsaN4TbnQYlbroN3et96qYnELFjRSf/8cmjNnzphj9qVsKrVH5c7JBh0djdTePseY+0MP\nFbPf1TX1C2ZkxBxby+329hbb9vcTDQzEaP364P3LlgX77OkhSqdjcJ7I/ard3v5xtIvY3+fwcIxS\nqeD4GzcW3fv62t/8TTHz329nd7f65e3vM5dTP71427VriR55JGindnv72+VyMWOsTZvMPdYZ6H7b\ne3qKJD7+PrPZmLH2uq1/nXUY5s47i9fuvx+fL9RnX18xA17j+efx2o2MmPs2MmLOXdlvt57vvx8c\nu6tL2dneHrwfzQmtp1674NgN1N6Oz30mE6Nbb208+nz09RHNn2/upQ5D+O1E51uFNoLnU9oPm+e9\no6OROjrmENGc0HaVRKl36HiUHUqoWKrYb3/7W/r4xz9OREStra00Y8YM+tOf/kSe59Gvf/1rOuec\ncyo1tEMZKJfHu1we8UrYNFHc5GjuEvd8Pm/eXyiY3PfpNL4/nTY58uvq1IeYf54bNqjEL84f/9RT\npcfp7VX/tuHER7z/kp1SW65l0NOj1gVpGfD7YzFz7qtX4zkhLQFJdyCZNOd+553Ba9msObakZYDm\nSSSfEb5vkg7E6Kjdera22tmJ9CrCdAuQtoJtW35G0F729KjzzZ9jZBOyfTJpEVTiHWqLioUMHn30\nUWpoaKAvfvGLRES0c+dO6u/vp0KhQEuWLDHCBUSOmKgUJir7vxalQ6MQE6G2RJVfOzR3xIcvrQe6\nPwqZy4YNMs+93008b140SWTOc4+kecNczChcEYWIx2aeSP44jDTHlvDHRl9h7lyiZ581192WRKit\nzU43oK5OrT0iO+rtLe6tf51QWIgTNSEdBxQeCCNQMkMb0UI4fjtPOUXWR/A8O0lmRLxVy2RDfpR6\nh05KYqK1a9ce/TJARLRgwQJ6+umn6dlnn4VfBhzCMZHZ/+UQ6VQqa9fWJmmdiCrPTY7mLmWqI6lh\nlO19+HA0wh6U2T0wEMwCR3ZKlQvZrCnDm0iokjSb7PnDh/HcpTlx21Hlgybc8bdNpXC2uy2JT5gE\nMNdXuOWWoE2plErq47bbzjOMbIivcS6HK0nQeThypDQpUmenqtZB4ycSQX2DsKoLmz1Gksq6moKT\nHaG9zGZN+yWSrGx28moRVLPywRETlUCtVBnUYvY/QjWydv17VM11QnOXOOHb2syXlOeZGf1/8Rdm\nVnkYYQ+qxrjoomBm+EUXmZndiOdeZ9/bkNasXq365AQ1iFynuRlXLqA5ocoHRJaEss1t105XBNjo\nI+zerfrkmg2cwGjPHqzZgMY/91yiz3zGLlN+2TJzj1EliR7fv++IFEmae0+POqP+vUPaDn19itSJ\nV4I0Nppz7+6Wq07uuSdYcYKqJiQdB1sSosmCUu/QSlYZkFdDePXVV6ttgoE33nij2iZ4nud5hYLn\nrV/veW+/7Xn5vPq7fr26bot83vOGhtQ9Q0Pqv6Wxksng36i2lnN/1D79e1QoeN7ChZ7X1VX838KF\n42ODjU3oWpR1f/HFYFu077mcPMcnn/S8REL9O5FQ/+3va2hI3Z/Lmdf42C++GL6e3CbpfPr71Lbt\n3Wuuic04uk80Fl9nae0kO/nahT1z/mtha8TXVBqf70fYeqA9zudxW74eUfvktu/eHby2e7dp+969\neO3Cxvdfy+flc4zut32+JhNs33djQdjn7CRypExvlEvOo3nuubvNH6ciGp/QxHhLh0axaaLcbVFC\nE/X19lLDjz0WdNMeOmS6T99/Xw5DIGlcTnCTSGCpYq4PcPrp4W5vTgKE+OP5OLmc+h8nIbIdR4dG\npGeB98nXbmBAluvl4RZJ2peHMcLCQkjul4cc9Jz87aRzPDKC91hy29uSIvG5L1tmvi9QqOjkk003\nfjyu7LTVq+Dhs8OHlW6DjY4DCkNIJESTCdWSX3YhgxKolZBBKXKeUkinsbvt/POD99diaCKKlsFE\nhSwqsU719epDopTb+5JLzGsScYtEcIOkihG5jq3bWyIBktzeNi7/qKGRFSuCrufrrsN8+pJcL+/z\n8svNNUFhDInwR9oPHnLQc/Lbfu212D1fV4efY6TPMHNmsE9JDnrmTJPQSiJb4ufmmmvkMICtdPTM\nmcHQBDrzmkCJh9+ksE6thVLHE5NOy8Bh/FEu57bEc895oMLGQTK86NduJXQDbLUM6uoUt/sDD5hV\nBprUR19DGcu2ssLxuPoyxbna43FzHFvdgqYmk+N/5kyTE76pSb3oEX882rvWVvPa7Nmq/t0/d3Rv\nPK76t9EY4PoGHR32WgSIz7+pSVVHoDOL1r65mWjr1uA6/dM/BdtF4fPv7MRtOztN26+7zrTniivw\n/Yinv6UleK25Wf2i9q+HrgiQ7Ee6AXztzj032CeROmO2ehlcx6G1VbYnkQiOpUiMzLNEFLzW2Gjq\nNejz3dhoPtvS+8r2OXQowi3RJEG5rnDJ/ak1z0uNMzw8cSEHjqjhEu5uI5Llfvl8kAQwkhXOZLDc\nbjm6BcmkygznNmkSIn9WusQfb5MF/uij9tnaSGpYkvuNEtqw4d6X9l1ym4+MmC5/7gqX5hlFrpcT\nPWnef15lkM3a8/TzPUomzeqOzs7wtfOP/+lPqw9ErrnA9z2bLU+qOEwfgYeF4vEigZI/jMFtSiRU\nRQTSyuDPtvS+SqVqS49lssCFDEqgVkIG5brCpZDDBRcEXWvSOJKrciJCDpXSMkAc/+gakhVGrlLJ\n7W6rWyDJGnPdgeuvxy5VJCvc16f21O/KX73aLltbkgWW5H7b24PXpNCGZCcPD1xzDXbvS3K9PDRy\n7bXmuZFCG01NKl5tI9fb3ByUeZZ4/1eswG5/fr/OoPfbtHIlnqOkLcF1C1DlgRQGQJUwF1+srr35\nZvgeSaGexkb8zC1fHtyjSy/FNvHzJb3r0PsqipbBZMSk1TKICkdMFI6JIgySiH1s7g8bp1K2lyIm\niscxeQnidcd8/naEQ9u3Y+7+3l4cmuDkKxKn/aJFQXKc1lZJI0Ax2Y2MBF2y2gtkQzBjcvxHI/fx\n39/UpNYEcfSPjChbw/jrEYFSKWIjTnBjM8/GRvXBgshwOJGPdnv7r4WtJyd12reP6CMfMXUHOLFR\n2B5/8AEFdCAk3YIo6zE0pP4dZlNLCx6Hkw2FkR1xm+bOlW23Cd0h0jHpeY/yDqo1CXg/JiUxkcP4\nY6IIg9A4Ya5Km3HKceFFsd1WQhjJu2qXKgqr8PGRqxRJ8CJp3IEBnCmP3POnn24S2QwM4Iz+kRFF\nrcvdr0Rjk4yNx8NJc5CLnM/zrLPM+eRyZrgmlVIEO/71iOLe19c5wY1NaGJwEGfFIyIfye0tjcPd\n/rNnYwlfTmwkSVRrymu+x2iduHs/rBqCyzQjkitpnEwmeG97e/i5sZWo5u8g28oeKVRj+w6qRQn4\niYILGZRArYQMykW5IQeUAY8IdirhwotC1CGFB7q7gy5ZRJKCXKra9cuzo1H2PcpgD5PG5e7sa6+1\nIwGS3N5SWIe7aaNIxiISI1sSIcl2VGWAyH3QvklyvTpbva8vvMpAZ//395cm5wkj8vGvp0TKhKoM\nUFhJmjuSqEZrZ1vhEaUaAlVYSPvB1zMKKZNkOyLusg1HlvsOqsVKKz9clYFD2ZCy7229DPX1ZgZ8\nPG5WGaBxpKz0piY711xdnTm2v3Jg/vwzjmYUSxUJra3BLOyWFpxZLVViNDWVzv5vaTHvnz1bzsLm\nmfJSJQjKSm9uDtrT0KBeVjZVBlEy+hsbVea+387WVryfnZ3BLP+f/1zZ7q9meP11nNEvrX1rK842\n5zYpad3g/fG4WWWgQxtoPfftC66JtB+trcFrs2Yp9zoaB50Hfm3OHPtqBKlKAlV4oP3s6LCrhpAq\nLPhzpKsZ/Hu8b59ae14pEFZ1Uuq9QqTOaHe3GYJBlT1R3kFonHIquiYzXMhgGqGckEOhgLOBeZUB\nGkdy4enKhVKuudFR7GYt3hs7eq9EWpPJlM42HxyUKzFQVj7P/keVHJJLNJs1M+WlSpAPPgjej8hY\nkkl5nRFpTSYTJECSMvrTaZMkBmWgI97/pUtNd/Lpp+MQEAq33HBDUa6XV1NwmwYH1fg85MD3SIc2\n0H5w935YZY6NlgE6i4mEGQqQXPmoGiEsPFGKgEmHxGyqIcLCC7yyBukjZLNmCObgQXtiIaQGms/j\nyotcbuxhBBR2rKaWQLXhQgYlMFVCBuXCltgIQXL519fbueaiZORLpDXInc1dlatWydUMaO7cpYuy\n4iWXKOJlX7OmKK3rH//CC0uHO3bvlrPaEdd8PE702mvFa4iYR+sgIN0DnoEuEcRw97om0eHu5Isu\nwuPzuUtVCtL4yO2+YoVZIYE0G1CVAjpLkpYBOovIJuTK37BBfZD5qxF0uGTRIhye8JP7oPWUQmIX\nXGBWGVx4oV24RaqsWbHCDMGgqo0oxEKZjBzC8RMw2YYRolQu1JI+gqsyqCKmSpVBFCAColisvOqB\n8a5cCJPrRX2iioING4LZ5mHZ4lKfttnm/nHicTW/KHOyzRZH8seXXx7cT6JiclwpGVlJ/phnoEsS\nvnyNdOUCtzMsqx5VM/zmN8HqheZmWTKXSwD39garNiSp4jDpatv9QNeRJDQ6n5Kd0jxLSSqHna8o\n6+mXOpYqazZskCssUik76WdU/YTO9xVXYPllfr8tsZoey1UZONQsJirzVdI8KDdzF4UrbF1zUeR6\nJb5zVD0wPBzUGAhzx/LrTz+Nwxg22fuJBF5PafyhIdMdLNkpccD7xyeKJiOL5I+5Kx7Nvb8fZ+nn\n85gwCGXVZ7PYFT9vnp17n+sOaKlgG7e5rb5CmHvdNhSgkxO5DgSSVEakVKlUcN+R9HPYM8PXM4z8\nyg8p1CO593WoTNtpW71EFE5Ixe/n7xAUdgzTPKiWlkC14UIGJVArIYOJynyVQgOSO7qS1QMahYLp\nJl25UoUr+L3xuNlWIo5Zvjxo5+gozl6Px02X6qWXjp2PX1pPlJmt3cR+d/DFF8vuXCS1jAh/kJvW\nNrRh6/aWsvSRhK/k3ufuYMkVb6s7IEkFIxe3bYWFtO+I7AiFAjSRj00lh3RGmptL6wGgZ0aPzbUM\nJEnmxsbSoYmwaogLLigtxa2fuQaW8p7NyiGDUiRGtV45EAUuZFBF1ErIIAqxUKXGQdz/kgsyCulQ\nKdfc6Ch2X/b2qpdEU5NHmUzsaBiCtw1z6fLQhOSSJDLtlNzBnERIWiM+VlubvTtYaodc8Xz8MFe4\nP7ShSYRs3d587mHuYNs+X34Zu4Nt3eGSnWgcdG64K10683zuYe59RFTF3e5hhD02oZFTTrEbO2yP\nebhn3z6i004L3h81zIbCLdIzh94DYw1bTtT7cyLgQgYOoe71VEodeP1Xgr+N/suvhbnwYrHit+5Y\nLFrmrgTkmuM2DQ9j9yV3Fep14m3DXLp+hLncR0fVFyIi9XdkRK6c0HHJ+nr137bu/XRaJV11dqr1\n7exU/51OK0lYz1N/UynZncuFdzIZ9Ytp61b1RWDrVns37Uc/Gs3tPTgYvCadjyh9SrK+Y9UdCMve\nR3K9u3YRvfeeWvv33lMucjSOJoDS0LoDX/4y0QknqP084QT13zyDPp+3y8iX7Dx0qBja0efmyBHc\nLpMJzmfXLnk/BgaCbV94Qd3vfwdkMirU9NRT6kvZU0+p/y5F1uS3Ez1zw8PmuypKeIFjOlcORIJX\nQ3j11VerbYKBN954o9omeJ7neYWC5x0+7Hlf+YrnLVyo/h4+7HlHjpjXCgW7+48cMa8lk5536FDw\n2qFDnpfL2d0vjT/e85TGzufN68PD8pz8yOXkduj60FDwWiKB2yUSdn1KdmYywWtDQ/Z2oj7LtbMS\nc5fa8rlL90cZ39YmaZ3L6VNqm0rZzafcufNxwp5tm7OYTkd7ZtB+2j7bUp/JZOl3kPReKeddVS2U\n+5kU9jnrQgYlUCshAyLTvV5XR/T1r6u4mEZXlyLk4HKqOvnP33bLFqK77zbvf+ihIM98U5P6BcLv\n7+oi+u53lV3jlY2L7NRzIiqOQyS389uSyahfOE88oeKn2lW5bRvR5z8fJO1JpYh+/3vlxtRz/8Mf\n1H/fcos51qZN6t/+7H3UbuPGIE/8++8THXecadMJJ8jjfPrTxWtbtii3KpoPv//553Gfd9+tftHr\n+9vbiW6/HY+N1m7NGhWz1df+038i+sY3zPv7+1UsWLuDX31V/WLlfZ54ItGPfmSOo3/Z8nmi+9He\nffjD6nzqa3V1RP/7f+O14322thbLQP1zuv/+4NxPPBGfxU2b8Nrffrsq1+NtC4XiOhGpxNVy7Nyw\nQXlY/PevXInHbm7Wz4wKv3ketv2++9TYGtu2Ef31X9ufG2n8WMzu2Y7HgyGLhgaiv/oru3dgLVcO\nREElQwaOqbBGIR1efchbWlQbiVELCfzYap43NhZjbTpMILF3zZxZfKi0beWW90hz0h+6nicztum5\n+937moXPj3feUX34Gc7iccVw5sesWfJY/i8CRDKzXVtbsJ1em/b2oPs0bBzOdnfWWUFX9FlnqXb8\ny0dzM2Z3O+64oIv/uOPksdHa8ZctYn7cuVOtn/6AI1IhDzR3aY9aW9UXAv81ZFM8rtZIx8zfe0/9\ntxYn0pg5Uz4L3Ka2NpkV0N8OPVthrIKIgdD/YVhfX2TWe+SRYrv6eqIvfcm8vn07HqezUyXt+e+/\n/nqTVbC52XxmJNtbW4NslK2t8tyR/ddfHz53/bxKz7auCCJSf8PegQ7RMQm/H0192JYYSnExiQGQ\nl5VJcVdUSmgbg5PKFhGjIZqnbeme1G54GJfUSSVt/rGTSazhbiuSE8Zsx8uv8nmzhMpWtEcSQcrn\nTZGaMHY3W117W7Y+ad9QmZgtSyMfR1/jbdEea0EezujIRZRuuEGtB7fJdk5RRZh4DoPE1tffb9dn\nImGX14DG0WexuE6x0OeLMxWGtRvr3KX1LIdVcDoLFkWBKzssgWqUHZYj4hHGAMjLyi65BOu9ozI5\nxC6ny51mzAjabstoiOZpW7qH2vX3ywI/qKQNMc4h1jWpNIpr0NuWvkkCP2vX4nFisSDbnySChPq8\n+mq5rb+cb80aWaCHl6ShOUUpuVy+3J6l8dxz1Yc2LxG0KVu89lqzvFJiFURrF2VOqGSzudlkVEQl\nhhLz5PXXm4yKSNhJKkNtawuWCEqsgLZz7+lRH6D33Vd6jVD5Lyq5lGzi61kuq6ArOyyiKmWHjzzy\nCG3bto1yuRx9/vOfp4ULF9Jtt91GsViMTjvtNOrp6aE6FsBxOQQKUUpkojIA+svK/FriYbr0Ukkb\nKg8Ksx2x9fGyrtdfV9nGXC9e0mFHZYc25U5I6x4x8Ok5apd/mE0Sa1tvr32Zm7TGpVjowvq0PQvb\nt5t7IZWkvfyyySB42WVjZz+0ZXksZZN/j+fNw+V80vmWSiF1X1KfqJxv3z7lteHzRCWGYXvEz+yG\nDarSIR4P9vnMM+WdG1t2T3SWeXmifrZtyh7D9h2FTNH7DpVD6wqIUmXCruwwiIosxfbt2+lf/uVf\n6IknnqDNmzfTu+++S/fccw99/etfpx/96EfkeR5t3bq1EkNPCUQpkYnCAIjc7ohtD7lUs1mTXe6T\nn1Quej8kVyFi68vnsesbtZVciC0tRG+99ebRuYeNX8qdnEgobwB3cefzptsf2SSJI3FxIskVL5U9\nchd1WGgB9WmzHwMDKg+B70VY6SBfJ96ndA516dlYWB5PP10u5eR7jMIIYedb6tNfuodEoDT7IQrL\ntLeXZgDcv99ubF1eSGSGQZC4Emd5jOreR+yJhw8H22kWUL89R45gcSNd9miz7+k0LkdGbn/0XrMN\nRbqywyAqEjJ46qmnqLOzkzZv3kw/+clP6Morr6Qf/OAHdPvtt1MsFqNCoUAvvfQSfdqfOk0uZKBR\nrriGrR44EgiSXKqS+M2KFXZsf8jNKrGZcSY5ySXb1KTm6t8jxGrY06P68rs6kTtZEuOx1aCXxJEu\nugiLC/HxJXY4vnZnnkn0hS9gZjze51e+gt3WaD/QuiMGP+Q6RvdffbX6oELuZJ2ZPtaQA7dJasvD\nCGHnGzFxNjWVFoFC7IcSIyMKzUgMgnxsiTkyTFzJHxaKwqiIQhs9PUTHHGMXhpDWs6HBzqa2NvOX\nu+T252uP3mtSiLFWBIuioJIhg4pUGQwMDNCBAwfo7/7u72jfvn303//7fyfP8yj2Hyvf0tJCQ/7U\nYx92795dCZPGjGw2WxWbOjtPoPvvn0UtLerbbTY7QPv3Z6it7Xhqb59Bg4M5GhpS6df8WjI5SCed\n9CHatKkl4MZ7552YocOO9Npx1rBHO3fGjOtNTR4lErmj47e1zaA9e2KGvjnWQcd9oizslpagZroK\nLXg0NEQ0f/4ZNDTkUTY7QMcdN4sefjgW0GF/+GH1wvSjtRVXBLS0mNckO3VWv3bJhlUJ+G2vqyNq\nbPTo/PNjhrb8mWcG2zY1mWu3bp1y0/rbZbNEM2Z4tHFjLFBlUFenftWV6lNa9+Zmj557zrTz8stL\n39/aSvSv/xoce98+omOP9ej442PGOnd0BNezpUW5rNF+cJukttwmqbJGmucVVwTtl/Z49my7c3Ps\nserDyn8+H3xQnU++Th0dwWuJBF672bPls+zHo4+qvARzjh698IK5ns8+a7a97DLPOEv42fAokYgZ\n9vMqnkcfJbruumCfRMO0Z88fiGP+/DOs3hdoj9XcPbr33lzgXfnv/87YtCYBKvmZVJEvBB0dHXTq\nqadSY2MjnXrqqTRz5kx69913j/7/qVSK2tvb4b21UvOvUa0cgoEBVde9c6dybfX3H0vHHKN+Walr\njXTffXMol1O/GPS1/su8uYMAACAASURBVP45NHv2nKO65/r+vj7lTrvttuK1Bx5Q7s/e3mC7tWuD\n5ULKhRejBQuC9b76+q23Nh4df+NGVft9yy1j7xMxyaVSKgFS4957iRKJGK1f7x/n2ACroUZXl9ln\nJmPOXddtb9xYvNbTg+3U2dH+8e+/n4Q1Mtejvj52NKvdf12L1Gg8/7zZ56OPqpdrcO5E+XyMcjmz\nz/37ia66qnj/c89hO9G6Z7Oxo6Ei/5qgMAi/P5kshgb89uRyMWPttRASn1N3t/oC5B97ZMS0SWrL\n7dSVNegcb9umvB7+c3PRRUH7N20y7/eLZ/nHzmbNc3PgAD6f6XTweddngc8xmzXXTpo7d4cvWKC+\nHPpLEbu6iC65BK+nFrDS177zHfTM4Wc7m40drdjxt+XMk2rfeZ9xOv30M41SZe32L3VupT3OZmPU\n0aHcmR0djdTRMYeI5tBkw3jkEEioSA5BV1cXvfDCC+R5Hr333nuUyWRo8eLFtH37diIi+tWvfkXn\nnHNOJYaeEshkiq7GQkH9XbdOxeb8144cwe2yWfVi9V9fv149jP5ryWTR1ehvt2aNelHU16u/PT3K\n1dfTY17PZIL3Dw4Ws8XD+uzrU9UJfX3m9bY2cxz9b/130SI8x0LBtFNnfPuveZ459zvvVPb7r/X2\nql/ZvM/Vq83xn3zSnE9Pj4olcztzOWw/n2dDg9nnKafge0dG8PVFi4L3t7XhNWpvN6+Njprr1Nur\nfhmWur++HtuTy5l9ptO4bTptjp3P43OL2sbjQZuam/GZmzEDn2+iYJ+jo3ZnobcXt21vV188+fhP\nPmnOh5/F9evxfkhz9zxzPvzZ6u+37zOZxHuE3hejo3bnW3qOUWy/qUnZy+0/5pjgtWOOwe0cN0Fp\nVKzKYOPGjbR9+3byPI+6u7vp5JNPpjvuuINyuRydeuqpdPfdd1M9+wo4HasMpCoBKUPXn+Ebpm9u\nIx4Tdj/SoEcZ8JddFsxEts1ql6oMwjL9+TpFEfjhWdhSxjXKrN6wwT573zYzG4kboUz9eJzo3XeV\n+3isFQEvvWQnpiOtu+1+vvJK0KbmZnmPkDhRlAqNKGvPxXwWLcJCRDbnG61TmIAVnz+qcpCEjCQR\npigVCegary6Jxcp/X6BxbM5NWJUByv7XCb78PYLeoVOBlRChKkyFP/3pT8UOL7300pKDfvOb3zSu\nPf744yXvm07QoQG/q6+/Xx127haM5v60c61pQhN0P3cRj4yQ4VbUbl6/q1Rym6dSpku0tZXosceC\nbf/5n81xenpUdrefpVFn1PM18ldD+EMj/BqyU3b9mm7eX/wCzzOZLB2uWLAgSM7jd0dzt/nGjQRd\nr7oiwH8N7TsKbfT1qQ8hv51btpDoMrfdT27Tgw/Ke8T7/OADuzMvnW+0dzoExF3hmoTIP89LLjHP\nyIYNxcoF/37ojP7SITHz3GzZgq+hNeYZ/WHPNgp1ZbM4NOHfo/5+xd5Yjis+ncbj2ITPUAhGt/PT\nihOpLw0orDRrVvDdoIGuOYRDrDJ47rnnaGBggAYGBujxxx+nzs5OGhgYoEQiQYsXL66IMdOtykDK\nmkV67yhbHRELadcYyixvbg6SgkiEJvG46qeUBv1ll5lEPFGzxXkmspSpv3x5sJphZESueuDXr7jC\nzk5EELNnj9Jw/9SnTDvR2rW0BLOw777bXPe+PkygdM01mEgHkSWhrHZkk0R6090drJC4+GL1gfjW\nW8H5tLaOvUpBIhtCGegXXYT388ILg3ZK5Dwo213K/l++3CT8aWy0qx5AGf1RiInQOktrzzP6dZ+o\nIoDvh15nPk9UHYLODSIRuuQSuWrEXw2hCa3Q86Hd/qUqZqQqA1vSs6mMqhMTXX311bR58+YxG2CL\nqRQysBHSCCPxsSWTQQQcRHaEP2EuXRsXoORC5K7befNkV+PoqD2Zja2rkbt+29rwPO+6S/0CtCFu\nOXAg6LaX1o67qBMJJX7jnyMRtv+VV6IRC6E9GisxEQpNJBIqY5vPXdojvu9hY6P1tCVAuuIKtZ5+\n0aIw8irkdkdkR+WG6fx9Njaq/A+0dlHCNchO/myHPTNo7WzOjUTcRWRP5iWRbC1caJ4b/g4gwmRD\nlSAXmmyiR1UnJtLlgg52KFeLIIx4hpPjEJkEHsPD6sH2t50/3yQQQSQphw6p65y4BdkkaSFwQpMw\n8hGkOyDxwnPbpT5tePJvvNEk/EkmcZ9a+KjU2s2da/Kyx+MmcUo2i4lwdOWD307JJk7Co/coCukN\nP0ttbabt+TyeO+/T77IvZbv+ILEhqNEufz/hTj6PnwXE/S9VrCACJhtSqTD9D3+fg4Py2vE9GhjA\npF/vv69+kS9cqP4+9piyk5N5hT0LvM9Mxu7czJ2LibuIlNdIiwzlcth2icjMLzSl7RweDvZJhPUN\nwuY5VjiNgyCsiIm2bNlCn/VrVlYIUyVkIIUCbLUIZs7E5DrI3Ye4uJE7Hbn3JeKYHTuCHP179mC3\nokSowglNLrgAk5QgghrJ/cptuu462SXJ1x5pDCB3sMTfjvpEugMSSYst4Q8Kd0g2caIlaY+QOzoK\nMZEtzz2aexjP/ViJiSTdAcT9j8Jk0twl4i0espDOvC3xFprnhRcWM+1LhUsaG+01F9BzzDUo9uxR\nZ4SHNqSzzN83UujuggvkkJ5/jyTdAbS/q1aZoTspvDDe7+paQiVDBuQJ6O7u9m6++Wavu7vbW7x4\nsXfzzTcf/V+l8Oqrr1as77HijTfeiHxPoeB5Cxd6XldX8X8LF6rrqG0yGfxbKHjek096XiKh/p1I\nqP/W/+bXbMbP5/E1Pk4u53nr13ve22+r///tt9V/Fwr4ei7neUND6v8fGlL/jWzn7fbuDV+nUn3m\ncp734ovBdi++KM8d2Z7Pm2Pn83iN+Vhoj8LWCK0nvx/t0cKF+H7Jzt27zbXjNkl7hNZDOot8P23b\n6X23PUvSWbQ5N7t34z6le22fuSh2SueOnxvJJtu529ok7XHx/tGj/di8w6Q5Svfn80E78/lo7080\nT+kdzN+r5b6rawVj+UzyI+xzVqwyWLNmDfy3Q2noUADPnNXc+35oVz9R8W8mgzPtNTe5P8N2ZKQY\n2wsbH2UIHzhgZpb/7GdyZjjPjv7Lv8RZv5zQRFcp+LOLFeGPXSbyQw+ZGflSpv3ISHkZ7JwMRvMI\naDetv0qBr92vfoXJjnimulS1IWWr6xCMf91R5UAuh4mAeEXBr36F15OTxigyF9xWazuE7dHGjfh8\njIyY63TffbgtJ9OKcm6k8dEao6qPvj7lzjbJecxKkL/6K6LbbzefGXTueJ/33YfnIxEYSRUW3Kab\nbiK6447g2KkU3mPNfbJzZ+zo+bbJ/tfaDjaVJKjipb9fVQn4f+FL+xu0U75fqt7i7YiivaunA8SQ\nwZEjR2jBggU0Z86cwP92795Np556akWMmSohA4lPn0sFSxgexu42JKPLs++JcCgCZQgjd7KU7Y1c\n3FIGO5IaRjK2UqY+D41cc4295gGqXJDmhDQGbF3UyE1ry3MvVW2g7P8okrG2mgsrVuB2K1fi7HvU\nlms+XHWVfYUEmrukLfGxj5lrJ8lRx+Pqb6nx+Rr39KjnEs1z6dLgPD/3ObNPNE4p/Y9SfP49PYrE\niO8Hyt5H50HSN+B7rPUFbGXItX6IRljIgD+HtmGI+nqV44B0EGzc+1HCAOXqxlQDVakyuOaaa+iH\nP/whERFdd9119P3vf9+4Pt6YKlUGo6N2UsFh99sQhUjZ4g0NmMCDyMzm/dd/NeVZbSVrpbaSnSjj\nmWdh66x8m2x1aRwuD2srrYvIdXRmtw2JkFR5wLO1w7LaN2woLSscJlFtW10SpXIBzf3yy4PkPoj8\nqaUFZ/6jKppXXolGFIXmuWhRsapFZ+9L46OzKK2JPyseVRlEJQjjfUrz5OdGV32gKhrbCiCJIMyG\n0EqvsZIcLybbSuMQjV2CuFAYe5VBFPl43d5VGSiI0/Z/T8jn8/C6A8bwsJ1UsAQpm9YmY1rLCqMM\n4eHh4LV83pShlbL8s1n7tpKdSFaYZ2HH42osGwlfzL2v/j0WaV2UwX366cpOXrlwySXmGqNM9Ztu\nwlntuRzOas9kguN85jNYovqmm8x7/aGNMDnpsIx+XnHid6X7947bmcmY7aTMf7SfyCZUuaClih97\nLJiBv2uXOo/+tpJsNqpckM4YD6McPmy2Q9fCqoVQaIZX5qxebe67rvrg7xa0dlI1BKrOkKqdDhzA\na8wz8iVpci7NHkXWvb4+WHlQX29/f5RxiLCE/HSFOHV/qaH0bweMQgHzv/u/sYYBced/+9uYax5x\noEtaBvrf+q/Ep490ByRuctSW6wZIdkrc+6OjwWuZjLkeGzbI3Ps2GgPIJmmOyE7UdmjI3Pc77sCc\n9IjPv7fX1JvI581xBgdVv/xeaT/5+NJ61NWZ19D4aI+kteM6Cj09+HzX10fTCOD2r1ljfz6fesrs\ns64Or0ksVloHorUV6yBIfTY2lj7LYXoV/Nyg/USaDdom3mcsZnL/I20K2zWWdAPQvmubbCBpGfCx\nbNs5mBCTCj3Po1wuR57nGf92CEeYDC4HclfF40qy1y+R+jd/o1yIXFYYy8Pi8Vtbg22bm2XZVFN2\nFffJ22qCGzv5Yzs7jztOuYhN+ePgNU0Gg6VPS9vU2irvG7+OrnV24vXEssJ4rM7O0uPIEr54/Dlz\nzGtcWjebVWvCr0l9clrZsLVDksKDg+bevfBCsG1Yn889Z0olS2fZ/xzNmoXPYjyu7OBnhEsAo2ez\nqUnlBHDJ7Q0bVD4Kmr+/7fe+Z8ofh71D0Pm+7josqYzGRnNvbNTje5ROx46Gz2xsQu8A9CE/c6a5\ndnqdUqngO9DzzJBBfb15bpF7v65O7fMDD0yeMECtQFyi/fv308qVK2nVqlW0f/9+uuCCC2jlypV0\ngPtpHQzYEmhIpBiIKOS887Dr+MYbsUtVGt/fViJj0RnkfldlGIlSKYIbyXUrrRMn3RketnOFDw6G\nz72UTWFEOvw6ujY4aEduEzZ3/nhFIYSS9pOT0ej5+9eDyFxPomJFAOrTdu0QsRAPPyUSKtnOhigq\nnVYVHkuXqi+FS5cqEh9k5/vv25NkEZW2KZXC5E8SwRe3c9u2Ivc/b2tLNoSu85CD7tOGGCib9Z+H\n2NG5//mf24Wa0LOFvKGZDF6nVCr4DkwmMTGRFApFJEIuDDA2iMu0bds22rp1K23dupW2bdt29H9b\nt26dSPsmJZBkrc6S9UOSOa6vN+9HMqFIalhyqerxuZsXua2HhrBb0Ub+WJJtRa7bxkY7V76tK1y7\nsm36RDZJ9qD9RO7PGTPspYIbG+3CIGhsJKGrqzNswhCSjC1aTyQ1jKR1JSlrHqbq7ZVDRdzOp56y\nlyqOx7GdXP6YSA6X2NiUzZpjh7nnbUMz/HxK7nUkQ47CdLr0D70b0LlBcycqPXfpHWArX4zmfuQI\ntiebxe9LKTfAITrEKoN8Pk9btmyhK664gm655RY6dOgQxWIxuvfee+nEE0+siDHVqjIIyzId7yoD\n26xb7jJDGexhWdQ2meESd7+UvS/1ydtybnKdVe/Pbs5mVRgin1cfEGGZ/lGrGZCkssRzz92SvOpi\n3z7ljUCc9LaSyjyzW89dWk+/TfG4+hXkr5oIqzKwqR6IWrVh26d05m2lcdH4fI/0fvCKF6lygt+P\ntCUKhXC9i1Lyx0gm2V8xUl8frhkRVToayXtHkY6OIlVss8foHWCb0Y+qFMZStWFbvYXe867KoAhx\n2hs3bqR/+7d/IyKiAwcO0F133UUrV66k//E//seYDalFVILLOpPBrkLuGpPcf5mMmWWL3MFhrng+\n/uCgmlep7OSw7H1UOcHd4VoSGWXVc3d0Pq/s4m5JHh6IUs2QTps6DmidNEmKv10mY7qyOzuV7bwa\nIpksyuCWWk/kikfZ4roSha9HoWDOR5MNcRexlNVuozEgradtRYJ05m10McLG5/uBQg6SvoKNtkQu\nh0Mj3d1mlUMiUSTe8u/bwADeDxvNCHTmw3RG+LmR2qL13L/f/tzwEKOfMC3sHYDCoxrclY9CfGEV\nElGqB/yQ3vOFgtMy8EMkJvr7v/972rRpExER/cM//AN96Utfov/yX/4L/c//+T9ptZ8+axxRDWKi\nUiQWYyGBQGQXiPQmjI+fExghAhCJ9z8eN4mREImQRD6C+N8bGuy43q+/HhO8LFsWJGORiHQkMhk0\nT66ZoNfuW98qfT8iSUHyw2F2cuKXKNLPy5bZkU9JcruIXMdWqjhMY+CNN0pLDWu3vZ/g5i/+Ap9l\npLkgEQvZ6g6g/Vi9WvVpQ5wlEVrZ6H9IxFuI5CoetxsfnXk0H+l82+6nJMXd2orfVzt2BLUQkIy4\nNHdbfQFbEjVtJz/ftiRC0nv+/PNlQqrpqGUghgyuuuoqevzxx4mIaOfOnbTgP76aXXvttfTYY4+N\n2ZgwVCNkUIrEYqzuGUQMxF2NLS2ydCiR6caSXIiIaGSsLtUwGVxpnfwkL2Fu83Iklfn9c+fKbnMb\nWeLmZjuCFylcEuam5WEIaT42JEZRZYF5aMM2XBImY8vP0r59RKedVjqkhVzueo8kQiq/HHVrq73r\nePt2+xCObWhEOotRJJVtXOwS2RGfTxiBEtpPRLLFSao0kVmRCKhYZcCfL1spbV0RgIDc80TmNanK\nYKzu/bFIzddq2KBqxETJ/2DQ0F8GksnklCs7jEpiYQOUDZtKYeKWVatMF9zIiOnGsq0ISCSCnPal\nMoQzGZOsCJEFhbmObdzm3P0YVVKZu6gPHsRuUrRO3d2m6xgR7ki2+/n8dduBAdUvnxN3+YdVZ3A7\n16/H58Zm3XX2Pt87KazE992vrcDPohRGKeXi1hK66MxKhFTcFW7rOv7gAzvCniihEeks2hCEzZun\n1giROnFiIjQOmo+uErB9jnkY4qyzcJZ+Pl8MUb711pvU2opDKGHy4JxECEFy2xOZFQGImIho7NUD\nUaXmp2uiohgyiMfjtGnTJjrjjDOoqamJfv/739Mdd9xBV155JX34wx+uiDHVCBmU4rIeq/yxrSt8\nxYogV7rmuef3X3MNlkhdvtzOFS/xpXPdAMRJr6VHuUvY1h2tM67vvXfsksoNDXYytPX1dq5fNE/J\n9Vpfj92KyHXMXf5XXqmu2bh+r73WXto2iiwwCrfEYsFzF3a+bDj+bV32msvfRh9hzRrZbc7PDZIQ\nRvcjbQgp3IK0PtD9UfeD6wlcfLHpIpf0Ny64QA4z9vcX2159tb22hN89rt93KESJzmIU3v9S4dlK\nIuw977QMfAiTSXz++ee9tWvXeqtWrfKuv/56b8uWLd4jjzxSlvRiGKolfxwmyTle8seStK0kccol\nRaNKpEaR4fVfk6SCy5Xr5bKl+t+SRCuXOEVSx7zPKPLHYfKsSAJXaovmzmWauSTx7t3R9ti/N1q+\nOKosMJLwtZXgla6PdY1t9z3sLPLzgGSNkby3lnm26VMaP4qksq28Nz8jYfdKMs3+tlHfQUWZ4NGj\ncsHSWURy7UhqGF2X9nMiEMXOWkYl5Y9DHS7nnnsu/f3f/z195zvfoeOOO47uu+8+evfdd8f8zaQW\nMTpqT3ZhiyjuR5SFjdx1tiQ+0v033IAzoVEGOiI7Qi5lySZOBvPlL2Pe/5ER7Pbn7k9JY4CHS+bN\nk93JUdYTEcmgtocPB6/pCgseFpo9G2fK29qUyQTXaGgI72+Yi90/p85O086wUI+0Tn4cOID30pZA\n6cYb1dnj1SWommJkxDwPSDdhcFCu5ECZ9lwfAc1Jh0HKId5Kp4PjDA8rbglexSLdi+ZkQxQVlr1f\ndOXH6Oabw8Nnfpc9kX32vhT2tNV4KRdSuMGRGBUhhgxGRkbo//yf/0N33nknvfzyy3TgwAH6p3/6\nJ1q6dGnFjJkqVQZ1daYbCrkFJVcjyni++ury7kcVAeh+STYV9SmFB445RiUw6WuXXiq7iLlEKspu\nlrL/uYtZymBH7tczzyT6whdKhyYkFzWap1RhgbLaUZWBtMfxONFrrxWvrVqF91eSk25qKm1nWMUJ\nqlxoagradPHFRJ/6FNGbb5auPGhstJOJRuGOMKni668PuuKldVqxwpQVbmkxK3NQWEqS8I1S9cH3\nE8kkS88WCjWhOa1apfbD5h00cybRX//12MIDUbL3L79clomu1Yz+WkRVQgaf+MQnvHvuucf7wx/+\n4Hme533pS1+K5Jb4zGc+41111VXeVVdd5d12223ev/zLv3iXX365t3r1au973/teZFdGpRDmmvO8\nsbtnkFsxiquRu9aQ2zzMpSq58m3crFHcvDbhgbB57t1rtuXjSDbZun6jrIetex/NM0poQdrjQ4eC\nfR46ZI4TdY94WMh2PplMuIuarx0KKUUNbZQKI0hhIeSKD1sPf7u9e+V5ojNis8bSWdT224RWeFgn\nLHyF3N6276AoIZwo788o75ZquuyrPX5UVCVkcM0119BLL71EmzZtol/+8peRqguG/8MHtHnzZtq8\neTPdc8891NPTQ5s2baInnniCXnvtNdq1a1e0rzUVQiWqDEZHFf0mz8KO4mrkrrVUiujDHzZd6bau\nY0QYhNyskpSrNBYPQyDNhTAZXJ5tjvQZEDGRJp2xkca1rbBIpXBGfRRtiShZ7WiPiYJ9zphhjiMR\nNUkENbxCA+2l3ifuts7nZT7+UlUKksvflkAJhRF0qMiGUz+KVgciirr4YnyWb7mltGaCrnjhJFnz\n5qnrpfQVtPSzrUxzJmO68m3fQZIUN6+YQaHUKNn7YWHTahEDVYKYbjJDDBl0dXXR5z//eers7KSf\n/vSn9Nvf/pYSiQQdf/zxdNxxx4V2umvXLvrZz35Gv/jFL+jZZ5+lk08+mf7f//t/9NWvfpVisRgN\nDAzQO++8Q2effXbgvqlUZcDdaJdeijN8kasRuQWRK18iCkGuY8mdzd2sl1xi7+ZFpCS242jXKXdV\n2hLxhGWwL14ctN+2QkLKwkZhiKhud56V3tiI95iPL9mEzo1EIhSPB0MGyEX9uc/hcZYtw2EdXqWA\n3MFR7eT7IYURVqywCzVdeSXR7bebZ+Tcc9WHXqkQzhe/iM/yxz5mVpfwcFzYM4Pc+/x8Sud71Spz\n7raufOkdZEuShSoComTvX3KJ+iJtQ9w1UcRA1ax8GCuqQkzEMTg4SP/wD/9Azz77LP30pz8NbfvW\nW2/Ra6+9RldccQX98Y9/pC9/+cvU3t5OP/nJT4iI6JlnnqG9e/dSd3d34L4dO3ZQM9IIrjBaW9up\nre14am+fQYODORoaOkTJ5CAREWWzWYrH46H3d3aeQPH4LGppKcp4fuITsTER7ijiFo8WLy59v9yn\nRwcOxALEL2EEN5yvHBHRnH66aRMiRAkbx09eoqSKPbrzzpg1+YkNH//LL3s0NBQz+OM5SQsiXpk7\nF5O5fOxj9uv50ktBvYjWVvWSMYmeyt1jfG5+85uYYf+iRaX3KOws7dkTg8REpch1wuz88Y9jBtGT\nPQkQ3mO0nxIpE+oTnUVb7n6+74pECD8zL7/sGUQ+PT3m2JiIzKP9+w+I7yuN+fPPsDpf2h5sp7l3\nvb0eDQ3lAmMTEbQHvVd527a2Gcbc9TzfeutN4rDpE62HBLROek3Q+LUAm8+kMKTTaZGYqAFeBWhv\nb6err76arr766pJtTznlFJo7dy7FYjE65ZRTqK2tjRKJxNH/P5VKUXt7O7y3HAam8UBHRyN1dMwh\nojlEVJoVSmfTfuMbSht8wQL1rbe/X/260NCu+B07itf83OIaXV1E6XTMaKvdbf5rUp8jI7Gjrnht\n0/3347banazx/PNFt7l/PtmsaZN2269fX3oc7c7199ncHKMbblAegVL3a1e4xpYtuN3wcIxyOfWt\nX/e5cWMxK90/fne3+mWkrz34IG6Xy5nruWkTHl9XKWj88pdk3NvXZ7/H6FrYudEuaj1Wf7/dHknj\npNMxeB44uU4iEc3ObdsU/4XGtm34fhxuMff4wQfJOEt9feqMPvKIXZ/8/oceKhILhc0dPQdKbdDc\nYz0WX08dWtH4538256P7/NCH5hxtx99XGjoMYfO+QGfRH8LR42/YQJRMxujWWxv/41oj9ffPoVmz\nipn5kj3F68FrmQye5/BwzHjvavf+rbfS0fHvu28O5XLBa/39c2jOnDlW1QJonVQIxhy/VjAeTIUS\nKlJg8cwzz9B3vvMdIiJ67733KJPJUHNzM/3pT38iz/Po17/+NZ1zzjmVGHrCkclgqc5Fi4Iyn21t\ndnK32sVrI3mr6XO5HGk+b9r05JN2UqxEeD5IVnjNGvtxuAyu7pNL1koSq21tdhLAhQKWiUZzSqeD\n1yQZWCS/jCSqdSjAf83zcJ9IGhfNCUnrSnK3dXXmeqbTdnvU3i5LPyP7dRv9V/3KtbMTrZ0kFdza\niufJbUJnSZLdRs9cQ4N5P3qO0NxXrzbbaalhdJZjsdJ2SlLatrFtJDWM3kFaUhnJEj/1VHD8O+80\nJbLLlR+WJLvRPJFc/JEj5Ukio3Xq7y9SKk83WIcMomBkZIS+9a1v0YEDBygWi9E3vvENqquro/7+\nfioUCrRkyRIjXECkvrlUQ/44DKW+jUkc2UhaF3Hfc+56zS2OtBCQLLDEd27D54+4zcNc/lyqWGqL\n5I/5OFrGFrmut29HbntTsyGVCkrLahnbsXLSv/KKvZZBW5ss9+u3s1QIhWhs/POSjgOyUzoLf/yj\nTbjELgQkhWWkPj/4wJR0fvvtYKgqTF8hig4Fd8/bPjPlh69k/ZGFC8PtDJM/JrLj8y/qE5Tus6gd\nUNQysA+3jL12v5SWDG8bRQLe1iYnf1xERabd2Nh4tKLgRz/6EZ199tm0YMECevrpp+nZZ5+FXwYm\nK2xlV1HGtURyImkhcDIWJMGr+eelrGF/9n0mY44TRqbCpYqlufM+P/pR85om5+H3J5OYhGhkJHit\nUDD59HO5aHKqylnDsgAAIABJREFU3HVcitiHkzLZZN9LfWazZra7LQFTIqGSsxBhD7czjAyGkx1J\nGfFSZji36ayzSp9ZLYVNZN5/4onBa8PDMp+/rQ4F2g+0b2idws6DDQFTWNVHKTvDKiRssuIR4Zpk\nz/Cwv20stAIKhVvK8RBEqfIaHraXgI9ikyMmKmIaT3180NBg50pHbkGpXTZr5/YeHFTfmLm7LZ+X\n3XD+8RctMvvM5bBbEblpYzGzLXKfSq74kRFz7errZbc9t9M2tCG5w7k7W3Jbo7lnMnidMplgu+3b\ncZ9oTaR1Gh0tHZKSQkVDQ3ZnIcxFjex/8knTJu5OlkI10t4NDQWvJZOyTTZhkJ4e89xIIS3PM8eS\n9q6hwc4VH3ae+LXt20uHQPTcbVzkyL0undlCwWwrhVukUNVYUVcnrx2HbVhoOrv8y4V1UqEDdi01\nNqqs/E2bgq65nTuD9+7cqb59+ts1NREdf7yK1fldeOj+k06yu7Zzpzx+U5M5Pm/X3q7afPObRZse\nfli5FbmtmnGt1NxbW2U7s1n7tXv++dLtmptVOMLf5759RB/5SPCadmf7r+3cqX41+q/NmKH+x8c6\n9lj14uLr1NsbbLdunQqhcHtOP91+nVpb8Tz9fWpXPL+/s1NeJ5t1b24meu459WvMXxHw6KNmW17J\nFPV88vvDbEfPTUcHPreonX/uhQJ+FtDe1dWpLwT8LD38MB57505zn/gZi8fVWH6E7cf55wf34+c/\nV2yDyWSwT75Gs2apUJNkJx+rpYXogQeK77t4HJ95HcYYC2bOlNeOQ3pfcjtr3eVfy3DLZgmJwGJk\nxHS1Sjzk3M0q6QbYur3DuMltwxjc3SZx0iMX5sCA6SZGY4fxshPZudj52oW5iB98MBgayeWwlgJy\nZ/Nxhobk/UDrxF2qKITS3h5tnWxczKefHp0MxjZUxF3stgRMEsmVNBa/X7JdcqcPDZXW6tD6EjzU\nhFzXaO/SaTOEk0rhs5BOm++G+fPtiLuihK9WrsQhxptuMt3rUYiiONlRNitrj4wVmYx9nyhkoMNf\nzuU/PhCJiaqBahATlYImgZAILGw5/qPoBiByHSTFiq5JHOoSBzvnir/wQkwegmSFEU8/ksFdsQJz\nqDc3q3JNf59f+pIdaU0U7v3Vq7GcNFoPWyIcxN3/7W+b0rho3SXyKGmd6usxeZVf7lYiULLV0ED7\npsfhnPgrV2JiIE7AJGkZoD51hQYfh2sJhBH+rFplkl/xeV57Ld73lStNW6VnhmtoRNEdQFLckg4D\nWqOmJkzmhQitEMEXf96jSACXInEbC6L0iSSZp6MWQtXkjyca1ZI/DoPmjY4qD4t4wG059iV51yhc\n8ZwT35b/ffduk+9cc73b8PTbSsZKfdrqGyCu9UOHZC0DvnZRdQfQfnA79+7FXPGSFoCttG4UPn6+\n70gfAe1RmJ1c3yGXUzoHpeYZpiWA+pTWI4ocdSkNjbDnIIp8M9IdsJEhD9P1sNXVsD3f0n4i3v7i\n2o2KugX6Pcjvt9E8CLvfVksgbD+mE6omf+xQRBTObuTSzedNF3WYxCiSd12xIugqlNxt5bjiOzvN\na/G4PH8uAXz4sBxy8PdZV4dtGhmx0zdAXOsjIziEg7Lvbd3Wej94n4mE+hXjv3bssdh1y8deulR2\nv/J1kjLD+fnSfPx83xMJlQPBs/eRjgKqWMlmTX2HkRFTYyCRUEmE/tDC/v2y7VzuF7mzdRWODZ8/\nCokhV3xY+IrbGiWEo70spcJsYfol/NzMmmWGmtB7BJ1vdG3pUnWdu9eDFQnFKgPEBcAz8j0PhyL9\nZYAaUtiVyM7lXwndGYcgXMigBLR7JgpnN3JVXnONHfe9donacKhLEr5II+D66+34/CW3OXKpIglg\nyU08OqqY6Uq5zZcvN+cuhVY417ok03zVVabrF7nIN2wwXf6Sixqt07XXYtuRixiFhdA6SWeEt9Oc\n9Dbyy0h3QFrjCy4w+0TzRO5oKaSFXOno/ijhFsT9j1zxYeErHmqSQiMzZpihCaRX0dCAzw3Sd6ir\nI7r33tL7gfYYnW90TYc7uHu9HD7/dBqfhfPPH99xiCoTspiMqAktg4lAtYiJUPUAkf63R5lMjF0L\nZrNyAhBEqCIRp7z4ItE775hEIRLZEScF4SRAiiffvP+VV4h+8xuT2AgR9kg2SaQmnFBF4n/3r5HO\ntD9wIMjzjwiconHS25HWbN+OiaI4eZO2E839rruC64QIasI4/iXCILTHqZRJpKPn5r9mc26iaiaM\nlbBn3jy8xlHOki3hj61NiAxMV2gMDZlEVzqZbqwETJJNfO+4PoJ0PtG7ARFqhZFscaKmWCwaORB/\nB0a517athHJIhCYbAZGESUdMNJkgubGSSX0tFuraQgQgiYT6QLJxUSNXo607G0kax+PKLcjvHx42\nXY1hxEKo8sHGdZ3NmmQyn/606WLWxEQ8PDAwoH5B2bhZJVlhm/CAVCXA59PZiV3sN96oPqRLEdmE\nVYJEqVJArnzuDpbODQ/rRKlY0VzzYyHskbLvw8iSbKp10Nrt3y+HxErt8bx56plBlSycECuVUsJO\n3GWPSJ2kdUomzf0cZFo8H3wgExPZVKeErR1/3mxd8ehdGXYWOMbD5T9WEiEnc2yHaR8ykNxYyG2O\nXFu2969di7Pnm5pMF3VLi7q/lDtbkhpevtx0RyNXPHJHS25aSXJW6y74QyOaNKaUjK3k4l682GzL\n3aySe7+pydwPFB5AGexSCAWFIdCcUAhHyvJvajJd1CjTXpLBRdK0yJWOwjrIpiju/SuvVOOj6gH/\nOJLLHVWs6HDPPfeUriRpbDTnKe1nU5PiygjbYynUhNYZhYDWrCkShJUKbUjj8wqJiy7C9lxwgV3V\nh97PUrLVYeHA5mYVHgl714WFLRsYy001Xf7lhitqCS5kUEGEaRHYcHbb3v/KK6ascBgnPZIg/shH\n7HUH+P22ugNSGOHll82Qg5bW1e7hMNettJ5R2nI362WXYX0ExHeOOPH5/VFdv1IIh7v3+Ti6z2xW\nnZ+w8cP2GIUMbFzxaN/mzZM5/nkIpqUFn1sebkH6BJKGhZ4T5/jn5zMshIPCPfyZCdNHkPbYL2uM\n5i6dL7R2kswz0jKQ1mh01JxTLGbqFthKN4dpLvjfd9K7TgppSWyD1XDbj0e4olbgQgYVhOTGsuXs\ntr0/kzEzq8MyyHlm9+zZ0XQH+P1h4YFSZEW6z8ceCxL+7Nql2tu4k7nbOgpBDXKzXnCBrI9gk0GP\n7pe496PYefBgMNN+cNAcR7uoUWa5bSVKKmVfubB/f3DfHntMnUd/O0k3IJczQzBIS2HuXJzlP3u2\nuUdhFTulzmdnp/zcZDLmOqNw3kUX2YVbdOUCn/stt5ghLR4iXLpUrR1fU9uqJGnfMxn1S7u1VX2Q\ntbaq/66vD17LZLBmgxRmsyEHkvaNn/lt2+QwQLV0A1yFgh2mfcigUDDd88h1i1xoUe5fscKOwEhy\neyNXpeSua2y0c+1JxCsoC7qpyS6zWyK44W5rKbMbrZ1E6oSy95ctM9cZZWxLZC6oT4kkJh4neuON\nsbn8pWoKPr4tyZVEoCRlwGva6bDzKWW1o+x96SxFqVjhIQepT2k/duwg+uEPwyt7ELGQFG6RxufV\nPtI80VmU9pPbjtpFca+j9xIiztJhlYULS4cMJJd/czMmO6qlzH+0HtI7vdbhiIkqCIk8RCJUQaQa\nnCgEkRBJhCT5vB1pjXQ/J7LR5CU2JC9hRB82JCuI/MSWREgi0rFdu3zenigKtbW9pvtMJEoT6Ujk\nUVHstFm7sD5tzuKLL5p9RiXe4kQ6UYmeJNIc3qf0HKIzUg6xECJLksZHc5LmaUugJI0TTiIkEwFJ\na8zfF/l8+DqjfsdKLFRNRJljrcMRE1UQiNzn4EHsQkulzCzVXM5086JriCRFu6xQBrkNoQmqMujs\nlOWPBwaCrj0pE3n/fhzG4GsyNDR2d3JdHZbBldYOaS7YEkWhtolEtEx7LrWM5jkwYLqIw0IwfCwp\ns5xn34e53HlYB5EqffjDZtVHmDZEOS5uyUUtyRrzihUp057PCZFXSTZJ2hA8zCaN/8EH5v1RQmKZ\nTNC9n8vhcRCJUKFgRwQUFgLyj11fH01PALn8J4N8cJQ5TmdM+5ABcoNdcgnm80duWluiEORmRZz0\nOqMfEZpw4pawKgPk/r3oouD4UiYycjFLxC1jdSdHIVmRSG+k7H3u/kQZ6BdfbJepLoVw0DxRZniU\nEMyFF5oVGnv2qDDAxo12ugNIH8GmQiKKNoSti1s6SzNnmpUL+tz7qwxQxYr0fKCwkGQTJxaS9hgR\nOO3Zo/aJ7ycKiUmu+KamoJs6Cke/LRFQlD6nA+HPVJqjqzKoMGyIieJxOTs4CikIJ0nZsMHMrJay\n76NkIttkpre12ZEIZbOKlpdXGdhmwEukTFHXzt9na6sib0EVATYZ6M3Ncjt/9n0YURTfzyjkOIic\nx7ZCI4y0Zqx96muIlAlVGUhEUf6MfF1hgTLQbaoMws6CLQGUZJMNGVgYWRPazyhVHzbZ++WQ+0TN\nqi++A4tEbLX4S78cOGIihbDP2QZ4dZpBu7qIin/1v3fvfpPOPPNMSqXUN8pzzik+9K++WnQL7thR\nvE+74v3XtKty9erita4u9U1+69bSfaIs7LB2a9eqXw36RbRtm7peX6/a1derD/rBQeXubG1VfwcH\nlbvRj1RK/dr6sz8zx0fjZLPmOOWuHbd9eFj15Udbm2p33nnK/RuLqb/nnWfOKZ1WoQw/5s5V+3HC\nCereE05Q+yXNk7eV9kOHYDS6uvD477+P7z98OKgB79eL4H3yuQ8MyGeRn7sPPlD7P28e0XvvEb3w\ngioZ7OwM2pnL4fXga6wrCvz79md/Zn++w84Cv37gALZJz8l/vrWXha8d6hONf+hQ0M65c83zqecp\nnbF8vvjFKxbD42j5YT/C1q61tXhNh5VQn0Tmh6Lnqf8RBf893qjmh7L0nnfwoazshHFGLasdatW4\nr3xFJQZ95Svqv9F1rbzH2w4N2bWTxkokgtdSqWj38/ETCbtxpD4zGfNauX3arp00TjlrV+5+lDt3\nqa3tOLbrKc0zip18P8q189AhzxseLn2+pPvRfkrjp1J2fUbZz3L6lPYDJQvm83ZtCwXPO3w42O7w\nYc87csS8Ju1HmGrhWCDZNBkT+6qJSiYVupBBCWj3jE7C8n/j7uoi2rRJuRb9v35HR5W79ZRTir8C\n/vAH5X7N5YrXiOz7bGhQcXR/223b1C9H/qvo85/H/d5+u4q1amzZQnT33aXbaZt4n9u2FUWUxtrn\nE09g+4mK61RfT/T1r9uNg+y0nTuaT5Q+u7pUXD6XC/7yPvts9evEf23RInnvC4XgWdI5FXwcP6mR\nDoPwPrdsUe5r/xoffzyep+2+d3UpYaXzz4++xtL51mvy3ntBO3/7W9yOn5sTTsBzR+Pff79aO97n\nH/5gPrOnnRb8NV9Xp3JCbNYDrR2yCe3Rtm2qTBj9kuXaKf9/e18fJFV1pv92Dww9n6KLRpCIoPiZ\nSmV3LIwmskQJIAQ3iyJogiTIxlUrLkZdEJARYYYFQTRubdbVNboQQjTElFvWVmoLVORDSKhg1RLE\nnylj6QgpBhhgpqdn+uv3x8mZvvc9z3v73OnpmZ6Z81RZI3fu+bjnnO7pft73fZ6Kihw74QX/Nh6N\nmq+joD3esMHPOhQKnZTNx3n6afeNPQxcyKAEUFlJdPCg/9rBg+r6W2+pF7KmJceMUfXpF1+s7kun\n1b+vuiqXWa/7PP98Px3805/iPseONe+triZ68UWi55/P9VlWRnTPPXiuo0b5aeKaGnzfRRfhOc2f\nr94kvG9EvP2oUfLYaO3Q/L//fRVm0Bg6VL1ZrluXf+7SmvJnuugis311tdyn7TMNG+bf4+ZmNddP\nPsnt5VtvKWpfGkt/WNRiM+h5YjE/xf7RRyp/gt87cqQa2+Y5pT1C4/M/FOjcjBwpPyOyzY7F/CGY\nWEwlxqE4+DXX+O9FeySdxaoq9cee78fChXgsbStNpOYkrQd6zdjMadQo+XWMEInkEuH0/yMqnocB\nysvDne/KSjx+d4HeLw4ezOVsOfQ9+mFKRd8gqPwKlQgi5TJuniKVNaGyQXRv0JxsVNeCVPD4nFA5\nICqpk0r3pPIzfu+LLxZmFoX2Q5eq5StJCzKEsVFfRGusFQT5fKQ++RlpbTXL6fTzcEVFdG5aWkyz\nqDDKi9IZ5eVaOi/BxpQqkTDLVadNw/uOSnUTCTujLuksovONTINQeWVQKaRNn83N4cpdOZBJT2ur\nfM1WhdRGObJQOLXA0segLzvMB13iUVamXuxIVQ95uyPlMn5NMkVBZYOoBEtSKkSlYqj0T1JKzGYV\nBWqjWIfKAblJTpBaHi97nDMHj8PXbsECWe0OlbRx45y5c83SvRkzZAMqVD7GS80kZTuujBfG+AaV\n06HnkcpNkVkUMieSzKLKy+XyNW/pnlSWy8+HNjeyUWmUSnXLy832YYylkLmQpPLIyyvnz5fXw7sf\n2oiI93nrrXblrlJJHDLp+fa31brwa2g9+X40Nip2g5fkNTSo8Xsy4W8glf71JfqlUmFzc3N24sSJ\n2Y8++ij7pz/9KTt37tzsnXfemV2xYkU2LWSRlFJSYU51K9OlvsVVvpLJcAptvH2QkhpXTZPU6Xif\nWgEQKdZJ7ZF6F7pmo1iH1PqSSayWF0Ydjs8JPaPu00adLpXCqoKSgh66bqsgyO/T87RRyAxSzQyj\njGeriIiePUi90bt20jxtlDSDVAFt1k4rceY7i0Eqj6g9P2NB5xP1iVT8bOauFQSRKqCNwqWkbCqp\nCubGz3Q9e/j3yvxKhf1B1bDU0e+UCpPJJK1YsYJisRgREa1Zs4YWLVpEW7ZsoWw2S9u3by/GsD0G\nPy0X6VIl5PTh6dP29CuiwoMMTLhqGqL7kPlLLKZinlzJTaILdQmWV72LU79BFDdSrONGQm1tSh0P\nGfzYqsNxSrazExsRSdQvV6c7eRKrCp45Yxq1JBLmvZMn21GyOoyA5smV006dwsZMKGSAKHvbs/j5\n57ISJ1e2k/psbfWvU9C+eZ+9thbf295uXnvoIbx2khJnZ6dfpfHoUdPgJ+gc89cSOmNhQig6CdGr\n4ocU88aMweGS1lZTGRXR7kjhUgrXxOOmqmAmo97L1PiRrve2TIbyAoUwTp2S2/YHVcPBjKJsx9q1\na2nu3Ll0wQUXEBHRoUOHaMJfFEcmTpxIe/bsKcawPYb29hwtmE6rn0uXqhcJvxaNKrqurk5RoXV1\nin6trfVfGzs2R/nr9lu3KmrOe199vaLP+L3Llima23vv3Ln4vs7OHM0c1L6hwZxnQ4NKjvK2XbkS\nP2d9vcot8N575kwuDBJ0beVK9cGFzz+dNue+cqX/9wcO4LbLlqk3Ir6mOrTjvVZRgddozhzzGTMZ\n8954vLA9QvNEc5LWLpvFz4iene9xbS2+D+37kCH43qFD/deyWbxv7e3mNbSera32a5xK4bEyGf+c\nqqvNuZeV4XMcjZpjZTLmtbNn8dh8P3SfHFqZNN8ZCXq/4e2ls4xe7yiBT3q/s4ntF9LWofTQ42WH\nv/rVr+jYsWN0//3307x58+iJJ56g+fPn065du4iIaO/evbRt2zZav3690fbAgQNU2dOprRaorq6l\nmprzqbZ2KJ05k6SamqF0ww0R6PttKpxlacWKiKFG9sQTfs/yigqsesb93pXaXpauv94c316pELdH\nSnTjx/uV3GS/9iy99lrEUDXkSnRIxU5WfDPXzlbtT74Pz3P2bFM9UVIq5Mp2s2eb6xmkYme7Rx9+\nGKHRo4PPiO04+tycPRuhsrLc9XRa7QlXC7ztNv+5i8Ww+uDevVl6770IVIS02Q+kiGi772HOjVYA\n9K7JZ58RXXaZ/zkrK03FTb12hc0JqRdm6ciRD4hjxIgvUCx2bte+VFWR+HpFa3fixCmr9nv3Zrt+\n39ZGlEicoubmPxvzueKKK8X2aP491dahe0gkEl3se3cQj8d7r+xw27ZtFIlEaO/evXT48GFavHgx\nnfS4gbS1tVFtba3YvpD6yu5AU16LF6sSmK98pZwaGhTd5i0D0vT8unX6PvUtIB6PGKpxP/2punfZ\nsty9QX3y++LxiKhG9vDDuXs3bJBUy8z2mro2x1JUqsbrr+M+E4lIF22u2z/1FJ5/Y6NaTw1J8S0e\nj9D996s/wvmfyb/2Qc++Y4eam0ZdnUoY9M5940Yyxm5sNNeovl49u62KHd+j9evl9dThkqAzYjtO\nfT1RKhWhZNL/nA0N6o+Xd4/vvdfufOp56vCTd6wTJ/xnXjo3uHLB3PennrJXCkTnRu2TuZ7ptP/a\ns8/mwgDe+zo77c6iNCesRhkx3s/0+80jj+Q/I2jt2tsjFI2e52svvRba2yNdap41NUQ1NefR+eef\nRxw6dIna53s/LqStQ/fQEzoEEnq8yuC2226jWbNm0axZs+jdd9+lhoYGampqovPPP59Gjx5NL7/8\nMk2YMIHGjx9vtO2LKgOUtYsMaSRfe+TNLmXK8wxfKStdynY/fZromWdy937vezgzOhYzvb+lsaZO\nxYZH3ioBKdt8/nw7E6cg0yBeESBVTkQi/kz9oAoLVBEQjRKtXRucLX7bbdjMZsoU9U0xX2Z4Q4Oi\n2PNVM0iZ8rZVG/X1ao+5KZZUCTJ5sn8/0FkOqgiwMcqaPh0bgpWXm/uOzhKqeJGeXaok+drX1B9X\n/uze/ZDMs1CFhm3lwurVuIpGuwrme79Bz97YqPrkFQHl5TlRqXxmV5WVfhMlCYVk/7vKgd5HvzU3\n0iGDaDRKjz/+OCWTSRo3bhytXr2ayoC0Vl8oFWYysgGJrXHN558TDR/es6Y/Z8+Sj/qNxYi2bfOb\nzOifnCJGpkVBY3lp1liM6Ngx//O0tCjxFFsjIhQGmTDBf00bJtm01yY7nJLlYRk9T8mwyUu/orkH\n0cHojKDxL7zQT89XVxP9v/9HvtCAfh6bM1JVZe67DoEggx1Eh/O1l8IDPKSkQwNSKMB7r352HiaT\nTJikPv/0p9y9Y8aoNQ7THhk22YXE5D3OF26R1ngI4F8zGfl8JhJ+YaFMxuwzGsXnVlpn26S9QsyN\nbJUTHXoGxVQqLGqO56ZNm+jSSy+lsWPH0ubNm+kXv/gFrVmzBn4Y6Ct0dOCsYU2J6kzgpiacndzZ\nqV6oNtUDbW12Gc+dnSpZj2cdz5zpzwJPpcz7kkn1H8+Kt60SSCTM54nFcHYzEvJpbDQzpnVWvfca\nEe4TVU6MGKH2ybtHP/yhKeITjaq1Qz7wZ874xwkjZBOP22WGx2Jmpj6qGBkxIlgIh1do8KqNG2/E\nQjhIPOrLX7YT/EHVEJdcgueJ7tXVLd5rkgd9kCiT996jR8O1txGKChLnQe8Dp075X7NnzuDznUrl\nGIHqavxhgEidTy7KdPPNau+82feZDN63zk58btE6hUns0+MeOfJBqOx/aZ42FQoOpYdBL0wk+YZz\nSnTmTJMSbWxULxxO00qCP5WVfiEbJE5TX69oPkT9cvGTefNkipg/U5CQj5d6vvtuTKlOm2a2R6GN\nBQvwnLg4j9SnRGfffLO//ZEjpliRJOqkQzve/URrL4UBwoRg+Jyk9URhCF3R4BWFkoSJOD0uhQyk\n8XlYRwqJIcGeIAEm7/kMI5ylKxd4+AoJC6H9CCMUhUIjsRh+/unT7cJ83/ymovPzIZGQXx/e9vG4\nfB9fE+m9qTu0fVg6Wgq53nyz3Xo4hEe/DRmERamFDDiFls2a1FgkItOXZra6mYEujW0bxkD04+zZ\nJnUsjcVpbznbHIch0Dhh1oPPKShbHfnamxUadmEIic7m66H7tJ2nfTWEXOXgpb2lMAaueLEP64QJ\nX9nu8d696pt00LrrcIlEm/OQBafidVhIen3YPpP3dajDV4WGDpGtL/IYkNp7v5VnMvJ9RNi3oCdo\n+7B0dNA8ncZAcdBvQwb9AVLIoKPDT6ERYWosiP5ENC/XX0dUXxhxHkQ/IkEVNNY3voGf6cUXzedB\n4jzt7aYAkq2Pghaz4XNCoRmpPQ8ZaDdJ3h6JQp06pWj/fGEATZvzeUq+B1zUSQofSXuPRISksIqN\ndn6QP4N3PYPue+UVv+CPrfY9CknV1qprXDBoxw51nvjax+P+sVetkteOiyVJYT4+JyL5NXf6tH+c\noP3k4jzptCnaY7t2QfdxcR+ivqPtnT/BwIILGQghgylTFOWl6RmJGrPVpEc0r0TjDxuG5/S3f6ve\nqLwhA4m+5HQj0q+X6P05c7B+PJ/T7NlmVj6iiSWaFdHRiCa2ped1uIRT8YVUfWhNer5PU6bY6eSj\n8FEQbc6z1VGmvUTvT51qVrxMm2an0R80T161gSprNO3+/vv5XwdS+08/JfrJT/z3TptmeiYgDwwt\nuuMdXwoB8YoVfRa7G2pCVSyHD6uxbTwXkG9ANIr9BWwrF7pL24elo12VQe/DhQyKiHyUl6ZnpOzg\n2bPN60icB2VB798v05SF0tGI3g9De3OBF5QVH0RnczEYWzq6okL1axuGMIVbul9hETRPm3CLJD4l\nZe/z6hTbKgVpnL17lYxtLOYPAX30kb99LIaz9/nzRKPqXnS+OzvVa8d7b3m5uR6//CV+zfBnl+ak\n1Q75WcTiQvkrUbRYkU24RTojNqEe3dYmfCVVJKRS9pULPUXbd4eORmERFy4oHlzIoIiwpbyCsoM5\nlS7piPMsaIn6DApD2Nof87m2tZljBdGfPCveNisfVQkEjcNDDh0d5jWpvWSp3N0KizD0PgovSGeJ\n096vvKLODarm6Ow0K0lsfC30OJ2dJnV8/vnmGnN6XJ9bHv5Jpcz1TCTMtdMlr97nTCblkFY0aq49\n92z44Q9VGICfxc5O84xccola/3whMV3hUYhXh02oR7e1eX1IvgFDhthVLvQ1be/8CQYOBn3IIJ3G\nGcta1EOujXg7AAAgAElEQVTTM1J2MMroR8JGKAtaoh8rKvB1bkt8zz2YOo3FTPESRAkHje+tPJBC\nI7Z0tkRHo8xuZPMcRGcjS2Xe5/e/j5+TZ/RL1SFoP9BzBgnEePe9oQFXp6BKkrvvtgt3BFlxX3+9\nP7SCQj2SyBQ631LlAhdAQqErSQQIVVOgShKpPbJktq14keyoUSgAnRFkHa1pc06nS+GvQrLye5K2\nL5SOdig+XMigiJBCAbkM9izF45FAOtmG3kf0J6LHNfUpzclLdQZVGdhQ3JWVcnsb0RtE80phCE6T\nStniQVUGfO0kOpo/U3W1LNyCKGYuRGNbDREkEOPNftd92qxT0LnzUtmSeBQKraBQT1A1QjFCMLZr\nF4aKD1M5washbKs+pMqJ8eNNYaFoFIv2SOGe8CJCuZ9EdrR9Pnq/UDraofhwIYMioqPDpESnT/fS\nehExe16iBb3a5l6KmYu5tLbKFr58TpMm4ZABytZGIisPPmhm5aNxwojetLQoWpZb+NrQpJoe5/O0\npW6lZ08kTJoaVRQgm+eHHlLzROuBaGJbgRgdwuF7ZCPqZBvWiUZl6rilxX+tuTlcNQJfzzB7ZPua\nQRa+99+vrtu0R5U90n3cCjtM1QfaoxEjVGgF2Qqj6hYU7rGl9yW7YaL8tH1Yq2KHwYdBHzJAVQaI\nPkVZ+vX16sXHQw5Iwx1RhX//9yZ1K2U8I/p03jxZuIWP9cEHWDSH0/NhRG+QwM23vmUvNoSoX0Tv\n22bvh/EIQH0GeRnwTP1bb7UTNtIhBx4yKC832yOKOyjc0tBgZuQj2rumxj8+mrtUNYHCT1KmPK9c\nCOM3MX06PotcGChMSE0anwsghan6kMIQkyeblL+U/Y/Ciba+A4VUFNi0dSGD0kcxQwaULSH87ne/\n6/Ux0+lsdtmybPajj7LZVCr3c8KEbLauLvdfKmXet2yZar91azbb0qL+v6Ulm00mzXvTadwnb7t1\nK753wgR13dtnMpnNHj6czZ49q3539qz6N5rT1q3qfu819JwTJqjraGxpTt7x0TMFteXXbfdDzxPt\nh+3aof2Q2u7e7X9ONM9ly1S/aE7etp9+ittLc0+l/O1371b/j+YpnSc+d/48u3eruaOzJD2n9150\n5tF9x4+r/+fn1nbfpNecPt/5xkfPmUziOR0+bN4rrUc6jd9bwjyT7fuV1GchbdPpbLa1NZtNpzN/\n+RnufdQWuXGyRR2nUJTyPP/whz8U1D7o76wLGYCMa0TrSXQwot1bWkyKGlGyiN6++ebgbHXvPBMJ\nrJOfSuF+OaUq0Ze2GdOapuWU6OTJ9qI3iLq2rYbg2vdhdPJPnAjnZYAqH9B50MmFfE48XIIoamnu\n7e1mlQKivYNCQN7xkXDV5Zebe1lbi8M699+vrnOxIn6fDsFwESBUOSHtMQ+9Sa85FFJD8zx0CIv4\nJJP4tYTCbJJoGIf0Oi7Ed6CQigKpbUeHN5QQKVooob+ELPrLPIuBQR8y6OjAVQK2NrRIsCeovZeS\nnDIF048S9cstb4OyvVG/KGMbUemcJq2vV4l5iFLltDvKapdo74oKkzpGQjqSuE5ZmT2dzDP9bSl/\nKQRjW/mAqhl01QYX55EEe8rLzZADenZ0FnXIw8YCOIw3BM/onzbNzk5aOp+22fvSc0reFtzeWwpf\n2b5mkG22V8jMC6mCiVcbhakIKIZVcVlZ7/gR9Bffg1Kfp6sy6AZsxTKCRD28GdNBWe22Gc+2/gJB\nXgbePoOsXG0y2HVFg/c5Y7Hctx19Tfp/ZMmMqiFQhYXWj08k/AI3yH4ZjVNVpTLjUYWGtHY8A95W\nTz+o6iOfDa6+hioXkDgPeqbrrvPPSVr3oLPozaqXKgokoafuCvYECV9J4yO/Cpuqj6AKEdvKg0LF\nwFDmf7BPSveEfAoRApIqFHrDj6BUfQ/4msRihVeCFBOuyiAkwlA+thnTqBrhxhvl9seP+zPLEwmT\ndpboRynj2ZbyR3NCev5a+997LZ02KeZEIqeaxqnWadOwRwHyhkDUMV/nlhb1ps2vXX21fz3b2jDt\nHbR2thUWnJ6XRKn4elx1lbnG11xjVi5oQSsuTNTSor4N8/GROM5NN9mfxbY2/zUphFNIqAid5TCh\nIk17ozAA2iM+ll4/JILEBbrCzImHIcJ4GUj2z+3thQn5FCIEhNr2lrBRXwsoIUh/KwqpBOnPGJAh\ngzCUT1mZerHny5iWqEJJ0KS21k9VosoBqU9kKyzR84jyr6gw6X1Jz3/yZDshnDBhCCT8wmnrsH1y\nf4Vp03BbW2+J22+XKwq4j4NkR82fc9Yss0+pkkR6dptqCNRnkEcA1/iXzpck9ISqaGzWMyhUhMJP\n/DUnhQHQawmtvX7Ne/cojPgUqlyQnonPPSj0Z1tR0FvoLT+CUvQ9kP5W8NdhX8/TCxcyCImw1BTS\nDEeCO5J+ug2dHEbEB4nBBIUHvNStZC9bTD1/FB7IZ1WsQwZhqGvbeSIBJU6xB60nEmWyoeKR4I/k\n92BLxSMhm6A+bcIgtqEJ7WWA1pN7dUhz4oJS6bSaG/JHkPwVbHwHgtYEWTKjPm3sj1H4K8gy3DZk\nQNS3fgA52jxn916M8UvN9yDob0UpzdMLFzIIiTDUVCajtMR5FjanJJEwz+WXY633W2/FmcyPPWYv\nwsNFd4Iy7ZFWO29vS/0GUaJ8TX74Q5NSfeghO6tiInlOEnVtY8GbSJj71NaGxYoQLRjWW8ILVKUQ\nVLlgE6pCZzmoT77vZ86YglgtLSq8wb0AeFhHeyMgQSpUhSO95rxtk0k8z1On7M6XZPMsjY+qMU6c\nwHsshZryhb+CqoKkPr0UdWtr32e16xCCtnsv1h+/UvM9CPpbUUrz7C0MyJBBGGoKUUaI/gyi0lEo\nwEanXhI7QvTl1Kk40x6FEaZMUW8sPIMe0cm2dr1IJx9RulJmOQoDIHp/1SozszwM7V1WZq69RNsj\ngRge6glTuYCqFCSxIiRohXwk/vZvif7u7/ztkUW0JK4jaed/9asmFc/ttXVYxCa0IVXh8MoYqcJi\nxgz7ygF0vqU1icX8e4Sy/CWhKBQyQMJd6DUjeRmg19y3v63GKoWs9sEmTFSKYYx8cMJE3YAkLMGv\nI8EhSTBHEvXgIimSwA0SRJGEhWxEUoKEdCThFpv2/L6OjmDRHBsBJ0nsKIxADl9j1FYSgAojEGMr\nhIPulcRxUFtJ4CbfvqGzoMWObEWhpP0II5LFz7K0RrZCT2HmydcumZTPAzqLtmJe0vioT/R+w8cK\nK3rW2yhU9KY/opRFiBCcMFE3gKgplFHa2mrarqLsaIniRRnoiI5GGugtLUQjR2JhISSSwrPag6hK\nmzCGrZ7+mTOYpkX0/pkz4TTpURiGVz7U1qrx+RpfcYVJe6NnkuhkJHpz6pSdEM6NN2LqmQsTaZtk\nW38EzVjpe6dNM/dDCwYhbwjbUBMKy/CM/qBQE6p8mDTJfE4eptNhHV5xE7byga/dqVPYEpnvEfIU\n0euJ9hidW+6BoQWQbLwMwvg4dHSQQy+g1MIYfYkBGTKQgMIDyHYVUYDf+hbOjJZsbDmlKmmgIypd\nykDnWe2SrW9FhUnvozAGek5pnkjPH2Wm33KLXDnB9ePLy+VqEJsqBS6AJFVoBNHJf/hDsO6/DkPY\nPhNfD0TZa8EcFMIZMsT/nFJFwTe/aa7HN79pUulhKgpQ+MnWFhi9jlDVhn5Gvp5hLK5RlQIKOSAv\nBCRMFCTAhPaYr5MkTITeb9BzSnNHfRYbgy1k0B/R76oM0uk0LV++nD7++GMqKyujNWvWUDabpSVL\nllAkEqHx48dTfX09RdlHsWLbH2cyZtbvmDE44zonMJOzP/7wQ6LRo82MflthokLFYHjGdpBAja1I\nDLLblTKjbaopgrL/bS2A9+xR49pULqBscduqD0lUCdk02z4TWg9pPdF5Gj8+v1VxUHWJTYWFrjzw\nrmeQRbSNLbDtPHVlju35/ugj/JrrDUtm1B5VC+l14t8spQz2PXtMq+RSyXTvj/bHpVa5UGz0uyqD\nt956i4iItm7dSg8++CCtWbOG1qxZQ4sWLaItW7ZQNpul7du3F2PoQCDfgpYWJR6DxGTUtUiX8Ept\nrUk1SpRqU1P3qVvU58KFJtXZ1qbshznNaWsrjMIDQVrtKIM9jF2vjQWwfk6ebd7aiisXbOa5Y4ei\njr1VCoginjJFtmm2faajR/3jnDghryc6T2fO+MeRwh2ouiSVwhUBI0aY8+QiQOi1oedpYwscVPmA\nhJZsKxJQ6AyFRqSQQ5gqGtvQCA8xSvS+FNJLJPwUtXQfr0YYLHr6YTCYfQeKgaKEDMaNG0eTJk2i\naDRKv/3tb+n06dP029/+lpYvX06RSITS6TTt2bOHJk2a5GtX7JABsjpGtD2iaSWrYESpIg122/sk\n3wDJPhnRtIj+XLDAzm43SLCH09GIfg2y6/VWCUjZ+6hPlG0uae+jeaLM8jDiNoiKD7I19j67ZOuL\nxtfnidtJT5yo7Kvz0fu2FtVISGfuXMUE2Ow7ovKlsAz3YQjyxeCWzvPmybbZtn4XNlU0jY1YgAn5\nUASFRmy9DLgwEcp0l/a42JUH/S1kUOq+A8VAvwsZaCxevJj+93//l3784x/TkiVLaNeuXUREtHfv\nXtq2bRutX7/ed/+BAweosrKyWNOhK664kq6/PtItvXJJ/33v3iytWBGBlKqX9h47Vhb2Mf0FsvTa\na5G8lKhM02bpvfciPuq4osKkhNGcZLEks0+JDufCLem0+iNgegSYaxcU2uDhAdu1s9W0D7Oemvr2\nnpsxY8KIT2XFs5iPor7kEnmetn3aCguh850/zJaP8sd7dPvt5mtGWrt4vIOIhvnGammJUCyWXzBo\nz54sO59tVFNTJb6ObUIje/Zk6ezZJNXWDqUzZ5J09uxxuuiiUbDPJ5/M0pEjH5AXI0Z8gWKxc6mq\nSjEDFRVEX/sa2kuzbU8ikUhQLBYrWv+Forq6lmpqzu9a55qaoXTDDb2/Tn2JQvcoHo+LIYMh3e7V\nAmvXrqVHHnmE7rjjDurwcGptbW1UW1sL2xQzfqXpwgMHcte8euUHD6p/P/WUeZ+mFHnbeDzSRalq\n1NWp+73X3n6bjPvuvVdRusuW5cZuaCDq7IzQjh1qHhpvvWWOr2laPqdEItJFHXv71ZbMGu+8o+jO\nlStz961fj/tsbzf73LjRbF9fnxNu8Y6dSpnX0Nq9/ro5/sKFap28e7RqVS4r3ttnMhnpCgV456Sr\nFPS1DRvs1zMex+vZ2WnO3eZ5dJ/SWXzkkeB927EjXJ+attd4+22zfXOz/fl+/XVF/XvvratTfhOT\nJ+eu7d6do/z5HvHzfe+9uVBRvrMYj0cokYj5Xjfr1qnf87EWLiR6/nmzvX+Nq32hEe8zSaERfj5P\nnYrQsmXlf+mznBobL6KODtxne3vE9z6naW++72juvG1Po5RzCPQ6LV5MXevcV+vUl+iJHAIJRQkZ\n/PrXv6Z33nmHrr32Wspms7R161a6/PLLaeTIkTR69Gh6+eWXacKECTR+/Hhfu2KHDFKp7uuVS9nW\nksAMF61B2d6SaAyiqNH4kuhNebld5QOirYO03m0EnJBwC/JMOHyYaOZMkzpG1DNapw8+kCs0EBXP\nRXcWLgxXjfDoo3ifOL3PxXmkPiU9fxu/CokeR8JEDQ1Ew4aZAkq8wgHZQet95/eiZ9KvBe84Ughj\n8mRz/miPw5xFSXzKxhsiqIqmqsrffuZMlbdj8zpGfSLRm1LS0y/lkEEprVNfot+FDOLxOD322GPU\n3NxMqVSK/uEf/oEuvfRSevzxxymZTNK4ceNo9erVVFZW5mvXF1UGiBZE2fdB2cXdtdsNyoxGXgbI\nfplntfdE5YOk9W5LsUuVE1xTXs+nrCw4vCBlhoep0Ni922+NK9knc9o7X5VBPnp/zBi5EsTGIwBl\n37e0EF14Id53Gztp1D5sNcRll5nhGu6FEJTRf/Ik+eh95NnQE2fRxhtC35fJmK957QaYz3dAek50\nr201gqsy8KOU1qkvUcwqg6KEDCorK+nZZ581rm/evLkYw1nDK2iiUVen6FIvtFUwp/K/8Q0cGpBC\nBl768umnyaBJEXWrs5A57d3QoL5Zea9JtLnOWkbU8c03565J1LMW1+HPY0ux8/XUY/NriYSaPw85\nDB3qXztE7+er0PDeq6sp+H5+6UvmHqH7kkl5PTlFzc/I66+b+15Xp75paiGdIJpYV13wOWmbZm+f\nGzao6957N27M2SzzEA4PI0jnGNH+WiSLnzubfdMeCfyZEPVb6FmMx9UHTCL1U1cjoPs6OhS7pOfU\n2Eh07rnqwyNR7qf3/3XMH4fZ1O9Rey+k16tuH9R2MMGtU/ExqISJpJAB16+XrIJRtrakgc413FGW\nvxSGKC/H1RBciEeizSXbVZ4VryluGzEYREdL+vWSVryt4A8X3bnqKqK77rKf54QJ+aspNKXrFUD6\n3vfsKe6GBqJPPyX6yU+Cz4gUMkDPjuhPiY6eOtU8iyi0IflqoHAHCjdI4lFcJAtdQ2EZyRcDeUuE\nPYtonWtq/N8WMxk8JyksZJOtXqgefinp6ZdyyKCU1qkv4bwMugGkTx2kH8+9DNB9XD9e654jDXWu\nYZ5OK715rmsu6b/b6rrbar3r5+Tj8zkFacIjzwbJt8Db/vhxWc9f0skvxAfCxpsCadLn0+3n49uc\nkaB52ngEBPkwoPW09TJAXgS2+x7kUcD9P2z9JqQ5SWtn44GRSuH3hbBz6u77Tdj3pt7Q0883Tl94\nGRS6doMNzssgJCSxCsmOlGvaI3Gexx4zRWuSSSwGc801pohQKpWjbvW1U6dyYQCvsFAYW2BbrXdt\nu8r14/mcWlpyVLpXEx4J/jQ3m+MgrXgiFfezESb6yldMy1rJB6KpyS96s3EjfnZJtCYet7ejfvhh\nU9iInxE9Lz7P0aNNcR1bO2rJphmJIiUSpq+GreBOS4v6psVFhJBXx803m0I8KCzU2qr6sBUmQiJC\n552HfQeQb0EyqcIC0aj6yVKUiEjNG7WVvDqQZTqCrR6+9N5EVHw9/VIU8Qk7J+c7UFwMyJCBlI06\nfbodRY6y74PoZBu73XnzcHukx28rYrR6NaZUkcgKyq6WMrM5la6FVzhtjjLTkbCQXiek+49o6qFD\n/fdKlD8K4aDsfSk0Eon4nxNZDes+eRgirLARp9fRHttWGSA7aMn6+Z578LNzYaLDh9WHJ279PHSo\nXcgBhaSkagi0ntL5tBXestX+R+Jk2lvCpiKgWO9NvSGkYzN2b4cMBqOwUKHod1UG3UVPVRkEZaOi\nTOKWlvwZz/v3y1nYNv4IQRnXXnGbMHr8KCs+nVZtePuqKnsxGuQlgLLNKyrMygdbTXmdvW+TwR7W\nH0F/Uw2apxbCyVddogWIeFY8yspHwkR67VCFBWqPqgwk3wIbb4j9++3OQtBZDHNueUY/WnfktXHJ\nJaZwVtB6dDfbPOi9gaj72erptL/CoqICMxRB4xfybddGz9/u2bPU3h4Rn72nfQOKtR4DGf3Oy6Cv\nIWmDt7cTnT5tUvlE+WlaSeMfUcdtbWYYIYgeR31ynf1Jk0xKVZeZ8TBGR4fZvqXFfCakP4+8BPSc\nuK48CnnYasrHYmquXM9/1Cg7y1iJNk8mzTU5dUp5BPB7UbhFZ+9zipufEXQeWloUQ8LXDlkAo9DG\n0aN2a6ftoG1CMK2tZqhHGkeLaXE75jD3eufZ3o59JdCzS+sphUukdcpHPQe9N3SXjk6nzTDZqVP+\nP3I243cXtrS7NHZHh7d9RGxfjJBDMdbDofsYkCEDKRu1vNzMJL777u6L+Ej0JaLi58xRf6Tz0aRS\nn5Kev5TtbZPBPn26nciKnpNNyEPyMpC09/k85883x5eqDLg/Qhg7auQ7gGhvSQgHeVtIISBkAYxo\n8xkzzP0Istu1qXiZMsXMvg8SS+J+EzU1cvUBrxqpqFBhrKAzL3lYoNeXtG+2ITFEPRcjUz0ex2fu\npptM2rtY49vQ7tLYZWV27YtB77vKgfBwIYNuAFFbRPYeBVwMJoxtKqLi9+0zKVFZkz4cTYvoaNv2\n3A8gSKDGVhxozx7TWld6zjA2zV5hIW94QM89kVBJaDbPHkTv29DmQecGiSUhep8LE6EQUJCQjvfZ\ndajIxi8jFrMTZZIslYPu9Z7FffvUf8gDorv2xXqcMOEWRJ0XQnvz9rGYvEeF0O5h7rOl3W3fF1H7\nvgx3OOTgQgbdAKL/ED2F6EfJaliiTvl1RMWjjPywVqwovCDR0TY075gxJj3f3i7b4KI+kQjR55/7\naeIga1wUbkH3Hj2KqWdezWD77EeP4kqM1lY72lwKjaAwBLfC3rFDhWB4WOnyy3OCQTpkIa0HDyMk\nk6pPVPWBKh8OHfKP095u3jdihOqXVwocOmTeq8MYfI3QMyaTZkjLthpixAhsyXzihD31XEimukSb\nS6ENBJvxw9DzYWh32/dF1L5Y9L6rHCgdDMiQgQRkR4r09MPoqiMvAyTYgzLypSxsW0oUUcdBNC/P\n3kcVAbNn29sfSyJEvPIBeS5IAjVB9sl/+IN/bG5Ne/iwLLDD6XAULkFrFFRlIPkeeOe5apVZHRIU\n2uDZ+7a2vrqtjUcAouKlSo7Jk819l8JK/CxOmyb3ycMD3/mO+oafz35YV8HwOQV5MXithguFrZ4+\nEkXqiXEQPd9bwkiO3i8NOGGiHoIk3MLFeSSREklchwvUIEGVZFIJ9HDhFEkkBfUpiRWhOdkI6aDn\nDBLCsRE7+vTT3O+DBHs6OmTRGy5sJIkASaJMNkJRSMgmrDgPam9z3/Hj9uI8n36KBXektomEeZZt\n1iOoT94+aO62okjoLIbZY/Q6ls5nT7+H2ApKFWsc6f5CBHty7TKB7Z0wUN/DCRP1EFD2fSKhPsXn\ny2rXFrxcRAjRl4mEmZHf0qK+OXuvSSIpthnoOrTB59TZaWbat7TkbHR1n01NOLQhUbeIYueUbiyW\nswUOoq3PnFHUMRK9SSbN/UBjS6JMiOLmIaDLLzdpd0mcx+stwdeZt58+3X/f5MnmsxPZU+S6GsMm\njBCPq3g8DyXYCGcF0d68vTQ+D40ECULxUFFra7g95vvR1iafz55EEG2eTxSpp8ZBKJR21+2OHPkg\nsL2j9wc2BlXIAImSzJ9vXkO+A0E0Kacvp06VtfO9Gv2SfbCt1XHYigBOa6Js8yDqFV1HlC6nvYPE\niiTa3LtOKIwgiTIhsSOJNkdVG1ycJ4znAqr6uO02LFaE7LAlwSC+nlJbpMePqmjCWAWjPtF+IOGs\nW24xrZO1HbNNqKixUZ07vse27Qul7RF6izbvK3q+lL0MHBRcyKCHIOnxIz3/MHr4bW0mpSrRl5ye\nl+6T6NPuUrLIY+DwYZOODpp7GErXdp42HgPo2YOoeFs9f2nu3j7b28PNM8we8xCSFBbi40ghDImK\nDxMWCuOrkS8slEp5r2W6njHoLHE6GoU2bM93obR90PtIKfgOFAN94WXgEA7FDBkUxf64VOHVZfda\ntCJ7WG5j+5vfYOvNzk5FS3LL2fvvN219eRb2mTPyfZJN84wZuWtvvilbufJ+GxtNG90nnzTtkzds\nkG1w0XWJ0vX2uX69PE90va1N0cjeNeno8Pf51FPYqriz07QbfustPI40d34WYjH7eXJK9+RJeY+1\njoGGZEetKyQ0fvMb2VKZj4UsiCWr4KYmxR54+5wxQ35275zuvdfcj8ZGldD36KNEBw9Guq5VVuI1\n6ezENrZe+2KiXCUMas/vLQY0Xc7n2V/HcXDQGFQRoFQq9yacTqufmYx5bdkyRSfX1Sm6uK5OUZf1\n9f5r9fW4z87OnAa7vrZypRrL237oUPk+NFZ1tf9adTW+Lxo1+9UfWrzXVqxQH0q819Jp9UfQ26fO\nvudjNTSocjN+zdvXgQPqjx+a55AheKytW801OXvWf40I71sqZfY5dCgeB83944/NPsPMM5s1z420\nx7zPaBSPM2SI3VnMZs2xPv7Y7LO21n49pGfX/69/zp1r7sfSpUoZlF9Lp+U1sUEmU1h7BwcHjAEr\nTISAhDUkgRkuJiOJviDRGskjgIvjSCI8SLAHieaMHVv4nLiQzr599vrzY8YQbduW3yMAiTLpeXKP\nAEmIh88zaN+4kE5lJfaGuP12v/hULCaL2/A+gwSDbPeYP3siQTR8uCn4c9llRJ980r19R/4MLS1E\nF15oCiBJ+57Nmjr9kYgpJhNGqKkQgRunf188FCp641B8FFOYaMCGDJD6FaKodSY0okS9iMeJHnlE\nfWOKRIi+8AX1b9Tn55+rjO2bbsq9YWshnS98Idc+mZTvGzPGP/6YMUp8xYsTJ2R6n/d78iR+zpYW\nou3bc38EtPY9p6NnzDDHev11xTA0Nyu2orlZ/fvkSaJf/CI3tleUic+T0+Zvv21H70v7Fo+rZ/Gi\nrQ0/0623+u9LpeQ+X3nFf/311/He8T3Sgk6oT/7sdXVqjt4/asmkmv+IEercjBihwifSeqKxdCKh\n995nnvHPs6ND3vfKylwiWySCk9o6OsKFZdC9OtyST7FOZ+Cj9jbUuq0RkYPDoENB2Qk9jJ5KKkyn\ns9nm5mz2Bz9QCVA/+IH6t9YC8F5vazOv6WQv77WODnwf6lMnuHmvtbTg9i0tdn0W2l66F13jzx7m\nOVGf0txRn+3tdn1KY9vOU2rf089erD22nefx4yohzXvt9OlwZ4m/lk6fxq8v1J6P3dyskv1Q+9On\nzWsokU56fdsk3aVS+NmLlYDY3+CSCksfxUwqHJAhA+16xr99Pf20omi93w6IFKV97bW5b8nl5USL\nFpnfXB9+2OxzwwazfVmZee/rr6tSOd5++XLz29uGDfbtN2xQ/6+fR1PkaK5PPqm+WetvtBdeiNeJ\n9/nxx4qm1j+9a4fGQc+0caNibXTbEyeI/uqvzLVLpdS3Su84H39MdOml6tuyvu93v1OUfWen/9p1\n1/v4XyQAABUESURBVOE5PfOM/160R0HP/vOf+9mACy5QDJHNszc2KmaJz1N/E+7OevJ5xmLqW/qW\nLSZrcddd6l49XjZr9+wVFYrh4GdEOov8fPnH9tvqcgYvGjVfc/o1i771d1f/vrVVfvZiJiL2F7iQ\nQenDhQxCoqJCZR97cfCgus4TjyorTT3+8nKixx9X8VxvHBr1WVmZS5TS2L/fvHfUKNyel4PqPm3b\nV1ZicyN07/nnqzdEDWmdpD4XLsz/nAcPEl10kT9k8NOfqtpxbwZ+UxPRF79orv055yhxHxQfnjjR\nvHbjjXbPPmyY+qChQxtjx8rPfvas+nc6rWSIr7lGxfC9qKqy38/hw3PPXlam1r2yMidiQ6R+ZjLh\nzoj+A6j7iEaJXnyR6Pnn/Wtyzz25e6uq5HFQn+iMSGdxxAh/FYx37MOHP/C9ifEMemlOsZj6gN9T\nxjeVlep1wM9nZWX3+3RwGCgYkCk4QSpfXDXOW4qoVc9SqVwpYpB6oWQkhJTcJIOfoBirTXuuxBbG\nHClI8a67z4nGeeghrBSYSplr39KivlGjPm2uSc+uSwT1nIL2Eykn2pow8f1ERlna4IdDmhMykEIK\nfLbqdkHPbtNnmLNsa3yDxtFrxw1+0ml74x+OREI273JwGOwYkEqFksrX0KHY154ruaFrCxdidbiK\nClMZDykNSl73XG1PUgVESoX6Xq+5kNQeGeJI6m7c617qEz0nGkdS65OUChcsMNUCkekQvxZk7MTn\ndNVVis62UQpEZjy2JkySSuLkyaZJTSqF1SCRgVQsps65zbnn6nbI5Ku+Xp1FbgSE+pw5E5/l8nLz\nfOo+86mroXGktbvpJnxukPEPB1Ir/fBDpS6ar+1ggFMqLH0UU6mwx3MIkskkLV26lJqamqizs5Pu\nu+8+uuyyy2jJkiUUiURo/PjxVF9fT1HA+/Vk2aHk+81LvSor7crUqqqIjh3zhxFaWhR9+uGHRKNH\n+9vb+tI/8QQuH0PtV65U34q9ZWG33YZ96fn8q6vlcj5eerd/P/awR89pM05QGaZUPqb7j8fVH5Sy\nMnPtUMnj7Nnqm6p3n6Rywt271Td97x5LZYc25XxoTjU14bzqpXJC73ro/ZBsc9G5916LxeQy0EL6\nlMoWVcggf9yTZ/9XVspr192yw8Fespgv98LlEJQ+iplD0OMvgTfeeIOGDx9OW7ZsoRdeeIFWrVpF\na9asoUWLFtGWLVsom83S9u3be3pYA8iEI5VSv8tn/oLCCG1tZhghFlN9ciMjyYyHGw4FGQZJ171z\n+sY3TIMe7WGPzF8kOpkb5yAP+85O8zmR6U+YcEkQve8d5+xZbCQ0ebJpOJRMmvvU0oKNe44e9Zvx\nIAMpaZ7a7CrfnMLQ89K+8/W45BKVQIjAzz0Rpte50dXx4+GMc/i1zk5sACXNkyOTMdczKKQVxvjH\ni7CmQQMJmUz3Qy0OgwM9HjIYM2YMXXfddVReXk6JRIJ++ctf0rFjx2j58uUUiUQonU7Tnj17aNKk\nSUbbYpsbtbfbhQe++12TqpQMYRDtPWeOejPklGw0SrR2bX7aGRn0INr7gw+wQU8YipuHByQPe2SY\nhMyZ0DjIRCnMcyJjqMOH1Zua99k//FAOQ3DjHmTG861vqX07csSkvXm4SKKz+Zyk0IR2xvMiGjVp\nc7Qe2lTLhuLWHyL5PB96yL8eUsjAFhIVr+eZj+ZE85QMj2pqum/801emQaUA6Sx4Qy0uZFD66Fch\nA43W1la677776I477qC1a9fSrl27iIho7969tG3bNlq/fr3R5sCBA1RZxHTfK664klasiPioUqQk\nh1TwZNo7S9dfHzHulShZr4qdFAaYPTtLH34Y8dHztgp+0pyk8ACiuDFtjZ/TJgyh1fa89HoiQXTe\neVl6772ItQIgr3wI8+xcQVCvPReowfuWpUQiSZnMUEZn4zXmc9q9O+t79vLyLP3xj0cIYdSoL1JZ\nWRVbD/Q8WTpy5APYhxdXXHGl9Xo8+aRdn+HGUX0mEgmKxWKh2+/Zk6WzZ5NUWzuUzpxJ0tmzx6m1\n9QxVV9dSTc35xnUbFNK2PyPfHhFR3n1y6HsUukfxeLx3yw6PHj1KDzzwAN111100c+ZMesojf9bW\n1ka1tbVi22LGr5DpDzJ/QSp4kiFMPB6B9yIlOZ197zVkOXlSJed575sxI0IbN5q13/ZKcOacvOEB\nDWSSs3OnZMaDn1Max2sQ9C//IhkRRQwFQEmpEFU+hHl2bsZTV2fOc/16SQEwQh0d5bR0aX7DJpxp\nH6FHHvE+e4TGj7/KSArkqK7O0ebmGkesXitS+6YmtB52fYYZR/eZL+4ptU8kIjR8uPr6Onx4OQ0f\nfhERXeRrK123QSFt+xtszpLLISh99EQOgYQezyFobm6mBQsW0KOPPkq33347ERFdffXVtG/fPiIi\n2rlzJ1177bU9PawVkCkKMm8pL8eGMKtWmYYyyDgH3dvQoGqfuSFLRQU2/eHmNWEMadD8dVZ+PpOc\nIOMYW5Ocffv87Vtb7Y2IJIOfaNTu2cvKsPEPN+PRzoTeOW3dKhv5aDo8372VlflNkJYtsy9zq6hQ\nlLa3z8bGXGJfd9ufc073++zNeRYyJwc/3Bo75EVBGogAq1atyt5www3Z7373u13/HT58OPud73wn\ne8cdd2SXLFmSTQk6oT0lXSxB8ovnvvTIbz6ZlH3tDx82fe1Rexuve90nHwv1uXWr6UG/e3fu93xO\n6Nl37zafXZqnzfjoOVMpuU8+fiplXtu92/S617K66lqmqy1aO72m/FoqZc6Jj6P7RPNH9/I1Cnp2\n6Yy2tvp/omthz31P92k7joaN3Gox5uTgR741dtLFpY9iShf3eMhg+fLltHz5cuP65s2be3qo0NCi\nJF46/Mc/Vr/zUscbNphU+o4dsqEMp/d37sxlXHsp8oUL/SpymgpHfSIjIWQ+c8MNpqztl7+cSx7y\ntud9vvturqIgKISi54nGv+UWVRfuXSf7cItpGvT22+Y1/UzecIeWta2u9qvgtbXhfUIUuSSk41UP\n1H1K8/eGAjZuNPddCi3E46ZUrs4C94YmGhuJzj3Xr+oXFlwVUKOQPsOM01vtHfLDrbFDEAZB5W0O\niA5PJk06O5MxaWcimYa3od2XLVOe8flofO1Bz/usri7Mwx7R++m0+ez79uFxUJ8NDWpdvNekEIpt\nn9I45eV2VCeiRSUqH60dytWR+uShgLNnzX2XQgtonPZ2MzSxdOngKIlzcHAoARTEPfQwejJkINGk\nnL6V6HlEOyeTJmUuhSEkmlii9/P1qcfPR1Hr9hLt7r1Xmqf0nDZhFOm+MPNEYYgwdDS/N5WyW89k\n0v48oVCAFB7goQVpnKBz09/hqOj+AbdPpY9+FTIoBUjU67BhJn2LwggNDTnhFo26OuwrP2OGSVFL\nmfJNTWb7L31J1QHn67OuTs3VS5u//bbsYS/R7t6xgjL60Zz4WCgMgUIbUrgjaJ6ctieypzo5Ldra\nKq8nGsemTxRGkEIjtuNo0RxUteHoXQcHh2JjQIYMJOq1rMykb8PQ+7YZ/VKmPGqPsudjMbtMe0TP\nB1UZ8PYSPY/mJFVedPda0HP2dNZzRUXPj4PCCOec4zLtHRwc+i+KJkzUHfSUl0GQXnkioX5vo5fu\n1Y8vL1d/KP0CM+qPaiqllNqC7o3F1Lg29+k++XXkMTBhAp5TJmO2J7K71tLi93tQIkKF9YmuDRli\n6tdXVKj1D4Pu6OR3ZxwOG43/sHa9+bTm+ytcfXv/gNun0kcxvQwGZMhAol7jcZVR772OsuIlen/5\ncvPahg1mn94MeKKcwMyPfpT/Po0hQ8z2iF7/4hfNOT3zjLqfCwGdey4ei4+jEw35PKuq8rcPypRH\nbcvK7Gn7QlCMcYqRve+ywB0cHPoKA+C7h4kg6pVfR2EEid6XxFxsaN7eFJhB1QPLltllqxc6T5cp\n7+Dg4NA/MSBDBkQy9YqoY6Kga1mKxyNUUaHMT1CftjQvGlvq0/aZ9Dz5tUIsXguhrfvCXtbRnMVF\nT4Qx3B71D7h9Kn30K/vjUgGybEUWqy0t6o+ydp+rrlZ/wDTFfOTIB13XUJ/SWBzS2K2t9nakNja0\n0Wg4y13bcWwxmO1lByKcZa6Dw+DBgP1AgNCXdLY09unTPT+fID3/YsNlyg8suBCQg8PgwYBMKpRQ\nUaES3bw4eLB3/lhJY3Nb6qD5oMoD5Jg3bJiSJV63jtsq98yzBCEaVQmETz/dd5nyfZmpP9CqBPry\nNePg4NC76MdvVeHRl3S2NLakp8+RSuGQQypl3tvRkdPUv/569fPGG9X13kAhIYdC0ZcU90Ck110I\nyMFh8GBQfSDoSzo7EjFp/CefNKsZpPkkErhyANnoBlkYD3SUYlioP//xdCEgB4fBg0EVMuhLOjsW\nI/q3f1Pf1i+5hOhPfyJ67jn1h9pmPpWVmLqtrDTvHcw0bymGhfrzupdCCMjBwaF3MOhe1n1FZ3st\nja+7Tv08fjynU59vPmEqBwYzzVuKYaH+vu59GQJycHDoPbiXdi+hUD19Sfff1q53sNC8ffnsg3nd\nHRwc+j8GVcigL1FWpqjXDRu6p6c/ZAjR8OH+9lKVwWCmefvy2Qfzujs4OPR/uA8EvYhC9fS5v0EQ\nBrMmfl8++2BedwcHh/4N993FwcHBwcHBwX0gcHBwcHBwcHAfCBwcHBwcHBzIfSBwcHBwcHBwoCJ+\nIHj//fdp3rx5RET0ySef0J133kl33XUX1dfXU2YwSOY5ODg4ODj0IxTlA8ELL7xAy5cvp46/iOev\nWbOGFi1aRFu2bKFsNkvbt28vxrAODg4ODg4O3URRPhBcfPHF9Nxzz3X9+9ChQzRhwgQiIpo4cSLt\n2bOnGMM6ODg4ODg4dBNF0SGYOnUqffbZZ13/zmazFIlEiIioqqqKzp49K7Y9cOBAMaZUEEpxTg5+\nuD0qfbg96h9w+1T6KNYe9YowUdQj1dbW1ka1tbXwvrq6ut6YjoODg4ODgwNDr1QZXH311bRv3z4i\nItq5cydde+21vTGsg4ODg4ODgyV65QPB4sWL6bnnnqM5c+ZQMpmkqVOn9sawDg4ODg4ODpaIZLPZ\nbF9PwsHBwcHBwaFv4cyNPEgmk7R06VJqamqizs5Ouu++++iyyy6jJUuWUCQSofHjx1N9fb0vJ8Kh\nb3DixAmaNWsWvfTSSzRkyBC3RyWG559/nnbs2EHJZJLuvPNOmjBhgtujEkIymaQlS5ZQU1MTRaNR\nWrVqlXsdlRjef/99Wr9+PW3atIk++eQTuDf/+q//Sm+//TYNGTKEli5dSl/+8pcLGtPttgdvvPEG\nDR8+nLZs2UIvvPACrVq1ymkolCCSySStWLGCYrEYETmdi1LDvn376Pe//z39/Oc/p02bNtGxY8fc\nHpUY3nnnHUqlUrR161Z64IEH6JlnnnF7VEKw0fI5dOgQ7d+/n1577TV6+umnaeXKlQWP6z4QeDBt\n2jT6p3/6p65/l5WVOQ2FEsTatWtp7ty5dMEFFxCR07koNezatYsuv/xyeuCBB+gf//EfadKkSW6P\nSgxjx46ldDpNmUyGWltbaciQIW6PSgg2Wj4HDhygr3/96xSJRGjUqFGUTqfp5MmTBY3rPhB4UFVV\nRdXV1dTa2koPPvggLVq0KJSGgkPx8atf/YrOO+88uvHGG7uuuT0qLZw6dYr+7//+j5599llauXIl\nPfLII26PSgyVlZXU1NREt9xyCz3++OM0b948t0clhKlTp9KQIbmIPtqb1tZWqq6u7rqnJ/bM5RAw\nHD16lB544AG66667aObMmfTUU091/S5IQ8Ghd7Bt2zaKRCK0d+9eOnz4MC1evNj3qdjtUd9j+PDh\nNG7cOCovL6dx48bRsGHD6NixY12/d3vU93j55Zfp61//Oj388MN09OhRmj9/PiWTya7fuz0qLSAt\nn+rqampra/Ndr6mpKWycgloPMDQ3N9OCBQvo0Ucfpdtvv52InIZCqeFnP/sZbd68mTZt2kRXXXUV\nrV27liZOnOj2qIRQV1dH7777LmWzWfrzn/9M7e3tdP3117s9KiHU1tZ2/fE455xzKJVKufe6Egba\nm7/5m7+hXbt2USaToc8//5wymQydd955BY3jyg49WL16Nf3P//wPjRs3ruvasmXLaPXq1ZRMJmnc\nuHG0evVqKisr68NZOmjMmzePnnjiCYpGo/T444+7PSohrFu3jvbt20fZbJYeeughGj16tNujEkJb\nWxstXbqUjh8/Tslkku6++2760pe+5PaohPDZZ5/Rj370I3r11Vfp448/hnvz3HPP0c6dOymTydBj\njz1W8Ic494HAwcHBwcHBwYUMHBwcHBwcHNwHAgcHBwcHBwdyHwgcHBwcHBwcyH0gcHBwcHBwcCCn\nQ+Dg4MDwH//xH/Rf//VftH37dho2bBgREb355pv0s5/9jIiUgueVV15Jjz76KJWXl9NNN91EI0eO\n9NVKL168mNra2mjr1q20cePGruvr16+ncePG0axZs3r3oRwcHPLCfSBwcHDw4b//+79p+vTp9Oab\nb9KsWbPonXfeoVdffZX+/d//nWpraymbzdKaNWvo17/+Nd1xxx1ERPTSSy91fXjQ0HXTDg4O/QMu\nZODg4NCFffv20cUXX0xz587tYgQ2bdpE//zP/9ylXBeJROixxx7r+jDg4OAwMOAYAgcHhy689tpr\nNHv27C7p4ffff58+++wzGjNmDBER/f73v6enn36akskkjRw5siscsGDBgq6QQTQapVdeeYWIiN57\n7z2aN29eV/+ffvopPfjgg738VA4ODjZwHwgcHByIiOj06dO0c+dOOnnyJG3atIlaW1tp8+bNNHLk\nSPrss8/oyiuvpL/+67+mTZs20R//+Ed64oknutqikAER0Ve/+lUjh8DBwaE04UIGDg4ORET0xhtv\n0G233UYvvfQS/ed//ie9+uqrtHv3brr11ltp3bp1Pie1/fv39+FMHRwcigHHEDg4OBCRChesW7eu\n698VFRU0ZcoU+vOf/0xz5syh+++/n4iUDv6VV15Ja9eu7brXGzIgIrr77rudW56DQz+D8zJwcHBw\ncHBwcCEDBwcHBwcHB/eBwMHBwcHBwYHcBwIHBwcHBwcHch8IHBwcHBwcHMh9IHBwcHBwcHAg94HA\nwcHBwcHBgdwHAgcHBwcHBwdyHwgcHBwcHBwciOj/AyF2p00JsaszAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["#version matplotlib\n", "\n", "from matplotlib import pyplot as plt\n", "\n", "plt.style.use('seaborn-whitegrid')\n", "fig = plt.figure(figsize(8.5,5))\n", "ax = fig.add_subplot(1,1,1)\n", "ax.scatter(df['AGEH'],df['AGEF'], color=\"#3333FF\", edgecolors='#FFFFFF')\n", "plt.xlabel('AGEH')\n", "plt.ylabel('AGEH')"]}, {"cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [{"data": {"text/plain": ["Text(0,0.5,'AGEH')"]}, "execution_count": 26, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAE3CAYAAABGllMeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXl4FFXaNn5XdTrdSTohYZElrA5u\nuMBM+KEoMCMygwo6ryvDDD/nFfF9EXhnZDGogYQtOEbA5XXBTwdn1E8EUQc3ZGaMM4ogA4wBhCii\nRCBAICEh6fSSTnd9fzye1HaqujvdnXSSuq+LK0nVqaeeU1XUqXM/z7kfQZIkCRYsWLBgwYKFTgWx\nvR2wYMGCBQsWLMQf1gBvwYIFCxYsdEJYA7wFCxYsWLDQCWEN8BYsWLBgwUInhDXAW7BgwYIFC50Q\nCRvg9+zZkyjTFix0aXS0/1sdzV8LFjoKwv3fSmnPk1uwYKFrwHoXWLDQ9kjoAJ+XlxfT8eXl5bjk\nkkvi5E3boyP735F9Bzq3/x1xsOzK74KO7Dtg+d/eiOVdYMXgLViwYMGChU4Ia4C3YMGCBQsWOiGs\nAd6CBQsWLFjohLAGeAsWLFiwYKETwhrgLViwYMGChU4Ia4C3YMGCBQsWOiGsAd6CBQsWLFjohLAG\neAsWkgChENDYKP90ubLa2yULFiy0A2rcfuw9Vocatz9mWwkVurFgwUJ4hEJAbS3w8MNAWRkwYgSw\nYkVfhEKAaH2CW7DQZbC5rBIL39wHuygiEAqh5LYrcIGj9fas14cFC+0Mr5cG9z17gGCQfi5aJMLr\nbW/PLFiw0Faocfux8M198AVCaPA3wxcIIf/NfajzBVtt0xrgLVhoZ6Sl0cxdibIy2m7BgoWugeO1\nXtg1lJ1dFFHlDrTapjXAW7DQzvB6iZZXYsQIWDN4Cxa6EPrnpCEQCqm2BUIh9HbZW23TGuAtWGhn\npKUBK1cCeXmAzUY/V6wIWTN4Cxa6EHq4HCi57Qo47SIyHSlw2kWU3HYFsp22Vtu0kuwsWGhniCKQ\nkwOsWUODvdcLnD17EqKY296uWbBgoQ1x84hcXDO0J47XetE/Jw09XA6Ul9e32p41wFuwkAQQRSAj\ng37PyACOHq0HYA3wFix0NfRwOdDDFUPqvAIWRW/BggULFix0QlgDvAULFixYsNAJYQ3wFixYsGDB\nQieENcBbsGDBggULnRDWAN/FodVA1yzDjLl9W4P5ddFFFyfEv2TvvwULrUW0Gujx1ExPFGrcfnxd\n7UuYj8l+Daws+i4Mngb6ypW0ZCva9smgma72T4i7f8nefwsWWgueBvrNI4xXcUTbvj3AfBQhIfTX\nU3H3sSNcA+u11IXB00B/+GFjBbVo27c1Eu1fsvffgoXWwEgD3WhWGm379oDSR09AiruPHeEaABHM\n4JuamvDQQw/h2LFjcLlcKCwsRF1dHYqLi2Gz2TBmzBjMmTOnLXy1EGdEq4HeGs30UIgGQCbgkpaW\nuNluojXdzewHg6RC11lhvQc6L5gGug9yvMkuijhe6+Wux462PUON268ScEkkWutjLPYlCdjxbQ0m\nD+8Xs/14IewAv3HjRqSnp2Pjxo347rvvsHz5clRXV+N///d/MWDAAPzXf/0XDhw4gEsvvbQt/LUQ\nRzAN9D175G1mGuhm7ZlIixJtTWlH61+87FdW0iCfk9N5B3nrPdB5YaSB3j+H/2UcbXug7ens1vgY\nq31/cwhz1n+Bf1XUYNkvL4/LeWJF2Nfs4cOHMW7cOADA+eefj/3796OpqQkDBw6EIAgYM2YMduzY\nkXBHLcQfPA30lSvNZ/DRtG9rSjta/+Jhf/FiYO1aoKCgc1P11nug88JIA91ophtt+/ags5U+ptuF\nsD621r4jRT+EvrzjKA5XNcTlPLEi7Az+kksuwccff4wJEyZg7969aGhowIABA1r2Z2Rk4NixY9xj\ny8vLY3LO5/PFbIMHlysLmZm9kJVlR319AA0NZ+B2t17v1wiJ8j+ecLmy8Oij6mtx+nS9oe9G7Xm4\n6KKLUVYmqLYRpS2hvPyrsH615h5F4180YP5kZ9uxZg3gdAqoqACeew7YupUG/PT08P2KFMn27MTy\nHgCS911Q5wuiyh1Ab5c9pqIeZki2e8nDBQ7gpVsHyNfCUd+igc7z36y9Fl9X+yBCUm0TIeHTLw7i\nop7OiPxrzX1iPh6racSAHhmmPkYDpS93/yQba/91Vtfmg38dxM+HZsV8LiC25yfsAH/bbbfh22+/\nxV133YWf/OQnuPjii+FVTFUaGxuRlcXvyCWXXNIqpxjKy8tjtqEFo40XLmS0cSpWrsxFbm5u3Gnj\nRPifSGRnpyI7OxdAbkS+K9vz0NhoRJkLprbjcY+Y/2b+RQqtP3/7GzBrlr5fHo95v6KB2fXfozxx\nGyGW9wCQnO+CzWWVWPhW4mnjjvYe0CJW/89z+xH66ylAMciHIGDsj4dFNKOO9T5lx/H6a32ZN+FC\nAPoB/sZRwzC0d2ZczhnLuyDs63L//v3Iy8vDK6+8ggkTJmDw4MGw2+04evQoJEnCtm3bMHLkyNZ5\n3g6wMqHbDq2lzJPtHmn9+eADoLhY3a/i4viFApIRne090FGyoDsDoqX0lUim+8TzZc3fD+HOkf1V\n7e4aPTBug3usCDuDHzRoEJ588kmsW7cOmZmZKC4uxsmTJ7FgwQIEg0GMGTMGw4cPbwtf44JEZ1p3\nBLRVZjuvDGok51Leo4kTgenTgcGDAZ+PbDgcrfO7tf3WPjOrVgGCAKxeDaSnAx4PtemsCXZA53sP\nJDrLuiOhLbLbeWVQIwHvPokQsOPbagzonhGTz9H22+iZ+c2Vg/BfY89H2bE6jBiQnTSDOxDBAN+9\ne3f86U9/Um3r3bs3Nm7cmCifEopEZ1onO9o6s11bBjUSsHvUsydw333A8uWyr0VFwLPPAmfOROd3\nLP3mPTOlpcDkyXSsyxVZvzoyOtt7INFZ1h0FbZnd3poyqLz75AkEMWd9GRw2AYIotMrn1vTb7Jnp\n4XIk1cDO0OWEbhKdaZ3sSDb6mwd2j2bOpMFd6evSpcDdd0fvdyz97urPTGdELLRxZ0Ey0d9GkLPV\nBd0+f7B1Ajat7XdHfGa6nFRta2njcAgGyZaSsk1GxDtEEY72bg0tzu5RTg7f1yFDgA0bgJdeMvdb\neU/M+u1200+/n/zV0u6iCGRnqyl5pzP+/bbQtmgtbRwJDlc1tFC2yYpEhCnMaO/WhgJuHpGL7HQ7\nZr76b3iagrr9kfisvB+NTUE97S8IOHDiHPp1S0PZsTrkpNtR6wnoKPebR+RiWN8sHR2fiH7HA11u\ngAdaRxubIRgk+regQKZ/i4uBnj17x248zohniCIc7R0LLS6Kxln4R44AJSVE1/v9/EG+Z8/eqnuy\naZO5reJiuo+Fhep7mJND8fa6OnU/iouBt98GXnwxvv220LZoDW0cDoV/2Y+XPz/a8vdNF2Xif5Mw\niz7eYQoz2jvWUMCl/bohJEncfd5As6nPz3x+Bu99/V3L33eOzIWvWf2h4GkK4j9f2oUQ5xR3jR7Y\nIlzD64cEJKzfscJ63cQBXi8NJEr6t6AAcDoNqra0I+JJN4ejvWMNBxgJy6xbJ9P1RtXcnM4c1T1Z\nu5Y+CIxseb00uGvvodfL70dBATB+fGL6baHj4nBVg2pwB4B3v25IGuETJeJJOZvR3vEIBZgJywiC\nnr5nOFzVgPe+Vl/7jbsrEeKM5LzBHZCFa3j9eGDTPuRv2puwfseKLjmDjzfS0/n0bzIk7fGo4niF\nKMLR/WlpQK9eRKcPHgxUVMi0eigU2SxeSY0fOSILy2jPpe1vRobat61baSbO+q211a8fvy/p6fQ7\nrx+DBxv3u6uv1OiqKDtWZ7g9GZKwtHRxvMIUZnQ/+125zyYK+Pir07j24vMiPufNI3IhCsD8N/bB\n3yzbcqbYDCn6bYfPcG2liCKCwchrPZcdq8MFvTO5/YAkAJAZAbN+t/VKDWsGHwd4PETDKjFiBFHM\n7QlGFc+bB4weTT9ra2lfRoYcqmgtbczofiWUWvZ+PwnClJQAV19NP2fNAmpqyI9Ias/X1QHz58tU\nOhuQtefS9rehQdD5duYM0NzMt3XiBL8vHo9xP06f5vsS7rpY6LwwirknQyx+c1klrnm0FNNe3Ilr\nHi3FO2WVAGh2PHxAdkyDTv+cNB3t7WsOon9OGvrnpMEbaFbta/QHUfTOAZUfkfg//429qsEdMA4r\nbC6rxMoP+ApwEiIf3AG6f7x++ANBBCW+P8mwUsMa4OOAtDS+8InPV9uufiWaKhZFPe1dVCR/MIRC\nRKNrs+CbmiLzQ+n/unVEqZuFFpTtt2zh35Pdu2n2rfU7LQ1YtowvXmPUD1Hk+2Jl3XddDO2dibtG\nD1Rtu+mizHafvbcFXSxpYuTKv3k0emNTMGI/mP/+ZvU5HCn8sAJrz8nJw12jB2LVHSPgtItw2IQW\nO0ZQCtdo+yGKAgonX8oNcyRD1n2XoegTmdVssxHtrRU+OXSoCr16decew8u6j7dQSiKp4lCI/p13\nHs1oMzOBqira5nAQe+F08s/fp09kfij9Z7Pt/HzKoufdQ2X7VavoJ/ONZb5feSVw7bX0kaHNiq+v\nBx57jNa1s202m/F17NUL2LFD7wsv697Kok8uJDKzedkvL8ddVw1uybQOnD0e9hhllnciPgYSLexz\n4EQ9Um02NIfkETXVZsOBE/XolmaHM8WGQLCZe2wkfvD8T7fbsPb/z8O4C3tF1N5hE7H6zuEY/aMe\nOF7rxXtzxqCxKYhAcxCffFONFz/9Dp6A4vrYBCy7+VJMvXJQi01tP5wpNlyW2w2fLRzPfZ6Msu7b\nCl1igG+LrGabTRY8CSd8YpR1H+9yo4kS9eFdz+Ji2rdsmXrbjBnA88+rz19REZkfWv+3bgWqqymO\nzjtO237VKqChAbjlFvW1fuwxIBBQ+79kCWC3Aw88oH9Gwl1HrS8stGBl0Scn2iKzeWhvedZerpcq\nV0Gbda/M2o4XEkkXby6rRP6mfTrq3BMI4t6Xd6PwpmG6c0frB8//ECRc2o9f/4DXXhCBc94Arnm0\ntOXe35nXHxv3HEeKKKgGdwAIBCUsefcgMhwpuHlEblihG94HipVF3wZItqxmo6z7ePuTKKqYdz29\nXhoktX361a/0meulpZH5EY9ytr/6lf5anzun93/JEuoD7xlJ9jK5FiJHMmQ2K8HLuk9EudFE0cUy\ndc4fwP3NISx/7yAWTxrWcm67TUCKiKj8iKWkLSsXu3jSMCx//6Dq3r/8+VH4AiG4/Rwu/wf/2fPR\nEcrkatElZvDJltVslHXPMrbDIdJwQ6KoYt71NMpCz8gAnniCaHt2/l//Wu0H6w8Tj0lPN874Z8c0\nNpJNn0/dN7m/EjweATYbSdtWVFAcf+tWta9arfuJE2k728YGZYdD7ofSV949SLbnzYKMZNOgjzXr\nPppQQyLoYt711MImCnCkiC2UOJuthxOGyUi1tbTXZvyzfWzgBfRhDtbfD/51EFdfNhQVNR7YTJbU\nAYAjRUAwJEH5vWITKOM/J92Ow6fdeGbqj9Ez06nynXcfkuFZ6xIDfLLpz7Ose3250fD0fjThhkRR\nxbzrybLQtX2qrKQB2OGQ+6a85qw/b70F3HCDWnee+ZqRQe18PrkvK1cCw4frwxxpaZR1X1Ym6LTr\nFy+mc1ZXG2vdFxcTff/ee3p/iouJxk9LM78Hyfa8WZCRDJnNSsSSdR8t/ZsIuph3PbVgGfNBSULJ\nbVdg+A99M6O0pZAEf1CC004vKuZrD5cD2w5X6/qxu+KsLsyRN6g7Fr65D6GQhDWfVcNhE+APGix2\n/wHaJD6AkgEf2LRPVdF+7NAeeGXGVSqftdc1GZ61LkHRJ1tWs1HWfST+REP/Jooq5l3Pbt34ojRr\n15qfk/k4frxed95MPGbkSH6Yg/3O065fvpz07TMzaeDnad2zUAPPn4ICuaKd2XVNtufNgoxkyGxW\ngpd1H0m50Wjp30TRxbzredfogXDaRWQ45ISiSDLmlT6ygdgXCIUVj1nwRhk3zPHAG2XwBUJo+sGW\ncnDPSLXBkSJANJ/Qt0A77H96uAa7j9SYXtdkeNa6xAw+UfrzrYVR1n0kCXbR0L/RtNXS/i4XP3kF\nMKb+mZCM00mUOBOSYZnoTPPd55OvPxPD6dNHT6WXlZEtt5vOk58v78vM5PfN5TIWpCkrA3J/mLB8\n+ilVg1OeEwC6d6dtgmAeRjG7rtrnjV2f9n7uLBASqUHfGmiz7iOhzqOlf6Ntr6Scw4FH/f/+ugvx\n8VenUfTOATQq1qoxzfdL+3WLiNJmYMI4TrsIEepRWYAIcI4x2p6easM9Y4bgwt6ZeOit/Wjw87P7\nw+GTb6rhCQQhamh/5XXVPmsAsPdYXZs9d11igAfirz8fK6LJulciGvo30rY82n/Fir6GanNm1D9A\nIjBGmu+LF9Ma9VtvpfZMRGbePNkWo9IHDwbOngUWLdLva2gwDnOUlKjLyzJBmhEjiKrPzATGjlWf\nk1HzbJuRdr3HQ9cq3HVlHy+WJn1yIhEa9LFAmXUfCaKlf6Npr6Wcf39VD5hJ6RtR1NdefB4Wbf5S\n1dbTFMT0P+0CAKTZU3SUtlZIhqHRH8TDb+9vmY0rYSRa4zdQqvM0BfHHbUfQHAohEIayN4MA4N6X\nd+tofe11Zc9ae2TUW6+ZDoZo6N9I2/Io50WLxLC0eqQZ50rN9+XLif5m7XkiMoxKnzKFBnftvunT\nSbCGF+bYuVNP0YdCsghPKEQfB9pzalcB8LTri4vpQ2Xt2vCiO+GukwULsSCWrHKz9jzK+Ynt1a2i\n/o3045tD9I8XKjDTlecN7o4UAavuGKELc/xyeF9DOwCFDPzNkqH+vBZar64akoPnP/0uauGdts6o\n7zIz+M6CaMINkbaNNuvbrL32nDz9+MGD1fZ5thiVblQutk8fStzTitU8/LC+fd++RO8/+ywN7Dy7\n2lUAWu16Zn/SJBqsAbLJsu/jcV0tWIgG0YYaImnPo8ltIlpN/VOp11TMfGUPPAH+UjSldrtWSMaR\nQoS8j7MMLz3VhrXTfoJxF56Hm0fkqsIcZcfqsHnvSdPrwUOqTeB+SPzP+KEY3r8b9h4/h3EX9IQ9\nxYZpL+6MSXinLTLqrQG+AyKacAOvrVZFLyVFppyVy8Y8HjnmrIzPi2LkYYKsLKLgly2jWHdFBcXU\nt28n+4JgnH3f1ERCOePHyzH10lI6jyTRsSy84XTSQLt9u9y3I0eo/ZEjxAbk5dE+3jl5qwDOnKHz\niKJ8rbZvl2P2zOaaNfwPLCub3kKiEW2ogddeubyMS+UHJWSkyglCyvh8JNR/v25ONJtk2vubg8hI\ntSEnI5WbkS/pUtyYXyGk22W/lGGOLyv5yw/DQSu3y3Dz8H4Y2jsT1w3rgxq3HwdOnENTUP3BEq3w\nTltk1FsUfRcDU9GbP58K0MyfTwPumjXAf/83LRtjRVXmz6e2bre6YI3HQ2pwPIpaWfClsJDi2suW\nyUVahg8HNm6U7QeD/DBCt240kN5yi7rIyy230BI25lswSAVk6uqA9euBkyflvrH2u3fLFPv69cAj\nj+jp96wsPuXvdMp9mj9f9uO+++h6RSu8Y2XTW0gmFP5lPyY8/gkWbNqHCY9/gic/OtRC5TOddkEQ\nMPnpbXinrFJXsOazw9Wm1P/mskpMfnqbrpa7ALTYF0Wyz7P12O1X4LHbh8NpF2HT8OSBoITbn/8c\nhZv3q7ZPe/Fz3L9xn66vAn6o/maCAOc7pJvT1vLhwPo/+/9+gZCEiAV72iujXpCMPllixJ49e5CX\nlxeTjfLyclxilt2R5EhG/91uGqiUs8q8PKK6Af6+RYtooFRuW7OGftdS/42NNLjv2UPZ7CUlenv5\n+TT7ZX8/8QQNokpbAH1I8Pxhx2v9zs/nn2/NGvoI2LhRls2dOBF46CE6V0UFDeQffKBnC6ZOpRk/\n65P2mqWnmyfMtbYGgtmzE4//W22Jrv4uSFbfD1c1YMLjn+i2/33uOADAjf+7DU0Kapxi6ZIq7uy0\ni/hs4XgAeuGaGrcf1zxaCh9n1HSkiAhJkirJzczW4aoGnT9an4f2zsTuIzW4/fnPuW1SbQIAiVuA\nJhz+eFceRgzM0fXHkSLihbtG4tJ+WREN1q2pgRDLu8Ci6DVIZFGaZEA4FT3evn799NuU14XRzYyB\nYkvPhgzh29PWUWfqcMpPTUazG8XgN2wABg2Slezy8+lvo/rzHg+FHu68k7L49++ngZuhd2/gxRfV\nuvk2G3DPPeSX0TWLpKZ9Mq3esBAdElmUpr1hpqJ3Qe9MOGyiakA1q32uLTdb4/bj469OGyrH2UQB\nNklAIKhfQjfuQqoRX+P2tywpa2wK6vxR4p29J3Dz8H54Y495YR8BNMhHi7WffIffjh6ki6On2kR0\nS7NH/Gy09eqNTjR0xQ6j+unh6pZ3JBjVrvd4jOuYV1frt2kzwZXXjtHYbjffXkWF+u8jR4DXXtNf\neyNf3W6aXZ86pabj6+qAuXP1ddsZvX7yJM3ib7gB+N3v1L7W1lK8X3uuykrjfVY2fOeGUf30zgIz\nFT1effdAMGRY+1wJdt2WvKteA6+1pY1he5qoOA0vFPBl5TmdP0qs/ee3mPD4J3j7C+N71BSUwirZ\nGWFXRS3mrC9DY5N6GV97qiBGAmuAV6ArLGsyU9Ezqu+emdm6JWEbNvDPVVqqX0I3frxemc7r5S9V\n27DBWGnO49Evk7Pb1Uv06uspP0C9LFCm/bVKfLyiOVYsvXMjGQqFJBrhVPR49d2Nap8zKK+bUQEX\nAAiFJPCCw/5mCQ9s2ov8Teprv+y9AwiZrGljme+8DPh4IiQR1Z8MKoiRICxFHwgE8OCDD6KyshKi\nKGL58uVISUnBgw8+CEEQcMEFF6CoqAhiJ+Cx23tZU6LDA0zPvXt3ih+z86SkEF3tcBC9zpZ/VVTQ\n38uWtW6p3YsvEi1eWEjL2ioqgEOHKK59zz20Hn3LFmqrVbKbNEnWsGexbrebBuvp042V5njhhIwM\n+igYMkRWleNR+S6X3M+GBjpu+nSZ5tcuyesEj3zE6ErvASA5CoUkOjxQ4/bjtp8MwM1X9ENFjQeD\ne6TDnmJrOW+aPUWl8pZmTzGtfQ7wr1ua3YZQSFIJzzjsNkACd+mcCEEnXSOFJAqpKcZvmwikiAJX\nPz4eMCLz7x07BDZRxLgLemLkkB4JOXe8EHaA/+c//4nm5ma8/vrr+Oyzz/DEE08gEAjg/vvvx5VX\nXonCwkJ89NFH+PnPf94W/iYU7bmsKdE1643s2+3A738vq7edOSMnwAHy0rJwcWSja3fihJygN3Ei\nMHs2KwYjK8j99KdqVbnly2lgf+01ueBLr15Ety9daq40d+KE2q8ZM6jfSnW7khLgf/6HPjyUindu\nN8Xbz5xR7/vDH4j+1xa2ycmJTF64M6ArvQeA9i9Kk2jVM639O0f2x6LNX7b8vXiSvoZ7uNrngEHd\ndknSU/vBkOGM3MuJszdxwqTBEBCMVKmmFTCy/Mw/vgMAPFV6GHeNHohlv7w8YT7EirBDx5AhQxAM\nBhEKheB2u5GSkoIDBw5g1KhRAIBx48Zh+/btCXe0LdCey5oSHR4wsn/unLl6W6T951274mKa8bJt\nM2eGV5Dbs4eo8fp6NQ1/993qY3m+LllCfoSrB8+j6JcupQ8p3j63m1/YpjOFbsKhK70HgPYtSpPo\n8ADP/ss7jqr+Xv7+QSyePExVT721ddsLbxqmaxcKSRAjrfQSAVJ/WENn166lixHhXHx5x1EcrmqI\n6znjibAz+PT0dFRWVuKGG25AbW0t1q5di127drVICmZkZKChgd/B8vLymJzz+Xwx24gWPXv2xqpV\nOcjIkOnc+voAGhrOwO2uj8pWNP5fdNHFKCtTP00UHpBQXv5VxOd0ubKQmdkLWVl2ld9G9hmlzQRu\nzjsPWL1aQno6LXnz+WpRWenV2czK6gabLaOFsg4GG+HxnMOjj8rtMjPt2LlTaKG2vV6aiSthVEc+\nN5dYB7aPqd8pfe3Th3ylQjZCS3a8VmEu0tr16enqzH12ntxco/bR3Zto0B7PvhlieQ8AHfNdcIED\nePLGfvi62od+mXaEGk5jxxe1yHZGR9tE6/vX1T6ImvmjCAmffnEQF/V0RmynzhdElTuA3i67ymee\nfS0EKYSa06ew4rre+L7Gg8v6ZWKgox7l5fVcuweqvPj3CQ9+0i8dl/ZOw0u3DmhpU+U+i1SbgGbF\nbDtF1AvYpNooy12ZCCcKCCsn67ABPxuSjtwsO975qh7VnvjN6lNEhF1W98G/DuLnQ42Lc8WKWJ79\nsAP8n/70J4wZMwbz58/HyZMn8dvf/haBQKBlf2NjI7Ky+J2Lde1nW68fZTT2ggXq4iZbtqTi1ltz\nkZubGxVdHo3/jY1G4QEhYhvM/4ULmf+pWLmS/Daj0CdO1NZFF1qKwkyZ0h2iqLcJaKl2F/r2dSHl\nhycqOzsVPh9w4YXqdkVFRIMz6VpWm13r15kzNKOeMYOWrlVUGNVwl3294QYa4FmyXH4+kJoaee16\nj4euofY8+flG7SO/N9Ei3NrXtkYs7wGg470LgB9o7A9IMMUXCMFhEyCIQtR0ebS+n+f2I/TXU1CS\nxCEIGPvjYREzCJvLKrHwLT7Fz7OvhbcZeGbnWfibQ7CLgK2sASW3XQEJ0NnduPsYth2uAQC8tu+c\nqlY6QIyB93117IyXfxeS1EtX2bZw8AeBrYcbwzdsBXjCN1rcOGpYVIWCokUs74Kww1VWVhYyM8n5\nbt26obm5GcOGDcPOnTsBAJ988glGjhwZrc9JCR6NrS2OkijEIzwQbREYphjHq4vO+n3uHN9mfT2/\nVroSzc16anvpUjof88Hl4mfuh0LqzPaXXjKu4c58ZYVoWAZ8aSn1e8kStf20NEoc1IYT9u2TM/+V\n51m3Tl9chq086CroSu8BQE1jM2ETf1Bqk2z6WMMD4Sh+0xruCkla/w+x8ECIPnB42e0L3tjXMrgz\nsFrpDLWNTRGtPJckmGbKtwfCycApVx0kI8LO4P/zP/8TDz/8MH79618jEAhg7ty5uOyyy7B48WKs\nWbMG559/PiZOnNgWviYcRlkwiYhYAAAgAElEQVT02uIoiUA8ataHKwLDq+EO0CBrJkijzDg/fZoG\n3z59gI8+oiV0LOPc7ye/mXCNkVBNbi7w2WdAVRX58Mgj+sx9lkzncsk+V1UZ0+XsHg0eLLefOpX8\n6N2bEutcLvm6+v3qa7FvH62Nt9noI6F7d32/CwupcA27dl0lwQ7oWu8BwLw2eVtk08dSsz6SFQC8\nGu53XTUY7+w9gT9uO8Jdv24TRF1ZtZDEn+K+vusY7Ck29M9JMxTU0UIUBdhEAcFIps1xRrTyN44U\nEavvuAKThye23GusCDvAZ2Rk4Mknn9Rtf/XVVxPiUHvCiMZm9HCis+ljVT0zWwWQlqav4f7YY6QV\n39zMP+7UKaK4WfY6y2T/4AM5u10dyqDlbc8+SxT76tXGhWRSUuhDoLKSn7nPrnl9PTBhAs3GlywB\nVqwwvkcsY76gQJ91z8IDgiDL2qam6qVwR4ygcAmrU6893u+XC9x0JXSl9wDAzwZnaKts+taqnkWy\nAkCXRZ/XHxv3HIdNEAzFaZqCQR1lbiAsh03/rsRfyiqRYhMxb8KFEfkdCEox1WePBdGeNRgKYfSP\neibEl3iicyxajROMapmXlnYMYRMzmp9H3zP6PRTi0+SpqbTem2Wvs0x2nsgMo8mXLqV2e/ZQbXat\n0A0Tj1myhHzi1VZn15z5kJdHHyEsK1/rK2uvzJjXZt0rM+VZe5dL79+KFTRrb2riH9+ZVA0tGENJ\nYzvt9Jp02CLPJm9PhKP4uVn0n1MWvdHgDtCzHw2D3vwDtb/6b4d09dQ7Oszq1icTLC16BbQ0OaNi\nf/3rttWkDyd4Y7TfjOY3yibv1YsqqTkcRGNnZpJ0LKPJlYIyShrcSCOeUe3/+AcNxn4/+eN00iyb\n1Ya32YjulrPhqT2j+8ePl0V2mCjPyZNEnTNKf8gQuT27R7yse6WPvXrR9Zs8me5v376y/cZGssUE\neozCHW63OszRlaj6rgQlTZ6RakNjU7BdNOnNBG+M9plR/GbhBzPYbAJCrZhhiwJptiuFblqD1qnI\nJwaiIGDHtzW4uE+mKsyRbLAGeA2UNDmjYtuySEg4wZtw+41ofh59f/Ys0dBKkRkmHTt4MO1nWeV7\n9si0OfuppbaZRryWvi8uJtEaZSGXGTMoZKAUoCkqAp55Rs6wz8ujj42SEvrndBpT+osWUY6B1lde\neCAri67TkiX6EMOUKeZ9bGxUr7LoaoI3XQ1tXRxECzPBm3BiOEa+m4UfzNBa+twbp5h6sgzuACUg\nzln/hWpbMoreWBR9kiGc4E1rBXF49H1amp6GXr6cMsinTKFBU0nfs0z20lJ+VrmZRrxW533KlPAZ\n9uxjg4nTFBQYU/pr11IWv9ZXXjuemA0LMWzYQDS9UR9ff71rC95YaDuYZcPHIoajpfAdKQK3Troj\npWPQ0MmCZBS9sWbwSYZwevit1cs3ou+NstwBCfn5Anr1opkuo8SrqogO11L62dkytW2k867MWudl\n2PfqRRT8jh3UJiWFKPqHHpJLwq5bRzQ/Kw/LysU+9JCsp8/8qqqSM9+PHJHDA8uWGWfi33gj0KMH\nZeA7nWpbaWnUv/HjyY+tW9Wldi1YiCfMsuHZ763VyldS+Oe8TZj9f79Q6c5nOGxYetOlqKz14KnS\nw4hX7ptNFBIqL9veKDtWl1RUvTWDTzIYlWxVzuDN9puB0ffsp5Gtykpg9GihpYzqoEE04z5yhAb7\nU6dIU/6664BRo2jfyZN07OnTRPtrS7ZWVVHS3dmzlLl+5Ij63BMnyuGC0aOpjdtNs21lSdj77qP2\nu3YRxT9/Pg3i9fV07DXX0OB/4gTw9NM0mFdWko+M+mdCN0qwDPxly+Tz19URbV9VRethleVl77uP\nfGYCORYsxBtm2fDx0Mrv4XJg+IBsXNqvm85WMCThjT3H8PhH8Rvcmd3ODKMSvO0Fa4BPMoQTvImn\nXj7PVlER0di8MqpmFH16OlHYomicfT5ypEzLa8VjeDr1BQU0yGup9OnTaaZtljHPQg1aPXylr+FC\nBgUFdJ5QyNh+UVHXqipnoe1glg0fT618nq2Z487HziO1CehVx4Q9wmhFnacpsY5EiU5B0SeizGqi\nS7caIZzgTbj9Wr+dTlmTnW0H5N8zMtSlY9PTaQAFZAqa0etpaTRDZxS99jifj2a6zz0nZ7d//z19\nGPTtS+2UJWGfe07OsDcq/5qbS3S/khIfMkTeDxhnzOfmUhZ/aqreV68XeOIJ2ldRoRb7YRr0LATQ\nt68cHmAsALNfWEizfgvJgUSVWE106VYjmGXDhxPD4flstG1Qjwy8On0UKmo8GDEgG6/vOsb1Z9qV\nAwFIeHUnf39HRqpNMKwnf2tefzQ1B/F22UlTG598U51UJWQ7/ACfiDKriS7dGg7hBG+M9vP8Li4G\n3n6b4uPKErEPPCCLwbz/Pl+4BiCt+JMnaRArLgbeew+49VZaQ688jicsw9abz5pFA6o2W/+552iG\nPm+esSgOy6JX+nPkCJ0vXMa8xwOsX08+Mq16bXb/q69Sdv+GDWoNel575sPWrbJvZ87Qebqi+E2y\nIVElVhNdujUczDL5jfbxfJYAw21SSII/KMFpF9EcDEEnWfcDNu4+hlk/+1H8OpdEMIsebNx9PKIs\n/nEXJJf4jW3JkiVLEmH45MmT6MdKlbUS1dXV6KUtP6aBx0Ozqz17aPZ48iRQXk7x4dTU1p03XjYj\n8T+eMPJ72jRg40b57yuvBB5/nAa4lStp/yOPqI/75hsaeK+9lj4oVq+mY+fNI1q7oEB9HLOltTFt\nGm2/5hpg1Sq9/exs4KqraHZ91VXAoUPEEvzkJzSgvvAC8Omncvuf/pS21dcD995LPh06RB8symOZ\nnn2/fuQjr4+sP19+KdtgYjdG12TOHBrYFy8G/vY3ykVwueL/4Wf27MTj/1Zboi3eBTVuP6a+8Dl8\ngRCagiE0hyR8/PVpTB01EOmprZ/HxMNuW78HeD6XfnUafzt4Cv5mibuNTVybQxJCkvFgF5SAsuN1\nyBuUjco6H79RR4UU21K8sUN7YM51kan2RYNY3gUdfgbf2qzytrbZFjDye8gQSnBjGe3seRg8mGbC\nQ4YYU9yFhZRYx7LifT6i1LWCN0Y0OdveowfZUIrT+P1EzZ93Hv1+3nnqzHyW9a70Z/Fi2rZ1Kx2r\nzMxfsYLOo7Sfk2Pex/R02UZjo5zdbybmw+h+lmnPKui1V1jHQmT668lkN5Hg+UxlV9VSMTZRACQB\nQJh6qBrYBAF35A3Af409H+t3HcPfy0/HyfP2hRClks60KwfgP0bk4pNvqjHugp46ar69wjpKdPjX\nTyxZ5W1psy1glhWvzGiv/6GsfV0d/X3mDP+4mhqKQ9fWylnx8+bR3zNmUDY9O47R5FobTCOeidqM\nHk0sw6lTJH7j8dD5lRnwNTVE7bPBXdkP5bbSUspwr6ykrPcnnqAM+fx8sjVvHp137lxqw8ucZ1n9\no0eTgA3rm1F/GB1vs9FP5eBeWyuvAmDXyZK2bRvEI6u8Le0mEjyfvYFQS3U4Bl8giKBBsRgzNDYF\nseTdA5i9/guMGtw9Jl+TCdGuFviPEbkYOaQH5v3iIt3gvrmsEtc8WoppL+7ENY+W4p2yyjh6Gjk6\n/AAfz6zyRNpsC0SSFb90KcXg8/LoJ8tw52nRp6fLgjc84ZrU1PDCMqWl/Ax1Jizj8RBDoNynzNxn\ntpYsof7x7GdlUY4Ar5RsQQGdgyeQY9Y3I6Ebp5N/7VsrQGQhPohnVnlb2E0klD5nOIwlFkMSMP/n\nFyHVuIkh3P5gp9WZV8ImAHabAK0O0NihPQyT6WIRIYo3OjxFH48yq21hs7Uwo315+5jfLHv+kUfU\ns14tLV1WRtR4URG/ZKvPp858V2bWu1xE4bPjfD41Ze50kua7y0WDubJkK8tkdziMhXEef5xsMM13\nrxd48kn6sGD2p04lW3Y7XQ+Wwb9lC7B/P2XD5+bSz6NH5RBAQ4NxmVyXi+ympen7I4pE5Uei9d8R\nwjqdCbGUWG0Pu9EiHOWr3M98/vir0yh654BhEZnuGamYMfZ8PPuP71rlkyRJSLUJ8LdTFbhEgkrC\nDsfoH/XA8Vovqht82Hv8nIqO592TZArrdPgZPKAXcInHQJwIm9HCjPY12scwaxbR4GfOqG0yPXWl\n2ExFhazvfuWV9JNR80biLm63Whd+504a8BjdzYRiWAGZ666TE/1Ym3nzyJff/U4vjFNTQ8cxCv3q\nq2XxmzfeoPMphW7Y7ywEMGEC/c3CAiUlwIUXkg+sjdvNp+GPHFH7L4pyIp3R/eioYZ3OBibeEu8X\naaLsRopwlC9vfw+XA9defB6CkvHg+8k3Z1o9uANAU1DqlIM7QHrz898ow2eHqzF8QDauG9ZHRccb\n3ZNkCut0igG+s8KM9jXbx6j6cHrqTGyG1+5Xv5K4tPrMmXJJVSXtfcUVfKEYQaB/BQV8nfr6erKh\nFcZpaqKB2+vV27z+erVoDk/opqCAPh6028aPl/9muvNa2p/p32sp9kiueUcL61hIfoSjfM32K+n6\nFM3b/pcj+uKdvebrurs6/M0Sl16P9Jq3d1inw1P0nRnhaF+jfaJIy894NHNaGq2JB4huv/xy4M47\nibbWisFohV8YDW+z0d8VFTLtzdOWZ3Q3+52Xmd6vH/84Ji6jFLoB6LyZmeQjWzlilPGuXT3CW1GQ\nkyNfH7eb6s4vW0bneekluh7KUIjZNU+WsI6FzoVwlG+4/TePyMWwvlkoO1aHnHQ7aj0BjBiQjbJj\nddhsINziTBEw5oJe6OlKxeu7jie8j8kMpf4/o+MjuebJENaxBvgkBq/Eq5L2NdqXlkb0Mk+ox+OR\nj5s4ERgzhgZSrTDO+PGCSvhFKfhSVERx+UGDgFtuoeNLSoxLyEqScQlWpgvPO05ZSra4GAgE1CVe\ni4rItpHQzYkT6uvJMvFvv12+JnV1NLNX2lyzhkIPRUXkx89/TvuMxHi8XnU4B2jbEsMWOjfCUb7h\n9vNEb8IVRPE1S51m+VuscPub8WXlOUz5PztaruHiScPga1bnNfiagyoavr1LDQMWRZ/UMKN9zfaZ\nUck2m5ztPn06P+ucVUtbvJifmb50KdHi48fLNPmWLXp9d6ZNv3s3/c4LBWRlkX3lNhYCUJ7T69Vn\n27PysrwM/uJism22osDj4Zesvftu+XdRVPvAW21gzdItJBLhKF+z/WZUck5Gqi473IIeEoAl73yp\nuobL3juAkEYNSDLJdWgvWDP4OIGX0R4PG2a0b3Y2X2OdCdEAeno9NZXOw2hpnsb64MHy32zmrgSj\nupm2vFKLXhkOOH4cGDqUEveUGe9Kn+vq5PKvQ4bowwgMRlR+bi5R6rwM/uZmeZvXq19RYGRzyBDg\no49ksZynniJZ3vR08q2kRNbZZ6sNeJn1FroulNnV8bARjvJV0vCDe6TDnmLD4aoGlB2rQ4pmFBch\n4MCJegASnHYbPAYZ9hZkaCQEAElAaooAb0DekWZP0VH57T2Dtwb4OMBIu97lyorZRk6Ose58XR3w\n1lt8jXUm1qKl11evpsFv/nxjjfWKCvnvmTONKfQNG8y16IuLaeDbuJGv675lC1H8l19OHxmzZ9Px\n+fmRU/mVlTSg8vq0ZQswaRLwhz8ACxfqVxQY2VTq32/ZQjkKQ4fqtfTXraOPodpaNc3flnULLCQf\ntJT476/qgUsuic0G0783GjBYe6Ypb7cJCAQlbgEVTyCIe/68C6GQFNdSsJ0Z2svkD4Z0AoCBUEhH\n5bd13QItOrwWfTLASAN+0iQnnM7IVCSi1b9n7Y001ufOpYFzxQr1vrvuAh580FhjvbiYBrWyMtJ0\nv/56YOxYtc77ihXAm28SRW+mRc907wcO5Ou6T5tGg/6sWeQrCwU0NNBg/c038jknTyY/vv5arVW/\ndi0VwPn5z2kg5+ngz5lD6+THjFH34/rrqQ/l5cb699OmERPAsvS1WvojR+qvZ6y1EABLi16LjvIu\n4OnA76704tdXRq5dH63+vbI9G7AZe2w0gIdi1F23ICMj1QabKGDxpGFY/v7BuNdDSKgW/VtvvYW3\n334bAOD3+1FeXo5XXnkFxcXFsNlsGDNmDObMmdNK15MDsWqIp6XxxVqysuwR2zfL0NbSvwzPPmtc\nZpWt2372WZptM0rZSNxlyBCZep46FbjnHvqIsNsp3qylv198kah/1u8hQ/h0f9++5IfROQsLKSs+\nJUXOimfHK2l7pxN47DFZxKeiQtaqZ7KxWvuDBsk2vF7g739Xi/k8/jgN3KxvPP37wYPl37X2c3ON\n93XG5XFd4V0AxKYhzsuutolQiZyEs2+UoX3gxDl0S0vVlXr9+KvTsAnmwfRUGw3qOqrZggp2EQhE\ncY3SU224Z8wQ3Dy8HxqbgkkjcMMQdhi79dZb8corr+CVV17BpZdeikWLFqGoqAirV6/G+vXrsXfv\nXhw4cKAtfE0I4qEh7vfTLFQr1uLxBCO2bySU0tioPtbtVgvQ8DTWlWItJ08SRX7qFCW5sSx6bXuP\nh2buSsGY+fNpVqrdVldHIYDTp+V+MzEZJoYDyBr0Rj663RQ/Z32bNUs+dutWsqcUnRk0iGbTs2aR\nuA4biJktJWbMkDX0mf2xY+kDhIn5nDlDx82fT/0vKdHr31dUyFS+1v/KSro/XUXgprO/C4DYNcT7\n56TBG2hWbfM3S6qM9nD2eVnxvuYg7n15t+o4ZmvJu8ZKdQxNQWtwjwTRDO4A4GkK4o/bjmDy09vw\nZeW5pBG4YYh4nrp//34cPnwYkyZNQlNTEwYOHAhBEDBmzBjs2LEjkT4mFPHQEA+F9EIrTOM9Uvu8\nrHilKA079tw5tb21a/ka8EyshWm+s587d/Kz3fftA268UZ9V3tzMF7D51a9oZq7t9/LlNLMnsRxq\ny9OB52XKs6x4Xj/YOVlGvtZ/SQqvM6+1z8IRe/bwrwsTAUpP5+9bu5buj3ZfZxe46azvgnhpiAua\n2TT7M1L72qx4R4oISZLgb5Zajntg017kbyJbbr+VJBdPRLuwoLGJdPmXv38QiycPSwqBG4aIAwPP\nP/88Zs+eDbfbDZeCD83IyMCxY8e4x5SXl8fknM/ni9lGOFx00cUoK1PfUqJYJZSXfwWAkuUyM3sh\nK8uO+voAGhrOwO2uD2vD5bIBkMLaZ3C5svDoo3QeVro0K0vARx/J+umZmTItPmgQzSCVIjVK6pqd\niwnBDB5M9DbLvmeUu90OjBpFTATTcs/IoI8JQeBr0Wdk0D8lPc0y9pUlVXv1omVnffrIOvAs059l\nymsz/bdvp36JIn0wPPQQfYCkpdHsWyves28fZbkz+j2cUM/27dRGFCmBbvJkfdY9y+YfP16m8o3C\nA9OnS3j00YDq+Th9Wn4+IoH2GXM40hL+7LcWnfVd8HW1D6ImMi1CwqdfHMRFPanKUJ0viCp3AL1d\ndmRz8mu+rvYRzasYc1NtAj794mCLPTP7DBc4gJduHYAqdwBVDc14fPsZNCuXZUkStKx8qkgxdytx\nLjaIQvhraBPoX5Niwi5CQkbT2Zb71ttlR7ajHuXl0b0LtM9YLM9+RAN8fX09vvvuO1x11VVwu91o\nbGxs2dfY2IisLH62+CXRpo5qUF5eHrONcGAUq168RMAll1zSQrEvXMiypFOxcmUucnNzW+LoRjbq\n6wOw21NN7WuhzKZ/5BFK1lIK0Tz+OFHU77/Pz57nlVllJVtra4kSV4q6dOtGM9yGBnUmeHExbddm\njgNAdTUNgH6/WjRHm7FfXEzJfsqVAUVF9EFRVwdDIZ2SEhK10frT1KTOlC8uBvbuBS66iPwqLaWs\n/IICOROfZ7+4mAbmBx/U27rySmqvvF95efRBUFsrJy0qr6/PJyA7mzLqsrNTkZ2dCyDyzFneM7Zi\nxUAMHixyc0H2KB1oY3Tmd8F5bj9Cfz0FZfpZCALG/ngYergclKn+lj6zPZyNYAgY++NhZM/EPg+b\nyyqxZute+JvVI44/CAiaj4Umi4KPCyL5QOJ9SIW7l5GA94xd4DT+/xPuXRARRb9r1y5cffXVAACX\nywW73Y6jR49CkiRs27YNI0eOjLIbyYNwGuKRUOxGNhoazkStUa48X0qKnh5vaKDZJE/XnZU6jbRk\n69KlFIMOhfT7vF5KgONp0RcVka8OR3jRHI+HrzMvinQsT0invp4fFgiF9NtGjpT9UvbRTKinoID6\nzbMlCHwxG0HghxriQcfznrFFi8SkjON35ndBawVjwtm4/+qeLapm0WiUs3NqB3cGa6KeHMhw2OJC\nxxs9Y3W+1odgIprBHzlyBP3792/5e+nSpViwYAGCwSDGjBmD4cOHt9qBRCHSzPhwGuKRlAE1suHx\n0O9KSjxclr7yfLyM9549jXXdWfa8NuN9/Hi1LS1lrRTGYTATlnnjDeCOO2jbH/4gZ6obtV+wQC7d\nqjznuXN0bSI9d3o6sRM5OXIYwe+nMEC/fvrSts89ZyzUw1aW8K7FI49Qn5QhEDbYMlEe1j4eojYd\nqdRsR3wXRJMVbyQoE00JUK2N08e+a/FjUI8MvDdnDBqbgmH94Z3TQnIhI9WGpTddimsvPi/mWLvR\nM1blDrTaZkQD/IwZM1R/jxgxAhs3bmz1SRMNM9EYo0HeSEPcTA9e2VZrIxQCnM6+Koo7EgEU5fka\nGowFX06dMhZ+sdlo4GV66uvW0SBmRlnPmAE8/7z+PDz7Y8fS4FZTI5eL3bzZuP2ECcAvfkGxdHbO\nJUtonTjLsI9U1MZmI2bhzBlZiGbuXL3YzOLFNBjz7DOdeqOwwqBBdM20+5hNxpKsWRMfMZtIn7Fk\nQEd7FxgJxpiBpyEebQlQpY3TBn4MH5Bt6gfvnBaSC0FJisvgDhg/Y71d9lbb7JRCN9GKxpghJQW4\n5hq1GMrKlTSrM1t66vEACxcKUfugPF8wSAOv8tyTJwM/+xkNdFoBGpbZvWULibs89RTtnzePEtoe\neEDOYOcJ43z5ZXgRGGb/mmuAZ56RBWmuvRb46U/5/rz3Hi1Ve/xx+ZyHDtG2tWv1ojY33kj2jM7N\n+saEaEIhWadeK0STnq7vR3ExzdSvuIJ/LebNAy67TL9PKQgUyTMQyzO2YkUIWVkC174ldBMZohWM\nMUN6agoGdk/Hx1+fRprdBlEESm67Aj8emBP22MPHqzDnrW+i9kN5TkmSVJT8L4f3xddVbsNjLSQe\njhQBj90+PKJnIBIYPWO5zkDihG46IoyEZxjlGQzKmdaMxvb7+RR9pGVAtSEBHu0djnZlNlgJ07Q0\nSjbTUu7/+hdw1VU0kzXK7GZ66h9+SDT50qVkKzXVmNpnWe5HjoTPHO/Viz6iMjPl45g/aWkyhc7K\nrvbtq78f/fqpRW0Y7e1wUF+15778ckoszMyU+xZOiKamBujeXa/Z73aTT7zjIl0hEC8pWt4zdvbs\nSYhi+0lcdgZEQqszvfYRA7JbKqwZUfrRlABV2qhyB1olgKKl9APNQVTUeORSr1HUck+zi+R7jRvf\nnPFYmfYxwpEiYvUdV2Dy8Pj+H+U9Y9Fm4SvRKQd4Jjyj1EUvKqLtqalqOnfGDDnz2ohKD1cGlBcS\n4NHeZrSrWVjB+cMKGpeLBqY//5lo5DNnKBt92TJjPfXiYhpsAwH6sGlqCq+/vm4dZco3NlKcnJc5\n7nars/tXrSJ/6uvpGOW1Z2VZleVfi4qAs2fJ3tat9C8vj9auCwLN1KdOpfu4Zw/F8SdM0Je2PXfO\neBWD2032jO4zk9dduFB9XGWl+jrxqPx4681rn7GjR+sRTSa+BT14ojPeQHMLrV74l/14+fOjLfvu\nGj0QeYO6m1L6kZQA1dLxM/JyohZAMQotjBzSI+L+K+ENhKzyr3GEvzmE+W/sQ0hC3LXm41lmtlOW\nwwgnPKPM0FaWPG2t0A0vC5qEWaRWZc+HE8QpLqYPlaIi+aeR0E1BAQ2YLCuelwmuFcaZOVMWoolU\npIYJvvDEb4zKsjqdfPEYnijPDTfwM+tTUvhCNFofefe5oICWxWlFczIz1aVteSsEon1GLLQP9KIz\n9PfhqgbV4A4AL+842iIe01qhG14m9Au7zmLxpMgFUCLJ2B/aOxN3jR4YsV8W4g9/c+uEkNoSnXIG\nHy4rWUnfa7XcGRWblkYzwLQ0eYA0ouiNQgIZGTLNrCznKgi0jYmp+Hxk75ln5MxsZXv28c/OLSfx\nka3CQjmTXaun3qsXDV65ubJW/NGjeqEYpTBObi7Zf/FFGtAA2f7Jk0R5Z2VBJcDz4YeUEe/364Vx\njLLiMzJker+hgWbtLAQweDDw618Dn30m+2oUWgiFSKRGSenn5KhLzhqtOtCWrxVFubSt0yn7Z/Q8\nhUJW1bhkxfFaL5wpNgSC8izemWLD8Vovvqlq4B6jTXkQBeDP2ytw8/B+GNo7s1U68jYRuCy3Gz5b\nOB7Ha73ISLWhsSmI3UdqWij3nIzUln1lx+p02vKsxOu4CykWW+P247afDMBPL+iFvx6swrt7T8AT\nrc6qBR0cNuCKATm4ekgOTjU04d29lfAEjOMZNlHAx1+djluiXbzRKQd4s6xkQVDT95s2hRdrSUuD\naTa8UUjA4wkiPT1FR70XFdEgqMwEv/12oprfflsvYLNyJYnDPPCAvizr1q1yJvtHH9GAxPo9cSK1\nVfrORGS0gjELFhDNPmIEDeI+n3xdGIX+t7/R9XO79QI8rDSschsTxjHKitfS/IsX03K66moapNk9\nW7CABmEjG42NxGR4PHI4YcMGdXtmzyyUwRO/+fvfKQHOKKs/Pd0qDZusMMt8z0jlV3nUvso9TSE8\nVXoYT5UextihPbDr+1rTjHwzLfoeLge2Ha7Gwjf3IRiSEFAEwkUBSE0R4QuE4LAJ8HNKvN778m48\ndvsVkABVaVhHigi/JTQfF/iDwL+/r8WuitqI2jf6gyh65wAWbf6y3UvD8tApX0tm4jKSpKaQlVru\nRmIt7HcjejZaLfqlSyGOpFAAACAASURBVEm+VakV73bTuXgCNg8/TLHmPXvoOOW5lBT9hx+qqeqZ\nM/V+CQKfqr7hBlnUJTWVGAgt9W+3kz0jG/X1fGGc9HTKcg9H87P2TJxHqcW/bx9fg/6DD8i2x6MO\nJ2j9Z/bMQhk88ZsbbyS1P+3zxMIJFlWfvDATlsnJSIVNVM+SbaKAwpuISk9P1b8aPz1cExF9H4kW\nfUAzgIckwPfDDFw7uDP4m0N4YNM+5G/aC18g1NLOGtzjC97lT7eLcNpF3DV6IJx2ERkO+QORadEn\nI13fKWfwZpnvWvp+61b6D8jaGtHA2m1Ketb4OBu8XjVlDcjCKozi9nopc5wJ2Cjp/tOn6Tx9+1J7\nl4vKpoqiTLH37i2XevX7ZUqb+aGEUblYlg3/4YckYsOy7rXZ5/n5xja0qzUY3e926/Xv09LUFLqy\nvSQBv/kN/bznHtKLz8jQryjYt49YB5uNn5GvbN/QABw4oM7WX7lSH5qYOFG9zeUiP5qajFcUsGcB\niK3ssIX4w0y4Jt1uQ4Nfnm2n2224rB9R6X/eXoGnSg+b2ubRs7ywQKpNwPFaL855AxCjLmWiRkiS\nYIvD0kwL0WHG2PNbSsLeddVglB2rQ9E76ip+oiDgwIlzGHfheQBiKzscL3Ta1w/LSlb+BPhlWc+c\noZ9GpVS1pUgZPcvKvoYr9cpKyM6ZQ+vNS0uJBs/Pl0uZ8kqwFhXR4MJKqubnk02myc7Kt7KSsI2N\n5AvbxyvTalTe9MgRsj92LC0tq60l1mD9erLPbJaUGNs4cUK/zeOhPtTWqn02utZMnKeuTi6Tm59P\nf9fXq20MHEgDsvLcW7dSuGLdOrkULLMxcCBtnzWLMvi1mv2Vlepyt+zeX301cP/9dK95pWorK9Vl\nfFtbdthCYtDD5cDwAdmql6wZfd/D5cDNw8Ov22f0rLLsK89uMAR8WXkO9768Gx5lFZpWIBCU4DOQ\nrrWQOLgcKZj89DZMe3EnJj+9Df7mEIKSJozSRGEUZSnf1pYdjhc6pdCNGcyEa1JS6GWuFUVJTaXY\nsFZ05d13KRadlqa3WVwMbNok4N131eIuV19NA80jj/DFZoJBWbSFLeNStvvtbylOrBVgmTaNPmSU\n++rqKG6vFJ+ZNIkGca2IzAsvAJ9+Sm3HjKHZ79KlZFfrq9MJzJ6t7296Os2S2baiIro2dXV6IRqe\nDaZxf9ll+n7fdpscbtCK2YwfTwyI0tbcufzrNG8eDeCpqXwhnQ8/lMVsiotpIP/sM2Of2XGXX07+\nx0NcCTB/9i2hm9gRTrimu8uBs41+7D1+ruWYsUN74HSDHw672EKxB4KSSrimh8uhs3vvyO544p/H\nLCq9g+LOkf3xpx0VKqGi7d9WY/HkYfjscDWCiip/wRBQ+lUV/nbwNPzNsQssAbG9CzolRW+GcMI1\nWirZ6aR9Snp22za1frn2OJ+PXvJ33030MhOPeeklooEBfta9y0X/2L4hQ+TMd4DOqdzPjt29m8qx\npqXJ7VlinDL8cPIkDTYsGY/59dxzZJ/ZVOrTa0MGzNecHLLhcqkz/pWUOKP7c3P5NrKzKdzgcsm0\nvddLIYdotPFDIWIbmC0msmPUXpJogNZS7oC8WmD1arrvkyfTPfR45NUPrI/KFQusSp/2fMmoJ2+B\nEE64ZtkvL2/JUv/FsN64blgf1Lj9+Pir03p6VpHlfvOIXAzrm4WyY3UY3CMd2788rMuKD4dUG9AU\n22TfQhww9f/rj1+NGoQt+0+pVkaIEDAgJx0v3DUSM1/Zo2JmbIKoW44RibBRItBpKXozGNH3wSDN\nNpU0cF0dDQgA0bPr1tEMt6SEZuOMim1spPaFhXTMa6+RXjyj4UtK6PiaGhpAGQ3P6PtZs2RanO1j\nxzFqv6SEBhrlsaWlNEtk1HBJiZpmPnOGlpDV1MgZ8OwYlkEO0DHaPmlDBkpfz56l35X0/bx5RKOz\nZXtMs97t1tuYO1dmGJShhvXrqb2WvmeZ+EowSn/JEso9YLby82X/te0rK8mHJUvofjPKXXkNlGGE\n9evlv71eYgHmz6d7yz6kzPyzEvCSGzz6nqHwL/txz8t7sGH3cdzz8h4Ubt6PHi4Hrr34PD09G1DT\ns5Of3oaCt/fj9uc/x9OfV6s+BiKBNbgnB9bvOo5HPjioytUA5Pt9rNaDkGbtRVAKqWb1QHhho0Sh\ny1H0ZiD9eD3NOn48zdiuuQYYPpyvX37llSTvymh1HrXN6O/UVDkLXbnv+uvpY4O37+qryf6UKWoq\nOD9fzrrnaaYXFwNffEEz54cfpsH+3nvJ50OHzPXp582j9lp6/dAhovp5eu2HDql18MePp0Q0tpJA\nSbnz9OOnTSPt+lmzgK++kqnwiRNJg//rryOj9Hn6+kVFNOP+5huZcmfnmTOHHzaZNo3yG9jfd9xB\n7ZjG/6ZNZPumm/T6+bHo1VsUvRpt/S44XNWA+Zv2qbbtPX4Oky/vi/7d0zGwezpKv6pCUMG6B0MS\nSr86jb8dPAV/s9SSjW3JwnZsHK/zcbcHGVU/aRi2f1vdEpJ57Pbh+MWw3q2qW8CDRdFzEGm5WECt\nTa+kuAFZDAUgWjonxzyDnAmqKIVVtCVJw2XrG1HLGzYAPXqo9xsJuDCa2emkjw9l3wYO1Ge0MxsL\nFsh67z4f+fTcczLt/f33sq5/ejqfemc6+CyrP5pytIMHU3b93XfLdHlDA/lx+jSxA3360LmefZbi\n8kbXzOVSZ82/9x7dh2XLiHFhKxHYSgGtjV696Fz/+pcccmDPQq9eJPizY4d8DZXhECuLPnkQbTbz\n4aoGvPDpd9x92w5XY2jvTNw8IhfZ6XbMfPXf8Cim2zZRACQBQGRTcJtgfQB0ZNhFEZfldsN7c8bo\nahpEWrcgkeiUrx+m6x5JRnMwqM7w1lLcyox5wDhjnmVxM0EV9pOJ5yjpb6MsdI+Hn/muFGTRZp+z\nsrHa9idP0oCmDDkwuv/CC9VhCEZnK/XeWahBmcl+6hTR+//zP0Sj19Tw6fuqKrn9a6/x6XIjSptd\nt++/J3tHjlA44cQJmvH/8pf0wTJlCtHzFRXyMVpblZXU7sorKXQwdizZ3LRJvxJB66NSJIj1/7rr\n6DjtPhbKAfihHwvth2izmQv/sh8THv8EG3Yf5+5f+UF5i41L+3VDSEPVB0MSmoKR8+vW4N6xEQiF\n8GXlOUx+ehuWvnsQk5/e1vJ8mIV/2gqd8hUUqa47a6sVbVm+nGZ6PEETnogOyyBXCqwwLfOZM/XC\nNUy3XWtj587wWvGiqBZw4WnRFxVRuxtv1PdtyRLqh1bQZcoUdXutoI5SlKewkAbMpiZjgR9le9Ll\nV/uYlqYXv2ECN+xnURFdT6P2xcXUjifKs3w5yemybUqN/Ouv5wv1KH3kiQQVFNDqAt4+S/Am+RCJ\nprsSPH16LZqCUosNnpBO4U3DEtEVC0mIVBuweNIwLH//YEz1CxKJTknRh9OiV8JI45xlsGsFTXhZ\n+E4nDTCMDj59mgbLPn30WvcAUdDTp6t12DMyaJDQar9rteWdTqKm2bmUWvSMJn/2WaKhWV+0feMJ\n0mjDA0bUP9vObPDa9Omjb6/U5a+ooHwCZT8ZzX3nneTLjTfSdV66lN/e6yWGYvx4+ZoXFpIg0JEj\nwJNPUp4AT/THSFteqY1v1DdeKVm2z8qYTy5EUi5WibJjdVw7KSKgXOGmtKHNxD9e60WaPUWVlJVq\no8xqr7VMLmlgEwVdIpwRHDYR/qD+3j184yW4LLdbq0oBtxU65QBvpEXv8cgvezYwG7Vl9K5yGyv1\nqiztmZZGdtlAVFhI22fOpMGXUepa+ydOUPlSgKjxyZMpnssU1xi0a6g9Hkrm6tlTtn/ttWpf8/LI\njs3GP7fPR3FzlmswYgTR6pmZwPbt1A9G/WuPZXT4iRPGpWcrKvTta2r0fdm6lXTnn3yS/hYE8hkg\nedhAgARmlParq2kmn55O+v3smivLzSqvxYAB8rK9lSvpY8Ds+WCrCh56yLgN+51X64BXCthC+4An\nOtMUDOGcN9AyA1fG5wf3SOfaESBAqVKvzYhWlvesbWyCv1lN0dM4Yg3uyQRRiDRLAghJ/Ht3Wb9u\npoJJyYBOmUXPE7NZvJgKuVx4IcXAN26kmebevVS1TCva4nAABw+aZ0SzWP/ChXTMt98SjTtqFA34\nTCTHTBRm2jSKezMbDgdl2i9fTn+zTPfaWhr0brqJZrYPPUT79+0j/y+/HPj4Y7K/ejUNvm+8QVKv\n33yjziR//HEqHDN/Ptm8/35iDpjNb78FfvELfdb64sV03OzZ9GHz/vt8+y+8QHZZe6YCp7TPzj13\nLg2MrP/79pEddq8mTVKLDK1cSb4WFOhtzZ5NA+yXX9Jqh9mz5eu4fz9dpy1bKL4/Y4b+npw7R8/N\n1VfT4M17LrZupX3aexpLxny0z76VRR8ZtGI2EiSEJAl/PVCFF7Z9h9P1Psx/Yy82f3ECz/3zMN78\nolIzlNNy5hRRQFACnHYRKTbBMCN6c1klpv95FwRBQHOIJGWlH46XIEAU2GAvo5vThu7pdrj91rq4\ntoQUweRdFKgSoCBoP/EoOXLz3hO4uE8mfh7HjHkeYnkXCJIUSVejx549e5CXlxeTjfLyclxyySWt\nOjYUkmlfZenSt9+mpV35+XLlNWXmuMdD1O/+/XLmO8uw1yZNMSla5UyO2Vdu++//lqnnigqKG//m\nN3LS3/z5cvsNG9QV4QCama5ZIz+UyvZsP8sEr6igDO8HHpAr5E2fTrR2ZSXF+Bndn5dH5/L5aBas\ntfn44+QjmwGzLHql/0qdeo9HLreqbO9y8e0/9hj9znxV7mP3Z/Vq2paeTomDWVl0v7TtS0roo+3G\nG6k/ffro7w2zC1AfGL3P7sn48WRn0SJiV3jPxapV8j2dOlUW+Il3xrzZsx+P/1ttifZ+F9S4/Thw\ngqRi/RHKvNpESlBSVmBNtQn44HdjW7Kktee45tHSloIxPNhtgq7IDACkCIClPpucSLUJaDLJhHTa\nRXy2cDwAJCxjPpZ3Qaei6LVL49LTKcs5GKSBbsMGuS76oEFyHHXVKrloyfbt8kucxd63b5fpfaZu\n5/fzY/3K5V/a5XFsgP7+e7kevDYHwEg5joUCjHIGWOihd29qO3cu0L+/7LMkEaWtTPBlRWaMYtJO\nJ13TwkJKumNx+u+/J6bB56MZazBI7ZqaaDv7cBFFUqszWlpotixw0CC6T+zjYuNGui87dxoXyxk/\nnmLw7B4Z5RAAlAfx/PPyPptNXprHliSuW8d/Ltg1iNds3UJioKTfu6WlItVmg7+5OfyBAFJEEaIA\nFf3qSLHhq1P1uuVQTN0uRTR/IEIGMd/ETLEsxAVhbg6LtycLJa9Fp8mi5y2NY8vRlEvV2HIxI6Uz\nbcGUGTP0hVLq6oDPP6dkLiPFNd7yOLbMbNYsuShMQ4PahpFyXFUVtTdaYldZKfvndlOM3mwZmPI4\nnnIc21dXJ8+mmT9smZxyCVlNDQ2ESgW/wkL6EDJa+ldZyS86w645u1/5+RTGWLCA/DEq7KNUoTt7\nlt9fo2V12nMql0tqnwvtMjmrsEzyQbs87svKc7pYqRn8zSF4NbNxt78Zc9aXYcGmfZjw+Cco3Ly/\n5TxF7xwIS7MbTQQtcj550RTmkWHL5JKhsAwPnSYG7/HQQMAraDJihF5x7auv9EpnS5ZEVrSkvJyK\nvjz9NA0myhj0xInAuHH0u/acTKlt5UqK9a5aBZx3nqwsd/o0xX15ynHjxslZ6LwiLUqFtltu0dtg\nynTK/rIlgJWVxkVU3nuP4vF/+INs6+uvZeU+7TZlIR2m6nfwoP46MfupqfpY99y5FK/X+j97Nt2f\nq65SF9BhVfcee8z8/hYXUwz+H//QF+HhnZMVp7n+emISmK2SEr16YCyFZaJ99q0YvDlq3H5MfeFz\ng+IgZ8BJiIZNAFJsgi5Gboa9x8+htJxU63jUu4XOg/RUETZRwK+vHICvqxpa4u3KZXLxKCzDQ8Jj\n8M8//zxKS0sRCAQwdepUjBo1Cg8++CAEQcAFF1yAoqIiiJoAZFvH3UIhmY5nYNSqIPD3KVXIGKV/\n8iRRy7170+w6M1N/7FNPAVdcwY87b9lC8fvly43P6XbLBVacTmoTCMg0O6PElRT90qU0gLI+ud1y\nLflHHiGVNYadO2m2bdRfRntv2aKmoFmRGWXOAjtu1Ci9rSNH9O38fsBupxk1K2ajLJbDwhUOB7ES\nokgfOUzhz+iaM/terxweUBa1uf12uj48H9lyw6oq9X3zekkZMNw5JUkORzidtM+obbzi8MkYg2/N\neyBe/kbzLth7rA7TXtypWqqW6UjBqzOuxDlvk059zpEiYvUdwwEA8zfu5S6JMoIIdX68NhnLQufA\n78YPbakHH2gOoqLGgxEDsnHinFf3PLFnbfiA7LicO5Z3QdjX0c6dO/HFF19g/fr1eOWVV3Dq1Ck8\n8sgjuP/++/Haa69BkiR89NFHrfc+TjBSmPP5jPe53fp658uW0QudqbFp6eunntIrwdXVyWvRx4yh\ndka0dGOjusBKYyMNMMyestiMkqI/fVq2ceIEzRZHjSKteFbPnsFIJa6yUl0MZswYmYI+dUpdfEVZ\n79zt1ttiynpKGptR7mfOqIvs3HcfHTdlilyo5ppr5GtdVETnuO8+uQiOkdIfCwEo67yPHUv9MvKR\nfWQMHqy+b34/MQnXXWceRmAhloYG8t2obWcWuuko7wHAvNY7T33O3xzC71//AnM3lkU1uAP6xW/W\n4N45werBT/k/O3D785+j4O39uP7JTzD9T7tUgzuQXMvkwg7w27Ztw4UXXojZs2dj5syZ+NnPfoYD\nBw5g1A9TunHjxmH79u0JdzQceApzK1fSdt6+FSsokWr8eL3SnFKNbcMGtercFVfoVdCWLqUZN1Nv\nmzmTsr2XL9crr73+uvrY+nq1PZvNWB2O2VAqtO3erVfFy8rSb2OUOM9Xpnz3wQd8hT1JMlbWYzaY\nfY9HDg/wlAGLiqid9tqFQrIaHU+Zjin9Gd0vu52visfU8Hjqc0q/eNdM62thIQ3iPLVB9qx1VnSU\n9wAArsJcyW1XtKxXL7ntCjhS1K++oISE0uxWPmbHxZ0j+2PN3w/BFwi1rJLwByU0h9QCSACxQexZ\nSwaEpegXLVqEEydOYO3atTh+/Djuu+8+NDY2Ytu2bQCAHTt24M0338QqZYoxiDpIZ5xzK+Hz+eBk\nnGgE6NmzN5zOHGRksPrdITidYgsNz2hdj0eA00kD0UMP8Wnp7dtlSvyzz+RjeZS4tr0RVT14MA0a\nd9+tLqLC6PSJE82pfdYPv58GXeZ3t270O6tFz5avmVHuzB9WhIVR3K++qs6+FwQ1Je52UzihWze5\nb8rliEOGmNPrymunXMLHlOlGjpSV6UIhdVY8u1+MylcWv1m2TKbjmT/K8AkLwWhDBqx9XR0traN+\nSj/4KhjeZ/UKCQlnz56A262hEWKA2bPv8XjanKJv7XsAaJ93AQAcrWvC19U+9Mu0I8UmoLfLDgCo\ncgdw4JQX6/5d2yZa8DaB/oVL2LKQXLAJwPSfdMelfZx4+K8n4QmYPywOG7D42t7Iy42v2lUs74Kw\nWQDZ2dk4//zzkZqaivPPPx8OhwOnTp1q2d/Y2IisrCzusa1dt8oQbQy+tpYyrcvKiDJdtswGr5fW\npt9wAw2ebF9xMSVWzZsnb1u8mGxVV8tqbDNm0Mu/oEBux5K6lDS2Ur3N4yEKWGl33TqSop01i2aS\nbN+KFXSOigqiqBn9q1VJa2xU923VKrL129/SYDt/Ps1ur7tO9nXTJv2afEa5l5So+3P6NNln2fds\n38qVxDIsWaK8rvprwmbMU6bw/T9yhH5n4QS2ykB5T4qKgGeeUa/TZxn8LHtfe7/YqgSPh36/5Ra1\nXzz/i4vpI0W7rbGRzldWJmDTJn3oQ5lNv3WrrJ63Zo2AAQNyAeRG9KxGgnBxt7ZGLO8BoG3fBQBl\n0S/8gMq9+gIhOGwCgpIEQRAgSZJu5pVIBCWrqExHRFACXthzFneOzEUoguwKQRRxw1WXt/k6eDOE\npejz8vLw6aefQpIkVFVVwev1YvTo0di5cycA4JNPPsHIkSNb4XZ8wSswwyhVHq1bUECDgpayZZQ1\nK3IyZQqfkp85U03lsvZFRfpiLsyuJOlpYiatyorS8OhfHrXPCtYoQwbaIipr1/Kp7g0b+CEAXnEa\nHuXOriuvEI02pKG8PqWl8r7p0/lUu/K6KkMBLHeAd86lS4nV4N0rnv9er35bQQGdw+zaLVtGzEBX\nouYZOsp7AFAXmdFSqoFg2w7uFjo+Nu6uxLwJF8JpF+G005DpsAlIEUm8SBsGSiaEncFfe+212LVr\nF26//XZIkoTCwkL0798fixcvxpo1a3D++edjIqut2k5glDRPIMasKAqv6EpuLs3kli6VaV2j+uyM\nuhdFevmzjO7bblP7sXs31Q5XCuNoRXCYQI6y2Azb53RSjPijj4gS9/upHcv+f+45fV13Zr9PH1nl\n7uxZEp158UV9f/r2pd+117BvX/Prqu3H5MnUV3ZOn4/aLVsmU+2sAAyrT89m7Oy6shCCssiOUf34\nIUPIv5wc/n3mHWdkS/k8bN1KH0/MV4+HQi4pKfK2rlTzvSO8B4DIRWfigRSRJGktJB/ifW+6Z6Ti\n1emj8Mk31Rjevxt6ZjpbEunau+a7GSJaqJfP9D0VePXVV+PuTGvAqPlQSE9/FxXRoFZfb1zwRQlG\nhb/+ukzp5+cbF6NJS6N1z1pKu65OpsBnzCDaeN482VbPnnp6uriY2j7/vJr+feQRGkCuu46OZzS8\nUdhBSfcr961YAfzlL3S8EYXep4/+GrJQxsMP66+rEc1eWEj0dnExDYpEe8vXQkvtA3LRG0bla+V6\n2coA3n2YNYs+JHjFb3jHGdmqrpb/njiRsvOV97a4mD4kmAJfRyws85e//MVw33/8x3+YHpvM7wHg\nB1r+zX2wCQIaNZnNiYA1uCcv4n1vPv3mDBZsOtny912jB2LZLy8HgKQc2Bk6/NyDUfNGtcmdTrnG\nuFENdy0VrqT0163j12dfu5YGKkBPCStpYlYPXWmLVyOe1WTXUttsnbyWhjcKOyjpfl4ogHctGBXO\nquKFC2Ww68o7jzJLX0t7K68FL5PdrL57err5yoBQiD62eMdp68jzVjgUFRE7Eq4efEdfCvftt9+2\n/Hvqqadafv/uu+/a27WYoKTljQZ3m0CUqgUL0eDm4X2xee9J1baXdxzF4aqGdvIocnQ4LXqt3jzT\nHO/Tx7h+99Sp1F5Jt6alqWu4V1SQbjqr1c5sMYpYWctcWSPe5aLZnhGVrNWWP3uWxFWMtNlZvXOW\nJe7303mefZbOnZlJ9oYMMbbhchnv+81vKCueXQtGhQPGfvFCGWlplGH/3HNq0Ryl3juj3FnfBcGY\nZl+9mq7vnXdSH+vqSJnO5VKL2Rjdh/R0ynF49ln5ntbVEYOQkyOHDNgz8+GHcu13Zv+OO2iby2Xs\nKy8ZXPtMJjNtP3/+/Jbfy8rKVH93RDC9+XPegK4utxJMzCYrzY6Zr+yBJyB/BPCqvFnonBjzox4Y\nOTgHT310OGwBX4dNxOo7h+P7mkYAJ3X7y47VGRYeShbaPklfQ3zw9OaZxjqrX67EiBGyiE1tLYna\nFBbSrLKxkWjkKVNo2dOUKdRWWcOcYetWcxEYJvYC6EVmtNryixaZa7+vW0c28vNJDIb1sahIrvw2\na5a5MIuRUAzTli8qkvXaS0tpvzKDX3ucNpTBwhBKsRmmFa9dUcAy9q++2tj+kSNki8nAVlVRP5kg\nEBOz8fnIZ6P7UFtLRWqmTJETAZWiQrW1dK6mJrLHxHiU9nfvpnZGvrJ68AxGz2RH0KUXOni1HKXe\n/L0v74Y3YFxIxt8cwvw3ynCs1oOmoHqGbw3uXQfbvq3B59/VRPQBLojAJ9+cwWN/PcTdP4KjVKet\ngdDeuvQdSouepzfPNNYliV7SWo1yUaTZW3k56cD/+Mc0QI0fT/+UGuiTJ5ONDz/U1zln9dF59cH/\n/GdgzhwaPCZPJt34r74y1pZ3OmmQYm2UNeIvv1yvYX/oENl/6imaxS5Zwtd3X7aMZv3vvaf3n9HZ\nW7bItti1u+wyOifPJqtRf/CgvG36dKrfztOKv/pquR58cTEt1Xv3XWpXV6fXgF+8mNp/+iltnzeP\n7vWyZfprcM01tIyO5+PWrcAf/yjr7c+ZI2viK32cMoWWyC1apLd/3XXAgAHUN6NrkZmpnp0bPZOx\n6tK3hRb922+/jVtuuSVmO+GQiHeBVm8+GJJgEwXYbQKcKTauaE0wBHx2uBqSJFmDehfG8TofIBkv\nestItcEmCpg34UKs/YQfurpr9EDcljdAtY1XAyEeuvSxvAs6FEXPK8/KaPiMDOCNN/i060cf0e9K\n6rhbNxp8lNQtE3KZPJlocCWlLwhE4bNtWi33wYPlfTYbFWJh2gS8LPScHH2m/KZN5K+y/alTsl47\ny6Jn2efPPae24XDQ4PWrX5EfjM5mfcvPp+swZIhsn2Xwjx9P8f2MDHW/WT145TajlQUuF2WZsxUF\nGf+PvW8Pj6q62n9nJpNMrlwSQAgKeK9YQOEDkYsaLKCitYoiVeuj1a+Ktj8FjBcMCYGABtDW+nmp\nFr5aW0TBK16ogla5FIVPQCGI1EAhISEhCcncJzPz+2Oxsvc5Z5+ZCSFkArOeh4fknH32Xnufk7PP\nfte735WuZf83NdEEqK+/uJg+GpYuJUif69PXn5NDE/lPfyruM4db/uu/aGKX/Y8EsfMYAtpdABzy\nCQaN7Tgc9By4XMYQkb6deN06N3369Ja94Hv27NFA9IsXL+5Az1pnB+o9BkjekWTD/9x6EQ41+lD0\nvjq7m81qgc1iQ3MokcPtVDab1aJM35uWbMWvRw/AdYP7YOv+BuW1918+AA9PvACAFo5XPZOcTraj\noPpOBdGbacp742AfjAAAIABJREFUPBSrVsGurCk/bhzpvDP8vncvwdNNTSIVK2vR2+0E38u65UeO\n0Mp5xgyadEtLRX5ws5Sys2dTGlWVtjyHB6ZNo8mkspL8YQieyxcX00rw0KHY9N0ffJD6VFhIOvWy\nXzwOPp82ja3TScffeEOr8z5jBvnjcmmPqVK8Mnz90EOiLZdLsP/5WE6ONlTy8MPacTl82DyEUVlJ\noZDRo8nXykryR76e0/BGClPwGD7wAPkrjwWHfLgd9p37bRYiUj2T8Wi33HILpkyZgltuuQW///3v\nMWXKlJZ/ncn6dkuFt1k7SXubgxjYpwuuOL8nXCapWz3+IILhThA/SVi7WtAEwnH7Q1iyvhyTnluH\nOpdfWeaVdfvw3tYKY0riSmNK4o7Wpe9UE7zVamRJMwwfDJpruDMDOilJMLSZTW61Gq9TCaHI7HC9\nIMstt5jr05ux+1lbnjXxWeAmFDKWP1Z9d4vF6NesWbTKV+nhq5j5BQVaJvyWLaQJr9KsByLr7HP7\neXnkn2pc/H61WA6HMJi5b6ZJ73Sa737Qj1NRkVGwZ9Ysup+qHQJHjhjFlLh8ZxG/ycjIwPDhww3/\nGvXZejqB6VW2+ffyGqcp/BoGMONn58FhtyKpU739EnY8zRpBJ8HpC8IbCOHpT3fj5mFGdUpfcwgP\nr9iG/BW0a6PJ1wxvIIS5q3ai4JoLlDkQOso6FUSfkkKxWhUMD6ih0tNOo5/z8oQgjdsN3H47Tfg+\nn2CoM2Tbvbv22OrVana4rA+vartfP2rTzC+GkqdOpcnBbqfyetZ9erpWzIZhfmafp6aSRvvcubSi\ntNvFXm0zKJ1hc6eTEIL/+R9aratY8XKIZ8IE8ouZ6Qy1Oxw0lpF2FHD78jiqxoV3MvCOAjmlb9eu\nog4zGB8QPsh1OBxUL5832yHAIZ9YBXLS0ykc0hlY9E8++SReffVVAMCdd96JpUuXAgBeffVVXHnl\nlR3pWqvsQL0HqfYkTUrYVHsSDtR78MUPtRGuBL7aW4cnrjofh5x+9MxIxreVjXh/WyXcgcTK/mSy\nSOKy+vk9JckKqwXwBLTw+q0j+mPsOT0x881t8EoSiDaL1ZBByG614sLcLlj/SF7csOg71QQvw/Cy\nsAoru6nES/buJXb3uHFa0ZLSUprcZNGVoiKaHKPp0zPUO3myUaSGjWF7r9foF5+T22ZRGL9fLdjz\n/PME68v6614vwd0seNOjBx1nUZoVK9RjwsQwrn/xYuNY8Ir8s88Ei14lbFNSQqI7r7xiFK4xE5TZ\nu5cmW9U53g3hcpGfdXVGv1jMR3V9k7Q1dfVq+hC4/noi1anuqUrsiOH1WAVyPB4hehPv4jfyqre5\nuVl5vDNY326pcPm1rHmXvxl9u6Vi7Dk5eHbtHtNrPy07hE/LDrX8brMktOJPRot0S/2KGx7QpQr2\nNgfRt1sqQey6yTwYDgFh7UGG4zlrYTxYnK4z1GYGwweD5vD90qVqjXUVfKyCbFX69HqoVyVSM2UK\nTSoqbXkVpM+iMGaQvpzilfXXm5q0ULUe9jbTot+0SVt/KKT25+qrtYJAKv14htxVoYPUVKPIDIvZ\nmN2v5GSRonbAALVfZoI9fL3qPqjuqUrsiEM+qhTDXbqYpyTuLCZvjTP7uTNYvctvYMKHwnS8a1rr\nti8kJvdT21KSLJh97QWG4/zRq0o/vHDyYCycrE5JHE/WqVbw0ZjRssiJyyXi616vEXLv0yeyxrpc\nf24u1VFcLFKeMgQs+yBD1rI4zbp1Wra7GaTPbav8kmFthqdzcugf16UX1dm7l/7p/briCoLoOd2q\nmTBOejqNodw3M6GaTZu0oYP8fNpJAGhh8u3b6YOgVy8i2slCQ88/T2P85puRwy4ZGVSHHObgdLMs\nVsPM90i5BMJho9jR88/TM+N2a3dNcJjAYuk8cLzKwuEwAoEAwuGw4efOZGYM53V7ak3JUQlLmN6S\nbRbMuXYgftKniyHkk5xkw47KI+jTJRX+5hD+Z+pFqHcHMOT0ri0CN6POzokbOF5lnWqCZ/a2HiJ1\nuYi1zsz0mTNJeEWl187wbGOjuXa9bEOGUL3BoPiA0KcRZeEXfUpZGVZ/4QWChJ94giYOM238tDS1\nX4cOiXIMT1dWavXXWVRHryW/bJmA0FVw/9SpsYURFi4014PncEVhITHhZVJ2bS2NW3IyaQZs2UIf\nIXy/2IYOpWvXrgWuuUbUr9LNZ8SE08kWFwuxGjn8sGiRuo6aGhprvQ+/+Q09AzKkX1ICbNtGP3fr\n1nngeJVVVFRg4sSJAGiy5wQxnW0FrxIZAYD5H5Yl5GgTFrP5g2E8+vZ3uHlYroEB7/YHcceSrzVQ\nv80C2JNotX7dkNy4guNV1onWHkSKU7GrX39dC4VfdZU5K5zhWbvdXLteD9kys/3OO4EPPzT6MGKE\nOYtebpPFZjjVq4olnpwcmXXPk3JJCe0xl6FqFQNfD6Gr4P5g0OiPKoywfDmx/iMx0+fMMaZUZa17\nOWSg0psvLBSa8+XlkcMu8ljI98jv1/qsGmsurzqngvRnzQKGDSNuQ7xuf4vV1q5dizVr1mDNmjVY\nu3Zty781a9Z0tGutsm7pyfqwKAB6Ybv8CbJcwlpnnBI2Rbe1Qo9rBcOANxBC/srtOOz0nTgHj9Es\n4XbC5rZs2YKhQ4fGXF6l5/3999pE96EQwbcTJwoWfUYG7WEOBkXq0gEDCP597DGhW87QvM1G7HeA\n9jLLqpU2G7BhAxHOZJb+5MniGKcNDQRoMvJ6CepVtbNhA03+3OYbbwDffks+9utH18qpSG02mtRU\nfsmMfZeL2u/SRVtHaqoYC32fRoww/s4/A0TIk8c1M1Ptx/r1BOsPGCDCFR9/TOfl8Vf56nJpxWk8\nHvqXnU0T+tKltBIPh4k46XDQfbzzTq3oT69eQkhn3z66bs4c6rvcV9lnblu+p1yewybl5eS72fiP\nHEn/W63a59XnEymLjxdsX1amffZla+3flmzNzc14++23cdNNN2HGjBmoqamBxWLBU089hdN4y8lx\ntmPxV6/nrR+PbfsbcNsrmzSQqt5sVlKvS1jCYrFFkwehZ5bDkKtAZZkpSXjt7hEYfBRJkp9X4Pim\nkG3LuyAuIHrW85ZTks6fD2RkZGnKeTy0Ylu4UBx7+20BwXKa1S++IKjajA3vdNKeZhUsrYdni4up\nvCrlKbPWZUg8Euv+yiuByy4jGdQuXdQserPUtuXlBEWXlJAaXJ8+xrCAis0va8Prf+efk5Mjj6t8\n7b595AdD7hyuUDHsCwpou9111xl95XPXXENCQwy5O500GScn02SsgvGLiwWEz8fksIVsd9+tDp8c\nOiQY8BkZ1Cb3y4ydz+VTU8XzqnoG5s8nKD8eY/OlpaWwHnWssrISJSUl2LRpE5577jnMmzevg70j\n47SvdqsVgVAIpTcOwjm692TfbqkGSFVvick9Ya2xIad3Rbf0ZIQi8u/JZAEb+Xn1BJphsRyVSz76\n7F43xLiX/kRZXLyCOOWrDIs+/jiQmanV31Uxm7Oy6IUvH1NB1QyT64VlosGzrLjGx+SUpyqxFhXr\nnqF5FtAZNkzNDrdY1H4xxM3leIWsqkMvusKs9UgQt2oMMzLU6Vk5JKCH3FUMew4BcOIX1Tk5/FBS\nQiGQoiIhY6uC6OW0rrJfxcXG8ICZCJHVSu0xA56fLbPUwps3C8a8/LyqnoF4hvJ37dqFRx99FACQ\nlJSEM888E1OnTkVZWVkHe0Ymp31lAZH8ldvR4NWuqJjZrIdU9dbJqAUJ6yD71cgzcHavTANjXr9f\n3maBhjGvf16bQ0AgGNY8ux0J5cfFCt6MVZ6VZdccs1pp5avXj7daibGdkiKOqZjozJx+5RUBwcoM\nbzPGtcyslwVWzMRWcnMJtpU12fPzaWLKy6P/5esY2uZ0senpggnO6VyZtb91K0HXubnmOwpkvfwd\nO6jNu+4iKBoQYj8OBxHsHA5avefnU+iA4WyPx8giz8vT+iOzys1EbcwEZficzIa/6iqqk8uvWKEW\nNtKL4Nx6q1Y3PzU1DI/HYnpPe/SgZ0HWlnc4KCFRcrJRxOeSSwT0LvfV7BmI161zIWnVK+vQZ7Ay\nUgebmZ53tTNgKHvdkFz8WOOMmPozyWJBQIpCpiRZ0RwMJbbGnQKWnW7H2T3TsalcveMCEGmEJw2m\nF85hpw/9stOx6oHRcPlpH3y9y4+t+xvQPzsN9iSbBnpXPa+yJbToYa4x39io/aNubia4ddkykQZ2\n5EhizbvdBO9yWlCV/vvhw9pUsKtX06r9vvvoJW+mXy7DvvL1+rSyXJ7TslZVCX33/Hw6Nm6cNhUp\nQ9ulpUKvna/jdK7yljxm7KvSmeo18fPzgTPOoNU2a96zjjpr6i9bRvX160fl2FfWWm9sFFr9Hg/5\nKftTU0Pjzql29WNhBp3zOZXP48ZRnYcOqfMLuN3C1xkzaFUvp6/lZ8DnM0/76vHQ5K7XlufEQhkZ\nNJlzAh3eMghon1ezZyBeV/DhcBhOpxMAMOSo406nM262yamg90AohF4ZdkPZ8c98jt9Hyesd0G2W\n9zUnJvdTxQ67AhEnd4D+1keelQ1Am+p10nPrsO+wC9kZKTi7VyYmDzsdwwZkY/DpXTWTdbRQUUdr\n0cdFutikJEqUIqdinT8fcLmq0KWLiMO73ZTK87bb1KlAx48HnnySVqsMy8rpQEePBv70J2Ma0MJC\nqv+ll4zniooIGWDfunWjtKhlZVSnPv1pSQmt+EIhulb29c47gUcf1aYiVaU1/eEHum7uXEqG8t13\nxlStqnSmDz1E9evrmj6dPiTk1K2qdsxS1Y4dS6v0KVPUKXkB+kO57DJjKthPPqGQRXKy9v7yuVtu\nMfpcVkaEv+ZmY6pd9mfIEBESKCmh50VbhwUjR1IYQT9O8+cLhOJYUr3Kz6vqGeD62wIPt1e6WIfD\ngcWLF+P8889HamoqfvzxRxQUFODWW2/FWWeddewOR7DW+JuWnIQzuqfhs+8PIdVug9UKlN44CLmO\ngGY81uyswtIN+9rF34Sd/JaeQilhS28chIvO6HbMqV71z2soHILNakF6clLLs3vRGd3a5GunTxdr\ntapFRQ4dagQgCAoMt5rBoqyxrtIR37oV6N2bJoWDB2ni6NWLVu1ffkkpYufOpZUgp1nduxd47jm6\nXq9pzr5WV1OMuXdvLTu8SxfhK4cLWFBGHx4wE49h/XlOPSvr3rcmxCCHJvTneCwzMoyCNxw66N2b\nxjUjg1bNRUXUJ5nB73AAK1ca07j+8pd0f+1247mpUyOLF5mdy86mMeZn3ux56NNHq0nPQkOcQjc1\nVR3KiQavW630ocehCZ+v84jfXHPNNcjIyMDixYtRUVGB3r1749prr0V5eXlHu9Zi1w3JxQW9s7B1\nf0OLqEhZmTYZzj92VneQdwnr7JaebMOcawdiyOld4fIHsae6CVv3NyBJF3CPFV6/bkiuRvAGOL4s\n+rZYXLyGQiEjxNrQYGTRs9CNGSxaXk4vcrMUnpwqlLdiVVcT1DtmDK1yZ8+mCaCujiDtKVMEM591\n0WfMoNXbjBn0+z//SfVxStVLL6X/XS5qk8VnSksFExsQ4YGamshpTeXUsww9c99Wr9ZC1WYweU2N\n+Zjx8YoK7fWq0MHBg0SCs1qNKWRdLlLIk9OrVlfTKra2llCP0lJtild5nPR+ud3m8Hp5Od2vadPI\nT7O+cViAx5rT6nJqWI9HHcrxxcCJsVoFbJ+aKn6Wofx4tcsuuwwvv/wynnzySWRnZ2PhwoWoqqrq\naLda7N2tFZj03DrMeX8nJj23Du9trTCUGX9Brw7wLGEngwXDYfiaQ5j03DpM+dNGXPnMF3j8re1w\n6lIMewLNMcPr2RkpLfC9/HNHW1xA9Jz8RA+VXnONAw6HraWc1UqT60cfAb/+tRZ2LSgAXn6ZVuNl\nZfQCl6HtwkJaEf/wgxbqHTrUCPWq4O8pUwga1/t4//3A5Zcb4W+Hg84BAmbu2RO45x4tVH3ddUTg\n0sPeel8feAB49llj30pLhf+33mqEySOFHxgmv/9+IffLEHyk0MG8ebTX/JlnxLlf/EKwyWU4ffx4\num9jxlCb+hAAj5M8JiUlFBZ5+mm1z3yfd++msXjlFSNMrg+tqMb1ppvUIYDx4yND9CfC2gui9/v9\neO+99zB79mxs3LgRlZWVWLVqFcaNG9cWdyNaa/w1g0onnpOJ03v3bCl3Zo8MfPRtJQ67jOS7hJ16\nZkXk5DJsKUlWzL72Asz9YCe8AXq+AHU+ApvVgrvHnBkRoj8R1u4Q/fXXX4/MTNLe7du3L6ZMmYKS\nkhLYbDaMHj0aDzzwwDG4LSxWFn1SEkH5zPyW2eIffaRlmutTeMr68TNnElub4eK8PHrJM5x+550E\n75aWUj3NzfRPlUo1PZ22U911F9XDKWfz8ijtrAwlL1pE/8tQtcMhJHBl8Ri91r2sRZ+ert1J8MIL\ntKrt0YMmLFlbncMPvJ9fzw6/+WZipt94I41vSorwzyx0wOGN5cuja/unpdH4sCiPKu2tPvXs9u30\n0bN6NfECIu0oyM2lvvn9xr5VVwtfVeMq6/jLfWSBnlihdpVIU7yu4vPy8jBp0iQsXLgQ/fv3x913\n3w2HwxHTte39HgBax6Jf/dDleOf/9mPVt1VIt1vxwXdVaI7EuEvYSWnpKQS5d0uzY9uBIxh7Tg7W\n7anFH9fu0UzcxJgfhNO7p0dkvrPZbVbsqDyCsef2jFhOb3qRpo60qBO87yhe+de//rXl2M9//nP8\n8Y9/xOmnn47//u//xo4dOzBw4MBjdoJZyXpxkcbGALp2FUupUIgEat56S60x/+239AJnfXqvl8oH\ng0KQhXXqZb1yzl6m0nJfuJAmD1Uq1aYmo147p5zVC6uEw+TbokWUgnXhQlp1lpaSb19/TZOgx2PU\nuteL0zidNJHqx2DePGLDszDMhAm0Op4+XS3IUlJCY9TYaBSDiaQ7b7NRyID17AER1tBr6Hs89HHk\nchmFbuS0t3Iq38JCOjZhAhEj8/OF5rzKn5deUgsOyUI6zc3GcTVL/8qiQrEI1piJNMWr0M2vfvUr\nrFq1ChUVFZg8eXLM7PkT8R4AWseif3drBR59+zs0B0OJif0UtmCIIPf7l30Du9WK5z7bY8g0CNAO\nihlvbsPsSQOjiiQBpEV/z6ubsXDy4JjFalQiTR0pdBMVot+xYwc++ugjfPbZZ1i5ciX69u2LTz/9\nFPfffz8sFgvq6+uxb98+XHzxxZrr2otFn5+vZtEzI728XEyofj+t7mTIfdo0krBVQe28d10+d8cd\napb3/ffT6lJ/bvduiufK8DVDyStWCJh65UqC9Bm2P/98I8NehpZffpk+APjavDzjGOzapWXdy/C9\nmmkO/PznwIUXGvuhgs5ZsOejj0TIgFn6mZlC/EXu95gxNLnroXCG++fPp3u/aJERJr/wQgHpNzWp\nx+WFFwg90fdNrn/sWCqnh/EnTjTuCtCHeqIx6s3CS9Gui2btBdEPHToUU6dORU5ODt555x18/fXX\naGhoQI8ePZCdnW163bG+B1rrb6wsehnKV73ME3ZqmB5y9wcj69AFQ8CGf9eiYNIF2PDvWiTZLGgO\nhZFis8BiIVhefp6CIcTEpgfMw0uxXBvJ2vIuiKpF//3332Pbtm246aabsHfvXtxzzz3IysrCW2+9\nBQBYsWIF9u/fj4ceekhz3ZYtW5DGgd0YLCMjC5mZPZCVZUdjYwBNTTWorT3UAh/m5PRCamo3pKUR\n09FML5w1zefMoeOszf7ss8CgQQTh6q+dOJEmfdYjZ5idddXN2jLzg/XQmYUu6847nfTiT0oy15Hn\n65j1bbXSNXv3Ul2jRlEbKt35jRtpkjnttKN7PI/6t2mTeflw2FzDnlnnZjr7qrFjGDyS1j2HBVjX\nXr5WHl+1Fn34KORuwccfm/eNx2jjRiE45PWGj96H4FGCnA1uN507eNACq5U+ujh8UFxMfx5udxCh\nEJCRYWt5Pp3ORpx33vkYOdKiGNcwvv9+l+pRj8m8Xq8pdO52u49Zi15vjY2NePfdd7Fy5Uq88847\npuWO9T0AtP5dAAAN3iCqnQH0yrCjq8OmGY//NPjxz/ImvLXjCHQCdwk7xeze4d1xfg8HHv/HQbgD\nsX3ppSYB943IwXk5DniaQ0hNssLTTCjRvw97Mfezash8uzS7BfPH90avDDuqnQFN+a4SR+z7Wq/B\nD772vJzYwmAqa8u7IOpnxYABA9CvXz9YLBYMGDAAmZmZaGgQ4gEulwtZWVnKa80E8qNZ167J6No1\nF05nI37yk58gGBRiKFu30mQRLY1oZSVNBkOGELv73HPper3W+IQJRt16GWY30yZ3OgUrXpX2lVno\nH31khNKfeoogYzMdeWbuDx1KceXaWrGSXb5cy35XjcHatcD119PkzGXMyjudhHSYadgztK+/bu9e\n9dgxZM+hkr17KdY9bpwxLOL1Esqg0vF3u+n+qWB/r5c+8hhyr6pS9437zJA7wfYW3HAD0K1bUguE\nznviLRa693Jbhw9b8Ic/ANOmJUl+JGP+/Fzk5uaahpc8HssxP/9A9AQTx8uysrJw++234/bbb49Y\nri3vAeDY3wVsPB6z3/kWr/7rQJvqStjJY5NHXUj68f+oQmw0O8DTDPxpcz2aQ2GU3jgIEyQI/Vyn\nD0VrtVsw/cEwXPbuuPOtnQiHwvAFw3DY6eUhQ/A9nT6DHyFYMOaiC9oUi2/LuyBqlHDFihV48skn\nAQDV1dXweDxIS0vDf/7zH4TDYaxbtw7Dhg07BrdjN49Hqycua6CrNNaLikTq1cJC4OqrxfVLlmi1\nxu+916glXlQktNP15WXNdFU60+Ji0na/916ht67XaG9qil1HftMmrT49p1lVaaZzXJs19VXXqfqh\napvrAtTpVpcuVY/d3LmEPsh12Gzq/oZC5jr+FgsdN0udK+clUN0HvW6+rH+v0opX5S/g9LOR9OZV\n+RFYs/5ksnh4D+ypbsKr//pPu7aRsM5lDW6/Rj8+PdkW/SIATl/QVCveolOoslgsKF61A95ACL6j\nrD1vIGS4Xq9jL2vWd5RFhej9fj8ee+wxVFZWwmKxYObMmbBarZg/fz6CwSBGjx5tCsu1FUbkL5dQ\nSEDNKtj78GF6ocr69HIaV6+X2OGssX7woEg7CkSG2QHBuieIV8vU/uorAf0zA3z4cJHuVIbJ2SLB\n5ZyqlSHlUaOonMz89/nomOwHQ+lHjhDBi6HtAQNEXbwbQPb1d78zpqPlMXS7qR253y6X2PttNnaq\nuszKDR9uPDZ7Nn0oAVqIXsDmVG9KivBL7q/c9qpVYveCHraXSXDyM6b3B1CHH1SpY+M9Xeyx2rG+\nB46Xv2VlZdjhysDMFdtjKn/ZOTlISbLiH2WH2tRuwuLb7hnTH7OuIWLnnuomvLetEn9eVw6XP7bY\njT7tqyoNcVqyDQhDmUJWfz1w/Fn07ZouNjk5GYsXLzYcf+ONN1rhYtuMBW5ycowpSRlOX7ZMQOEM\nK3/wAR1TweTM1A4GzWF2QDC5N28GBg/WwuqlpQL6l6Fnl0vA0apwghl7u6KC9pOzccrWnBzBJs/L\nI7hbD+9v20b+2e30waOHtouL6QNAhskLCqh/tbUC2udUuPI4LVxIcPjTT9PHAtdrFirhfnCYIhQy\nDw/INmQIfXzV1FA7drsZRE9hgZISGqOrr6ZrlixRp6yVd1cwbO/x0IcLmxnUXlNDWgWq8APXwQI3\ngLbOk8ni4T0wRHqJRrN//lDbjp4kLF7sf9fvxU9zuyIM4JGV22GzWGKe3AHA2xzUiNn07ZYKb7P2\n+kAwhJAJk1OlNc9iN/FgcSF0Y2bMHgyFiO3MW8FUrPUzzhCscmaMM9texbrfvRv42c8Igh09Wsuk\nLi6mF/WOHULw5Y47jOz7X/zCyA4vK9OKwDQ0GNnb11xDvAC9uIter/3qq6mc3O+5c9W7ANi/ESNo\nQtXvBvj+e6M4DTPgL7uMmOM33CDCCfI4MWNeLwyj6ptq7JqbjQI/JSW0CtaLESUn0wfMN9/QHncV\nM3/8eKq3rExkf7vsMoLH9c+HvLuChX3uuYdW/XZp51UwSOOjEgn629+MdR0PvflYnn2VHY+/rRNp\nx+tdkJOTg5e/+PE4eZWwk8FCYWDtrkP4ZGcVfM1hBFqZSchqAe6RxGw8/iBe/vJHDZPeAvo718/x\nKUkWLJw8uM1a89Gs02vRm1lGRlaL4IjdTsIxZlrrHg8JxjDTXNZZ12uVM8zPq69PPxXiMIcO0YSU\nmSmEU7ZuVQu/9OkTPb3s6tXalKpeL03Acv1NTaTzXlioFalZvJgmVLnfZgI0fJzbjuaXPHYFBeRn\ncbF5yldAKwzDY9izp+gHi8kUFWnHbssW+gDTC9HoRXmef15A8yNGmAsgpaUBn3+uDQFUV5un0B0w\nQIgW5eVp22FLSRGCQ3qRoE2bRHhgwABxL+Nxn/vJbDsqG5Fqtymh0oSdumZBGMEYdBBSkqywAPBK\nogmp9iSN3vyBeg9S7UkaiD7FThB9c0g8d2nJNrx428WtFsE50Ra3r6hQCHA4erek8szPJ0hXpTnu\ndNJKlPXEWa+d4VhZq1yvsT59OqEDS5ZQHDcYpJc/66lzm7KOPBtD7Xp/9KlRa2qo3jffpMlN1mKv\nrKTUsC4XlZsyhSY31ql3u0WIAlD7IftXWxtdm10+Vl8v4srMRteXYZly7q88hqzLX1VFHy/9+om8\nApx+d8IEmuD1uQZYlEfur6zBb5ZTwO02pgwuKjJ/PioqCBW45BLRjp5kxwJD7I+co0CvU98Z9OZP\nNvvsxybc8+rmxOSeMIN5m8OGtMBmFtYx7fUQu0poiYR0tM+dvzmIgX26HKPHJ87iFqKn1LAWg/jK\ntGkk6MIwqiwaoxd8WbWKNOs/+URo16s01lmIZtAg4zkWfPnmG8qMJsPMkyaRDr18TKWBXlJCk+hV\nVxnhdRYKitATAAAgAElEQVRkWbXKvG+DBgm9+mCQJj19/d98A0yeTGI4771n1OpXhQAKC2nlv307\nHbv9dnU6WKuVjk2YQP296CJ1qOSqq7SiOSxOM2yYsXws+QJUZUpKgP37ifugulf6MZw/n1b4ch0q\neF0vtiSLBHWETn0Cohd22OnDfy/b0cJgTljCYrFkmwXBMP1vT7Ji4eRBGH/BaQYRJRliVwktzZ50\nAf75Q40Goj+ROvXtKnRzrNZW5qwZq3n9elpFpabGJhBjt9PqOCMjOqMbMG9z3z4tc59h5qoq0sfX\nprkl/zmFbEMDTSiZmZHrl9PRcju80kxNFWz4xkaaZGQ/9u0TDHNOHcv+OJ3U/4YGGo+MDCE2c9NN\nojxgzlrndhobqb/6XQ085ikpgvkP0Pm5cyMLE/XvL+6NSvBG7g+npb3pJkJEVOI5NHZhuN0WpKbS\nRK5n3fPY8DmG+61WKmf2LOjZ9+1l8caib4u11d9t+xsw9U8blEImViCKonjCTkVjffr+2WnY8N0e\nXD38Apzdi/IoMMs90BzE3sPulpTE8rn0ZBtcfiLgHaj3GJj1KvZ8e1lb3gVxCzQyq1m2IUNoIktK\nEqlbGY6WYWNOB+py0QQ1bhzBrpdfroW75XorKswh3oMHCbq95BKq4777aDtaczNNOMuWadOgFhXR\nxFFdTeeYva5K53r33QRFc8hg0yYBcc+eTe3IYYqqKopl19eTH5dfroWe9Wlc6+spBFBYSB9GDz8s\n6hozRujAjxxJY6AKEzAUXlNDHy6c4lY15g0NtEJmW73aPO1rUxMx91nEaORIquu++6huhuP10P7E\niXQti+dwfyZOlNMOW1rKA3QP9CmJ6+vpOePxnT6d2ov0/Omh/YS1v/XtlmoaY01M7glTmdsXhK85\nhNuWfIUXvzqsSTucnZGClVv2Y/JL/8LMFdtx5TNfYPa73+LdrRUY9dRa3PbKJkx6bh32HXYhOyPF\nND9CrKlkO9LiFqJPSgJGjgxh1y6LQZP90ktF6tbWwsBXXWVMz8oa6xUVRv11mRWuZ3vbbOSHGUt/\n7Fjg9NMjp3N96CEtbP/YY+J3lX48M9/T0ogwpofq9WlrmWl+0UXGunbv1urAq1jxDNEvXix2LFgs\n5qz1sjJa0X/7beRQBocVxo836uBzH6+4gj4oFi407lJwOIzXme1qGDcOCATU6X6vvBJ48klj+dRU\ndX6E9mTOy5aA6IWlJSchyVuPLQe9LdrhDL8mLGFmtn5PLXzNIQRC0OjCV9Z7MEOnp7DtwBGsLSMm\nvl5HPjsjRZkfob3Z82wnBYteLxZitQLdu1s0DG2LRbCfmS3NBDHe+yybnFqVYVnWdH/6aaGxvm6d\ngJn9flo5n3YanfvjH2nS0Kd4lQVWuncXDH6Gl7dupTpkX3v2FEx5FqDJyBBpVjldLN9LPfuf68rN\npXZVfr3yirG8nGpWfy4nR/yuZ/wfPEi/c2rYpUsFE7+w0Jx1n5amHXOrlfqpZ9GPGCGY9qo+vvkm\nQe76FLR9+pBfse5qYFEe1bmMDHV5q5UEg+SUwzJzvjOliO2MJouFAEDvLDtWPTAaLn8QgeYgvvih\nFq98+SPcgcQaPmFq0+9dt1utOFDvwTf/qVOWt+gCPlw+OyMF1w3Jxaizc0wFbOIpRaxscTHBq1Ju\nFhYCzz9vQU0NrZzsdlpdbt0KrFmjFSVZvZokTlVCJS4XqcDJojADBxLEP2+eWjynoIAm0NWrgd/8\nRptK9Y036KNBLwbz/PPa9KnMZmc/WA+eIXC2zz9Xi7mEw+b68U1NxAeorydJWpWevVxe74d8zozx\nX1BA46LXZq+ro4+gmhrBkleN+RVX0NiphHN4/3ljI/XTTCznyitp7GW9evYhJSV2ASGXy7wdldhO\nNAGbzpYitrOZnHLT2xxEOEwr9tA/qnDzsL54Y/MBJFktick9YRFNz6z3NgfxXcURzP+wTFk+jMgw\nvJmATbyliJUtLiB6VcpNWWBFLx5z8cXAzTdr4VNV6k8zyHrECILkzaB9WdBk+nQtFDxtmhHqlX2V\n4eWXX6aJgGH/3buNEPiECWoxl+nTaTWuLy9D2yrBGzldLJf/6CP6kIgkSiND8jYbpa9VhR2uuYZ+\nHzMG+Mc/1Gz9lBRi5j/0kDqd7ujR9HthIUH3eqEhDpkMHmyE3NmHUMgI+5uFAlasAP7zH7XYjt2u\nDSfEAsO3V4pY2U5ViF6fcjMUJoERhlm3HTiC5lAY/gQ+n7BWmgXAl3tqlc+OBUDx9Rdiw79rWwXD\nt1eKWNk6PYvejDHPevB6bXhAm/5V1kxnvXmPh2BgszSiI0bQyv7aa9XpUGX2tuzbV1/F5qus5y5D\n+ix0E4tOOyDKy8xv1rk3u47Txe7dSxK7kybRdQ0NxG3IyNDqtfv9lCCHx06/O0HlF7Pt+/XTjrnN\nRpMc95sZ9Xq2vcNBK/H0dCrPfZLvQyTNfsCcRb9vn5rVL+v5u90kZTx5MpVrDdQeSbf+eK3gT1UW\nvUoLPGEJAwC71aJZlSfbLCi+biAyHHbMfHObRsBGZWl2G2AB3AopW2bFM2s+Vqhd9bweb4Z9p2fR\nmzGWZWhZDyX/5S+0Oi4vp5U4C5mMGwf8+c9Up8tlLvjCGvOykImKva1nvpux8NlXZsXrmd/LltGk\nyD8zM51hbn195eXUD5dLy9IvLKQ6zJjpFRW0qpw9m0IBa9cKERqvV7DouW/LltGE1dgoGOkzZtDk\nayYyI7PtecxZc/7//T9tv+fPV7PtDx4E3nmHJuaGBmpv2jSqk3kVZkJCHg/9W7uW2h4+nP5fu5Ym\n9ylTqK6qKu39W7RI+FpdTeW9Xi0cH8sEnWDYt5+ptMATljDACLlbrRb8bOBpGHlWNoIxrFP9wSCC\nUTTlszNSMPj0rjHH0VXPq17fviMtLiZ4VbpPOf0rp2DVn3/xRXU61ylTKO774YfGVKf6dK5m6Uo5\nXazet8OHzdOnym3rU6Pm5Ym0o3IKWZX/+rSvcnmuQ04FK1/34ovqlK2qdKicPnXWLPqQkM898QS1\nr++n1apuu6QEeP11Y79HjDAf67w8+hDxeNR1ZmXR/VKlYo32zHC/09KM94vPHWtaV7O2E/H342Pt\nBCom7CSylCRtKtZYn5nZ114Ah93aks89xWZpc1pXfdvx9PzGDUQvp/vkdK49ewrmdFERwbiyWElT\nE8WXv/2W4thySlgWTLn9dqBvXy3EXVcHZGebw6ycrpRTtzqdtOedYWw5fWpTE13HP5uJ2WzYQD9f\neqlIWSqLwdx1l1roprycjnOdmzbRZKKCx+fPN4YYooUC2Bd9CEQWomHGPwvjlJdr224NpC+z4efM\n0bath/F9Pm3ogHdSOBzU5oEDJCaUmalNY8v+yO0wDM/n+PdjmZTl51UvCJSA6I2WgOgT1hZLtgJ+\nCX1Ps9tQMOknsNusGHJ6V7j8QcMz40iyIBjSrvr1MLwsZnOsk3sCoo/BZB3w8nJ6UV57rRBbYX3z\n5matWEl+PjGtf/pTevEfOiRg5tJSKpeTo4XLGRo2g+/Ly4VgDNf18MP0Une5iEVfVSUg6EBA64+Z\nWM7evfRhodfGB2hSLi2ltj0e6ocs/CLXeegQwc+sA8/iN42NAtqWQwyseR/JLzOd+vJy4ZcsjCO3\nXVdHML++T1xHU5NIX8sQPeu6HzqkbXv1agGvB4NEIuR2jhyhsXnoIXEvc3KIYzByJMXXjxyhti6/\nXCvUI8PwGRn04dEWPXm9br2Zvn3CWm8qUZGEndqmD627A0E89vZ3LSI1f9u0D56A9oMwEAwb/r71\nMPzZvTJbBcerLN5FcOJigk9NpdXn0KG0EtLDn7fcQnCvxaKGv6++Wg1Bu1zG8gwNv/66OXRrBjdb\nLFq4PCnJWP/y5cZ6S0qo3tRU6tvatWp4fckSIrzp+yHXqernnDk0WclwcSBgrGPePPP+pqerz7Ff\n3I7frw4/qEINJSU0ATsc5j6rwi8lJeSvXN7pVN/7YcO0daamqiH99npe27OdU9GyM1JQeuMgOOxW\nZKYkIckK2G0nQFkoYXFrVmvk+//G5gPQ49BWqwWzJw2Ew25Fmr3tMLyZ6Z/X9mrnWC0uIHpAKxzi\n83E2OVoZMkS9cWPrdOTNWNgyLO10amFmZnibwc3hsDgXiVGvZ9EzzGzGPmd43cxnWa/ebAx47zzD\n0nrIXa95zzr1HOaQwwQMcTOjXe6bvl49xC6HGjhvQKRwyJw5YrxYM17Ws490LzduJJKd/Ds9R2F4\nPJZ2E6Bpb6GbUxWiZ5OFQ3ZUNuKev3wFX4J7d0qaI8kalSGfYrPCJ+kZy3D8l9/sxJiLLmjXSbc9\nhW46PUQPaFnMvBL6/HOhtLZihTmD3eVSnzNjYTudxBD3+8XxYJAmyHCYXth3302ryE2baB/9e+9R\nOY+HJrQ1a8xhfp9Pe8xiocmH06my2Wz0fzhMkPNXX4m29XXW14vfV6ygyVQ+X16uhYsZ9p45k3zd\nuJHa796dJif2y2KhPfVz59JY8zmG4nly53ZUUL7TSeP0wANCGa66mj406urMdwqwYI/XS8f276ex\n8Pliv5dNTdrf/X60fM3z/YxkHHqR/4/F5Oc1kT72+JvMZh7YJwu0Uzlhp6KFYliD6kVq/MEQjngC\nKK9x4j8NftS7/CZXau2w04dt+xtw2OmLXliy1rLvT5TF7WspJQUYPDjcEgefN48m8dJSI5xrsdAE\no4fGu3dXw+X/+Q8J5chbwziWvWwZvax/8Qtqi1XlZs/WxvHfeIPa1dfPMXN93H/ZMjp+8820MtYn\nPgmFaF/3jBnU9m9+I+p86ilqixPSzJtH4jkTJ2pDAHIfs7Louiuv1G5/s9m0bTO/4M03qRxv41uw\nwBgq4Xr1xziZjTxOpaXUj27dzEMSb7xBZbZtozbT08mvVauM45qVpb6XmzeL3xculMfe0pJQJmiy\n8mNFOjnZTH197JN8wk6MZWekYGDPE5CjN2FxaXphmvN6pWt+/9XIM7DopiEtMLndZkEwFMKdS7/C\n5Jf+hafX17YklIlkcrKZUU+tbUlO05ktbiB6vfGLWpYWHTqUtMHDYQF/JyXR3ustW7RCJhUVlBt9\n+XKKETPbee1aMbmzgp1cf34+Ca/wueXLabJSlSstBf7wByL/MYve76ctZmbln3iCJitWQpPLlJbS\nPm3+mVPcAuZjUVUFfP018F//JdKu+nzAW28BU6car1u7lib1SG3n5xMSMGECbXHLzaW+bd5M0LnP\nJ8Iay5aRNK7ZOC1eTD/LULYM/XPbtbXi+uXLyU/9fbvtNpqs5dAHhwD4fqv6tnixUXMeoBX79Onq\ncU1PN5Y/kXaqQ/Sy7aluwpXPfHEcPUpYZzaH3YrX7hquTPW6o/II7nl1M3zN6mnt04fGtpSX7bDT\nh1FPrYVXkj922K1Y/0heh6/KTwqIXm9mSUgYvufPkuRkkazl5pvFuZdeopf6K69o2c6vvEKTU26u\nuv4BA0TymOXLCUJWleNEMKyrDtBKMjvbvN4ePSghSmamukxmpvFniyXyWOTkiH4XFlJZh4MkZFXX\nycltNm2i/3v00LY9YIAIATDkbbOR/G5zM8XsCwqofk5uY5YYJy2NsrVxPwoL6Vxxsbbt007TJtlR\n3beUFKqH7738s99Pk7KZDypLTY38jCUsPmzr/oaOdiFhcWR2qxXuQBDn9MpEt/TkFli9vMaJzXvr\nkRSBlGf2LB2o98Cui7NxspnObHE7wZvF21m5jmFvr1dswWKovb6etlOZbQ1jNTazeL6sbldfr46J\n792rVq0zi8tXVJCfjY3mfnE8mcuz6pvZWDid2m2B06Zp85urfPF41FvWOA86t/3AAzSGa9cK1T3u\nI8P+cj/Mtslxv71e87bZ52nT6MPCrC6XC/j738W9l/2KdK+4b3pLKNJ1DhtynPYTJ+zkMG9zEPe8\nuhm3vbIJI+Z/iksWrMGNL6zH5Jf+hWfX7oHLbx5jM3uW4n2727FaXCSbUZnNBlx6aRhlZRZNEpKX\nXwa+/JISnNx2G0H0s2cbE3+MHEmTkyrByJYtIt6tT5SiT06za5cxgUtBAfDJJ7R9T59MxeEw5pRn\nhbmPPqIQgipRSkkJ1enz0Sr3hRfIt4MHaQWrT6Qzbx6wcqXWV31+91/+0pjIZfx4dXKbsWOpr+zr\nhx/SJHzGGcakM2VlVM+HH4rxVSXSkfs9fjzdV1XbP/sZtREtyc6KFQTbL1hA917l1/TpxmQ7mZlq\nElxSUsfmfI9kp2qyGZV1z0jBv/dXYffh2IhSCTs5LT3FBqvFglA4jEAQmmREKgVaKwD58K9GnoEb\nh56urDstOalDc75HsnbPB3/48GHccMMNWLJkCZKSkvDoo4/CYrHgnHPOQWFhIazHmUIcCtGKr2tX\nkUO8vJwmPWZ19+hBsK4ZzJqbS1u/zjiD6pAV3Tg/+gsv0EpUTkyiyqfOuczlOqZOpd8Z7pYVzbp1\nE36z2h4rzPFWMDlPvctF5yZPpkxpaWm03YwtLY1849zvBw+ST3feSfA8K/ctXarN7961q8g/378/\nxevN4P7sbKo/PZ3aXrqUVOKsVm0fDx2i+5ORQR8rcj+8Xopf8/ZGvl/cb75v+vHieDfftzlzSLRm\n4UKRGIdz3d91l7j3zz+vjedrc9GH4XZb4HCI3QqqrW2Rcr4nzGgn+l0AUHx03NmZyMnujqUb9h33\n+hMWf5Zss2jIdWl2K349agB6d3Fg7gdlaFYkjNHbA3lnY3DfLlizdQ9uGPkTDBuQrTmv39oWLed7\nZ7Sof42BQACzZ8+Gw+EAACxYsAAPPvgg/v73vyMcDmPNmjXH1SGZ2TxqlKUF9pa3bE2YQHDu9Onm\nW7AYZj73XDWce999VFZOTHL4sDk0rK+DGdoPPWSEnH0+rbrd6NEiiQ2HAEaNEkldnE7gb38z+sgw\nOZdn5TiHA3jtNfJZD9HX1Qnf9+7VKq79/OeRQxP5+dROaSnw29/SMVmFjpnyxcXGnQdVVVRXMGhM\nGsP1mynayeGBw4cJkXG7tYlxGH5nJT9VkiBtyISenSNH6JkyY8wDie1usdqJfhcAgtmc//HBxOR+\nCps7EMJLX/yIx97+TpkNTmXpKUm4f9k3eKesEbct+UrDijdjzMfrdrdjtaivs6eeegq33HILevbs\nCQDYsWMHhh9VFhk7diw2sMj6cTKPR8C4rFDm9Wq3bN17r1BGM0vW8uKLpF/v8WjV52RFO31ClowM\n9daw119X1zFrFk1EeoW2piZ1EhuVQp7HQ36q6mf/VW2qys+ZQ5M/+88qdXJ/0tPV2830fs2eTXwB\nWVmPE92olAHnzKFJNBg0H0OVSh+L3LACH6MX+r5x8hurVe3DvfcKxUP53OOPi+xz+ueKzyUsNjvR\n74LDTh8eWbn9aK7t+EngkbD2t/suPwsOuxXpybaWY74oYjey3TwsF898uhveQAjuQBjeQAj5K7fj\nsNOnea6afM2acyebRYTo33rrLXTv3h1jxozBn/70JwCUKcdyNECZnp6OJllpRGdlZWUxO5KRkYXM\nzB7IyrIjP9+CJUvo+F13EXw8ezatGPv1oxWyDM+uW2cODXN4QoalZcW1xYvpul/+kuDZVasEVM0J\nXxgGV0Hb+vDH1q1amJyP5ebS6nffPsHOZyW7/HzyJVL9+kQsKSnq8jJkztC2PlzAYQs5AY8qNJGb\nqx07M6Y87xBIS6NJvqzM6APD62bhgfx8uqfFxeGjY2ExlMvIoH/qkEz46M/G61JTI58rK9uFeDOv\n19uqv5/2thP5LgCABm8QXx9wwRJOiBKcilZTU4M/XN0H/yxvwls7G+FVbHtLsgI2iwU+6eMv2QbM\nGNUTvTLDWAXtNVaE8eU3O1t+Vp07L8fRDr1pm7XlXRBxgl+5ciUsFgs2btyIsrIyPPLII6iTMGCX\ny4WsrCzT68327umN4dNHHqGX7pAhtHq122lFlp9PUHN1Ne11njXLWI6hYXlPMyuv+f3085YtIjf5\n3LmijpISWhk2NhKZbfNmYPBgbTuLFok69PXLZnbM7aZ+TpsGfPABxa9lHxYuNK9f5fO8eQRJv/SS\nsZ0ZM7R9e/ttmmD5d06QE61tp5Mgbj7H7HZ9OWbKHz5MHwvnnmv0Yf588+vLy0VqWqfTgpoa83IZ\nGepzHo+l5efWnov1OT2RFm3v64m2E/UuAAg+feSt7UiyWuBJJJU7Ja1HTg/8vw9/hM1iUU7uACWh\nadZN1GFYMHnsIABA6B9VkGl2IVgw5qILIp6LR2i+Le+CiCz6G2+8ETfccANuuOEGfPnllygpKUFF\nRQV69OiBvn374n//938xfPhwnHPOOYZrW8OcdbuF8IvMrr70UuCZZ2jlOWMGrXofeURdzowxn5ZG\nq/Jf/5pY6Q88oGZfT5xIyEBxMXDHHZTJLBo7vriYVsw7dhjb1B/bv5/21z/+uJoB7nDQJLlrl/Y6\nhwMYNEgI70Ri9xcW0kfEwoXavt12G6nGHTwI3Hgj+R2tb8xa//RTsdsgGlN+9GjSJdDvLCgro9X7\n+++L+yD7/PLL9OFWUkLIy+rVxh0OvHNh6FDgkku0Psj7/81Y8XZ7/DLmVRZvLPoT9S447PRh6sv/\nSsDyp7BdMqAbPviuCt5ACAHpGUhJsiKoostLZrUA94w5E9kZKS2s+GQbYLNZW1jx8cyYV1lb3gUx\nK9ndfvvtKCoqgtVqRUFBAQKBAM4880zMmzcPNpvNUP5Y88Hr84VzYpNnn6UXu1lylxEjiHgm537n\nJC82W/S86HLCGn1SG1bIY2U5ZvUvWUKs90GDRJsHDgBnny3gfX2ymZEjjfng5X7ok9Swrj2HH5gx\nLud8Z/j9449pAueEObIPq1bRroLHH9fWBQjon9tuaqK+so9yeMDv1yYCkv1Zv578jeSrfB9YiTA5\n2Zjf3e2mctnZxusi5WIXTHljsplgUNt2aqpg2MebxbOSXXu+CxL54E9ds1stKP75QFzQp4vhGUhP\ntmHOdQNxoN6NP362B0GTyI0+F/thp8802cye6iZs3d+gUcOLR2vLuyCmbXIA8Ne//rXl59dee60V\n7kU3n49Wr3PmCFi3sFAwwmfOJNiXGeAqGHvmTJH7netYvJjg6Px87TFVHS4XQfQMTXOZmTOFsIsM\nOX/9NV17xhlGONrlon9PPkmhhYICWuFOnarNwa7y4eGHRV0LFtCEJYcKCgqofG0tlZ85U5ybO5eO\nqUIMJSX0kTJ9ujoMIpfbvRsYOFD4yKtq1nuvqTHK0t59N+nYm/na1ERjWFhIbY4bJ9rLyKCJPifH\nOM5+v3Z8Fy0SOwPYhg4VWw+ZDV9WtkvzRxEKkX+PPy7qmj+ftsklmPOts/Z8F/TtlmrI7Z2wU8Oa\nQ2GMH3gaAMCp+8Bz+4N4c8t+bCqvV13aYnpxmuyMFJyX4zBM7u9urcAjK7fDbrUiEAqh9MZBuG5I\n7nHqSfxYXLzazHKcMyP8qqto4njxRXXO8bQ0ygmvZ1Dz5KhnretZ3oWF9JK3WsVWMGaac9uqHPQq\ntjfnjZ8zh1aZMtOc61clX1HlQDfLZ3/vvVSP16s9V1BAHynDhql9tlhiY+kPGkRogIptD6j9nzLF\n3NeSEvrA4fvq92vba26mfyqf9fnnX3/d6FcsudgTLPrOYxZFzCQpDsMoCTu+FgZQ76LMb3pYOQwo\nJ3crALvN0qpc7AkW/Qk2M8GY9PQwFi+2tIizMKQti9M4HDTZFRcb60hPp4mVBWKamuhYUZFgrsvw\nb48epA53003Av/4lmODM2tYz2WVWuf7cM8+Qb59/TivHrl3p93AYmDQJ6NkzOpO9Tx9zER/Oo65q\n2+FQX6dPuGK2CyAtjcbA66UVc3q6CBkEArTjQBbeYfKbma/19VTff/0X3dfTTjO2xz9H85nZ+Pqx\ni7YKT+jOdw47UO+BI8mGQFCCZ1Ns+M2wbtjnScbK/6uMcHXCOrut21PTqvK/HjMAU4ad3iqonXXn\nvVKKWdadj0eSXVssLlbwDNHrBVC8XoJnZS321auFOE1dHa1ya2qojL4Oj4egYDklbEMDJU35+mu6\nfsYMKj9jBp0bP57Y4P3707GmJmqbmexc//TpdP3dd6vPNTTQJLxsGU2MLGBTXEz90GvYtyaffXm5\nyPmuattMk93pNB4zY/xXVBCJ74orgOHDSVr3/vvpIyscpp/HjaNzU6aYC+g4nbRSlu/roUPGMmb6\n/CqfPR7t2DU0RE/xmtCd7xymguh9gSD8zWG8tzUxuZ/sNndVGYrfj31LWJrdhknPrcOc93di0nPr\nYkrxerLqzqssLrTo/X61RvmoURYsWkQrNj1zmtnbFRVi4tFr0v/qV+aM7rPPVp+75BKaLJhp3rMn\nsfN5a5qKyf7TnxrP7d5NjP0BAwSMr9ohEInJPmECacTr+/3JJwR9Jyer/TLTZLdatez+uXPVuwCO\nHKHVsb7tkhJg505CR375S62vkyap9fX12v67dxOqsny5YMBbLPThptoFYbcTOVCfS+DVV7X9HTeO\nxoNNzzyNZ915lcUbi74t1hp/Pf4g/ryuXKMtbrNa8H8VbgSifMQlrPNbGDDA8wDpyGc5kvCfOvFF\nLrPt/cEQmkNhfPb9IUwdfgbSkgU4rf9bSrDoj4O1lkWvYravXy/Y514vlZMFWxYtEuWsVmMdX30V\nnTGvYrIDWpZ7JAZ/a+uSz/EOAbm/ehY6IER55HBCUhL9i8Zalxn5bjeNk3wsFKIPLPkYs++dToqN\nd+ki2OcHD1IdvXpp/dm+nfqjZ6mr+r5xI03O+t0Szz6r3ZFwVBHVsCNh1Ch1nTJMr2KeqrTo45Vg\nF88s+tZaW1n0ack2BINB+GJTKE3YSWTMrJ86oh8AYHP5YXzxQy3GnpMDe5LN8KzoWfSA+d+SXos+\nXq3T54NXwafz5xP0mp9PK/OGBnN994MH1RC3GezLLHfVudpabbrSCROIKR8JgjY7t3eveerT2lrt\nMe6Ykl8AACAASURBVGahO51aLffVqwnaZgEbDif4fFRepckup9Wtq6MwwcqVgpHO0LbXS6Q8PrZs\nmXacH35YTIpyiCEcpnsip+3t31+rwT9jhjksfvCgyPNeU0NjNGGCCIvw9UeO0ASckSH+9/mOHWqX\n9eYTuvPxaX27pcLbrJ3JA8EQYpQfT9hJZoFQGEXv72yB3ocNyMb08edh2IDsNkPtJ5vuvMri4hXH\n7HKZGT1ihGBVm2mgM0M7LU1dR3Kymglut9PvKjZ9ZqaWJc5MeTMG//Ll6nOFhbQ6VenBFxbSZKVi\noYdCar/0bPfGRnPWekEBreaZiZ6XR0I+0XYZ5OWpmeyhkHGHg36HgEqD32zHQnKycZzk/AKRWO6p\nqfTx11oWfcI6j+lBxWAwrIRtE3bymd1mgU0XMvM1q1nu2RkpKL1xEBx2a6tY9KeSxQWLPiWFcrwz\nK5uh5Wga6Kzv7nQSdCvX4XTSRL5mjZZF//HHxOgGtOVloZipU0XaUWZfB4MUa5d9ZI11md0/YICQ\nbOVEKqmpWsb588/TOT0TfOtWivnLKV737hXl2WbOpL6bjUlBgcjktnUr1WOxGMvrme9m45yRYdzh\nwCl3uX6VBn/37uq+FBeLEAJvKfR61elf5Ymb0QROx5uaStdxGZdLwO8ZGeayqQmLXztQ70GqPUkD\nu9qs0UmUCev8lma34cXbh6LR48eMN7drksvoWe4Mr486OwfrH8kzQO0y/H4qW1xM8D4facDn59Nq\ncNw4mrhj0UB/6SWCtJOSRB2yUEpjI9XHxnvbbTZj+YULjWItJSUEn+/dS2EBff2sB89w+ttvE+kt\nJ8eoH88r6/79CTp/4gl1OyohF2a7s/COmeiP2y0mdz5WVycIeXJ5WdAHiCzAU1qqFSFiJvyQIZQq\nVsXIr6xU96WiApg8ma4pLSXWv5lADgvYcL4ClVANYDw3b15vhEIJGL6zmYpFnyDXnRrmDgSxv86N\n4lU7DZnjvM3Blsk6mkiN/vz/uyQbcZhu4oRY3LHo584lHfjLL6cJdfdutQZ6YSFljbvrLnrR/+xn\nAl6OxiZfvZpWukVF2vJ33KFm1k+fDlx4oZqtrteDZ+b7xRcby//wA9U1dKhR657bUem1l5TQBF1W\nRh8zjz1GbHa9XntJCa1gt23TjlNmJvDhh/QBIbPIJ04ELrtMHOvWzVyTXs+EHzuW2mbI/YorjIz8\nSZOonKyvz/fthx+orl/8wngfeJyuuIIQDrtdna+A2fPNzcZzu3ZZDMz6zmQJFn07O5WwuLR1P9TC\nr9ChZY15jz8o5SowMue1uQzo/OYKD345Qsus70zWlndBXPRYFrrh9KnduokUsf37E+FKhrQ/+IAm\n6uJiWvWnp0dOnyprmV9zDa349ZCwmVhLerp5/RkZ2lS1zzxD53jlri+vT8Gqbycvj4RgGNL3eCiE\nweI8nLZWJfqzbRtxF+Sww8GDQFYWhSXcbiHAwyEGv5+Qi4wMY3pZOQyh97V3b5FW1+cjH30+41in\npGjr276dPsqKi2m8IoUaZs8WugHRhGrMBIeireKPJ7O+M7H049VUQjcJ69xmtwDNYe32NxsANW9S\n/WWXak/CgXoi5EQSqVGJ2ABh7KhsxNhz1ZOkbMeTWR8PLP24eP3IQjcjR9L/TqeAd2fPFixyZliP\nGUMvcxazYR152RiyXraMJjq+fuZMgnQLC7XsczPWfUVF5HPNzUbmuxlLv6aG4vBmjPwpU2hL3rhx\n5FdVFfnOY2Em+hMO0+q5vl4I+7zxhtDnl0VhmAFfVUXseqeTJsNly+iYvryZaE5+Pm1Zmz6drvv7\n36nfTiddO3u2EBPi+s49l4iHzPw3G1fuM5PsIgnV8Dkz0R+z+C3D/tOnk3/Rykey41nXqWx9u6XC\n5U9M7ieTBcLGadtsU4QZcsPs+GjMedV5XxC459XNUUVw3t1agVFPrcVtr2zCqKfWxiSacyLqaovF\nBUTv8xmFbuT0qaoUr7t300s0NZVSyF5zjTqNqMNB6IDq+gceoL3XDAmnpBjFWmRBHX06V04Xu3mz\nUfjlqqvU/mRlAe+9p4bh9UI0LGozaBCt7MvKaOV8881GGH3/fgppyCGG/Hy1yI7c79tuoxDHqFG0\nalal0tWHIVSwPdc1bx6hCM88I/LA6+uT09eqBH4Y9r/ySiFEE0mohlPBDh6sDqOYQfWRYP/WQvvH\nsy7g1IXoK+s9+MvGfe3sUcLi1SwwfgykJFmwcPLgmFK98vm1u6o1GeeCJiI4bCpoP1L5SHY86wI6\nKUQvw5kyY55NrzmuP9+jB7G0Gd53OAhyVzG2TzuNyrDJgiqyVnxaGvmkh7EfeUQIvpSWatPGut20\nYmNom2HvSP7cfDPVwX3jVWpqqqiDxV1uvVUI/DD8HQgYYfTUVCOMbcaKVzHgs7NpjMzCEHIoICUF\n2LdPMOvlscjLE/r20drn+3znnepxAgTEbbVS2Obpp9UQeLdu9K81evPHS5+eFwzRdgEkTG0ylLl1\nf0NHu5OwDrQkqwVBKQd8WrINL952Mcae27Pl2HVDcjHq7BxT+Pu6IbnommbHva/9H9ySgEIkvfnj\nqU+/o7IRVmj3+nWU1n2HQPR6ODOSIA2LqcjnJ0yg1fT06TThTJumhfRlEZXycio3bRpd9+yzBBPL\nsLHDQfA0Q6t6GHv5cvJ5xQparet15OXyrIteUaH2h6FtFqypqaGPBx4LrmPZMqPAD4/FX/9KxwsK\nhEZ8XZ0R+jcT2dm7V/szi+yYCfaUl4tQQDBI9+W3vyWoXQ59zJhBK1bWj2d2vb6+qirt7wcPGsfJ\n4zHGryMJ1VitrdebPx769PKzrBIcSmjdRzY9lFnn8ne0SwnrQPMFtev3QDCEgX26GMpFE6kZ2KcL\nQjo9hUgiOMdLn/7drRW459XNcAd0Yk0dpHXfIRC9Hs7s0UOtQ84w8K23Etub4e7SUgE933EHwft5\neQLGliHul1+m/e4M6ffvTyvySLCxCsaeO5de3H36GBnwcvmyMmL0/+EPapa7Htr+/nsBaev9uegi\nI8TN/ixYQG2Wlwtm+jffaNtUseILC2lMunQRIYApUwjaVzHz5fK8A6FXL9q7zn7ox3LiRNKPv+IK\n7X2T4ffXXzfuEJDLMHu+NdZavfnjoU+vguY55DNx4rFr3Z8KEL0Kyvx6Xx1uuDgXOyobO8DThMWb\nMXu+tdC2DOUn2wCbzRpRb/546NPz86zf4ieHGI7FOp0WvUp7/uGHKY7OGujp6cCmTQJKZ0a0DF/L\n2uQbNtDkyS/V8nIBlQKx6cazNjyX5fSygQCtkHv3jn49Xzt8OJH5rrpKC+mr/FLp0kfTsb/0UmrH\n46FJ9uOP6TyzyFm7Xj9ewaAQ6klNpbHOzBR90rPQLRaC5GUt+u7daVL2erVty2NXXk4+zJ5NELws\nksPwu8cj0v2qyhwLI12EfsLweCxRr2sr890sjwI/a8fKoj8VtOhVuvOsJR5oDuLNLQfw/rYKuAOJ\nPXOnqjFEP7BPl2NipB92+vDlNzsx5qILYrquLcx3szwK+hBDa63TadGroNG1awnqrK4WSU5kKP2h\nh+hlqYesGxpo1VVVRXWMG0cTc2mpUfClokKtWS/D1vx7eblIL9vYSBPOyJGRdef5Z6eTJsrRowUq\nwD7LEC6X1+vSM4wdCWLnHQJVVQRps7F2PTPZR42i/ysrCfb3+Wh8WNc+P18bItGn4z1yhO6JrEXP\nOxDk0IfsH+8GqKlRhylqashvt1sr7KMPZRwLI53h+++/3xWT3nxb9ekjwfyJLXKRzQwW/a7iCG5b\n8hVWbT+YmNxPcXP7g7hz6de4ZMGaY2KkZ2ek4LwcR8yTdVv06VXPcygcVoYYTpR1yCtIpSdeWEhs\n9VCI4N9AILp2OmuljxhBK0rWPf/4Y6P+O7PhN21S69OvXasty1ruHo9IQxsMUh0qffWlS0VdVitp\nq7NOO4cTZM34u+4y16VnGHvpUmNbBQXka2EhtSPr5us18vVt5uVR2cZG7bnly4l9LtdRXEyMf6vV\nqBEva9HPmUN9ldtubqafMzLUY8X32OFQ+z9vntF/lS59PFhCG//YTaUlXjDpAsz9YCe8gRBciQwz\np5zZLKRHL1swDASCYTT5muENqHXp48HiURu/w9LFMjTqcAhoVIaLN27UQp8zZwLXXisEZaqrgYED\nBdxssxGULKcwtdloopSZzaq0rIEA0LevMRUtQB8Eegh582ZSaWP422oVbR84AJxzDkHbI0cKOF0F\n4ZaXCzi6qUmtl+/30z8WomH99QULhNa9rGfPYxkJ2jcLCXBd7MPkyaIf0UISgBCyGTFC3Mv6eoql\nZ2Ro6+UQQ3U16e97veJ+9OtHwj4q2D7WVXEkWOt4W3sI3JwKED2bDIvuqGzEvX/dYiApJezkt0ha\n9LKpUsJGshP5LgCOv8BNp4PoAXoBpqYKxvjBgwQXMxNchtJZf52Zynv3EnzPgi4zZtBEok9h6nLR\nxM4CNIBIQ1tXR/Dy119rxWDkVLQArXZZhIdZ0mPGiON1ddQOhw6ysujjgf03g9mZmV5TQ9dzX/Lz\nqf7qauDPf6ZJ8eGHRT+rq6ntfv2MbP7qavpYMYON2Re9ZjxDyvIYjBlD/YglJFFRIXw46yyxU2Dk\nSFp5O51ClXDMGCK08XVWK53n+8Fjoh/zadPIn3i0RBrathnDouv21CoZyAk7NcwfJC36GW9uM53c\nAcATaI7rJDLxlIa2Q19FHo9gwDOMvWQJQbZ2u4DSr7pKC80PG2aE6lUpTGfNoglDlYaWU7xefbU6\n7SpD6Ha7GqK2WgXsP2sWMbL5XCgkQgEqCFqG9AsLafWqqn/KFEpIozp3yy3qMbDZ6J8qRMGpa9PS\noqej5fSvkVLhyqEVvm72bGMIQA/py2PH5eV2GMLX15FQhTt57bDTh0dWmq/aEnbym8ViQfGqHfA1\nRwaVLceyLeUUtah7D4LBIJ544gmUl5fDZrNhwYIFCIfDePTRR2GxWHDOOeegsLAQ1mNYtrBIzWmn\n0TYvhpl9PppYa2vVQjesxy6bXsBlwABaMbIWvT4tazAo1O9YB1+fDtVMZGfrVrqGs57l5xMEvWaN\n0GYfMoTEc6ZOFQI2aWm0Wue4tgyvz5wpwgJcP6D2jc+ZidK43SKlqtzvSZOEIA7ryO/bZ0xHy3Xl\n5AjkQxa6sVgEy33BAi2ZcetWIXRjdm969KAtZXfdRf3p00fbTu/e5gI0HZUh7lTXmW/P9wCgFhpJ\n2MlrDrsVwWAYAUmb1m6zHpWxEwhOis0Kq9UCj4Tq2G1W7Kg80iZmelssHjTmY7Wof42fffYZAOD1\n11/H7373OyxYsAALFizAgw8+iL///e8Ih8NYs2bNMTXOGvSyyMuhQ/QCPXKE4O4ZM4wCLmbCOHom\nu0qIpb6ehF1mziSY//BhIxz8298KFrqZbnxTE/3M2ucMbbMmu89Hq1sOGSxYQH1qaqLzer+uvJJ8\n4vpdLrVv06bRcbMxYL9ZSKeuDli1iv4Ph8VYs69LlhAkroLt+ZjMrA+FaEfDyJFUp8zg119ndm8q\nKrT9qavTtmMWFqio6Bh994TOfPu+BwB1mtiEnbzmDYQ0kzsA+AJB+IPa8EwwHDII1rj9wZi05dvD\n4kVjPlaLOsFfeeWVmDt3LgCgsrISOTk52LFjB4YPHw4AGDt2LDbwpu1WmgqKLSoSpDk+x7A9w8TB\nYGQmO7OwVQx2hu0Zmvf7jT7IMLO+bWaKb95MK1AVQz4vzxgyuPdeAfeb+XXVVaIvViuRzlRQtd9P\n/dPD8Cr2+axZ1NfUVGNd7FdxMZ3X9zEz03js9dcj7ygoKjLWFQnSZza9XD4tzXwXREew6TmU1BlY\n/e1l7fkeYEtAr6e2Wa0WqCjfs6+9AClJ2qnK1xw+4Wx6DiN5A6G4Z/SzxSQPlJSUhEceeQSffPIJ\nnn32WXz22Wctf4zp6elo4uWszsrKyiLWe95552PrVu0fNUO8FouAaWX4dsAA+nnxYgEb19XRpFJc\nrE1xetdd5mlEOQmNGRycmyug8aoqmrh69RJM8f79yRez+hke//xzKi+niTXTaM/MpOu2b6fQAR/X\nlzvtNKNWf3k5wfKq1K4ZGeZ15eYKfXl9qle3mxT5kpMFzC/Xv3o1CRGxD7wD4dtvtZC+10sTObP/\n+X7ymKWna0MGzzwDFBWFj9ZraamXd0GkpoZRVrYLkczr9UZ9/qJZRkYWMjN7ICvLjvx8i0agiEIG\n0f04Vjse/h9vO9b3ABD9XfB9rRd2K5Dg1526ZkEYNgtti2NLtlmQ7q/D9EuzsWhdDQISamZFGF9+\nsxPn5Tgi1nu8/pa2VLgQ1sF2sfrQFmuL/zHr/z311FOYOXMmbr75ZvgkOrPL5UJWVpbymmhbEzil\n6pYt4hhDvF27as+tXk0x+fx8mmhZHIVThD7xBL10hwyh1d/ddwvWeE4OleEc7VzmoYcEHKz3wemk\nSYfLFxYSSz0zE/jLX8T+cbP6CwuBJ58kP0tKaIIMh7Vsdn2bTU3Uv5ISgvgrK9Xl+Pq9e8nHwkJC\nGu66y7xehvT159xu0rMHhE7/rFnacUpLI7g/P19bx4QJxIqfMUOULyigCZ7JjU88QR9rTz9N/jGk\nz/dNHjPWH+jfH2hosGj84HprawGPxxL12Wrr1hiG5R95ROsDQM8i7TyI7sexWrStMR1lx/IeAKK/\nC3o6ffB9dPC4+Zmwzmcq2YMQLHDZu+PpDTs1kzufi0Wh7nhsk3t3awXmfr4XPp2PsfrQFmvLuyAq\nRP/OO+/gpZdeAgCkpqbCYrHgwgsvxKZNmwAAX3zxBYYNG9ZanwHQi18P8coCK2YwfDgsIFwVTM4w\nPDPYWXRGX8btVrPEVUIxzOI+cEC0zUI0qvpliH7WLOrv66+bM+tLSmiVyuWDwchCN7IYD4vNqMpz\nOMFsPK1WcWzQILWQUCikDlfce68a9ucdCAyr8zFm8ZvdNw4ZqHYI8LkTJSKjguXlvp1qYjbt+R4A\ngHqXH0GzZOAJO+nMAiDFZh6SSU+2kfDRNSR8pNJ3P1EiMmY7PE6kD8dqUYVu3G43HnvsMdTW1qK5\nuRn33HMPzjrrLBQUFCAQCODMM8/EvHnzYLPZNNfFIsYRCqm1youKCM6V4eKDB2ky6tmTPgzefFPo\nzpvpqIfDdC0QWaxFf11KCkm8mpV/7TUhjMNwf6xiMKypr4fCGxqA668X127cSP43NAihGFk/nqFw\nfdjB51Nr9qemmmu++/0iZ7mZrjpr6ANC6z6W8gyrb9xo1MaPpOHeVn3347GCN/PhRLDo403o5ljf\nA7H6u2Lzfsxcsb293E9YHNmdl/bDA3nn4EC9B/vr3MhfuV2T1jU9xYY51w7EFef3xIF6T5v13dv6\nLmgvjflYrS3vgqgQfVpaGv7whz8Yjr/22mutcFFtbreA2tmeeoomNRmeXbyYJiJGIz79lFaDCxdS\njDsaTP6b35iHAgCahFavFpCy368uz2lOn3mGyo0bJ/wzg9L5Z6eTsswNGULX19cbofBnnwV+9zsB\nnXu9wLZt1Fd934qKiHmvryM5meLYvXsbz/Xrpx3roUMpRJGaSlv8rrlG3Y/ycgoFFBTQdsbS0sjj\nVFGhbUcOP8yfT1wBFuPRX8vENbNz6ekRHqjjaJH8O1E+xJO153sAAIbEqEqWsM5vf9u0Dxed0Q3X\nDclF326pBpZ8MBTGFef3bFkZd7S+ezxqzMdqHbqTVwUbsxCNDI3qoXxZd57riASTq9jeHArQM8DT\n0szFaRjO1jPBVfr2en36Dz+Mrqk/aJAov3270NlX9a2oyChOM2sW+ThggLr+W25RM9NnzSI0ZPt2\nNXudQwF61r1ZqEE/rnL4gdnnkTTc40HfPR58SFjCOrPdPKwvVCC8P4gW9nk0/fZ40HePBx+O1TpU\nix4wQvRyitF+/bQwM2u+WyyCiJeWRqvhbt0iw+QTJ1Ied9Y7l0MBMozt8xE0npJCJMDMTBEeYBb9\nBx8QeiC3s369ti67nf6pyn/1lTn8q0rxyilxY4XCgcjwMuv/y7rzN91EKW6ffVak6DVLuet2a33T\n+/rVV6IO3nXwu99p67BajeIxXBffBzmU0dq0r3V1FTj99FzzC2KoQ/bnRIvbxBtE3xaLRYv+Lxv2\n4tm1e06gVwlrL0uxWbH45sE4vXuaAdpm0+vJq8Rj5GMAWiUuI197aP+PrYboo/lzIif3TqdFzwzl\nigpjqlCvl8RPOC4ti8F4PCSEw/FmPsd655HEbzhFKbej0nKvr6fJJxQC7r+fIPiCAprwi4pEuTFj\ntClSWd9erqupiVLFhkK00pXNLGWt200a+lVV6pS4+vIMnXP6WRbI4d0J+vKchlfud34+9ZMJ0X/5\nC40z161PuctCOuxbVZXw2WYjLfz+/bVlzjhDmx6XYXhZu53zErCYzIMP0n0Gouu7q4RoHI7erRKi\nUdXR0CAm9YTGfPsYC4f8ed2PHe1Kwo6TBcMhjDwrO6J4USAU0ujJ6/Xb9YIy6/fUxqzvrr/28x/N\nt2/Gcj2L2cSTxnys1mH54B9/XM1gZ/EbFczsdtNEq4K4VSlP9TC5nBJWpfM+axbp3Hu9AtJXsb31\nKVJVYQUWrpEZ/1zealWnrC0vNxfBGTEiOnTOQjQqLXoOEzQ2qn0NBsWYpaWpGfkqIR1Z2CcUUosX\nxcI+b4uYjOraJ56wtkqIJiFmc+JNFg5x+U8hWcCT3GTBIpV4UTT2eVsEZVTX/n5DbcxiNJ1RzCaS\nxbwP/niarAcP0CpShuPz8+l/WYe9qgro3p1002URHLZXXiFYX9Zft1q14jdTpwK//jWtrtPTzUVq\nkpOF8IuZFn1uLsH/nHbWTLiGSVmyGMz77wM33qj11eEAfv97CiO88ILwcd8+mmx5XAYMoA+BF17Q\niq7k5tLk+sor1Mf33zcK0CxaRFC8yleu//nnacx43J5+mu5XUxMx+fPyCBWR22bhHp64VfUPGCDq\n4pVwMChCBYDQ2JevU30MqKB0s3vJq/hoOvL8TMbSfsKOj6n051OSLGgOhjViJwnrXMZa8V1Sk+FI\nsiEQjM4+31PdhK37GzDk9K5w+YOG58JuteJAvUf5USBD5+qcBmHsqGzE2HN7GMrr61NdH6nteLcO\nW8EzhLx6NcG6MsRdWiqgetZhLy6m1Wd9PcHtegj67ruNkHtDA8XzAwGC9mVYuq6OrmHBFW6HdcY5\n9awZ9F9RQdrybrd5Gbeb6hs1iuqqrKR21q6lifvyy6ltgNqUdflZK37tWhGyYJ12FXReUUH9vftu\nmozXriVhnvvuIwieE9mweI7KV07V6nZTPJ4FcKqqyB/Wj+eQAF/LwjsVFebhAf7QkSd3+X5Nn079\nlEMfMpzPZqYLb3Yvnc7YdOTNUuwmVvDtZyp2sq85Mbl3dmOt+O8qjsTEPp/9zre48pkvMHPFdlz5\nzBf426Z9huv0kD6bHk7/rtLYpi+IFu36aFryqmfSrO3OYLaioqKi9qj44MGD6KNPK3bUkpJo0isr\no4n3t78lxbAtWwjSPngQuOMOAZnyse+/pxe3xQJcdhmwezddf/HFpEr32GPa8rt3Aw88QCtPhqX5\n3K5ddM1Pf0rQs+q6Z5+l1eG0aVSe22L2+eDBFDJobgbuuUf05+KLCRLfsgV49VVR7w8/0ARzxRXA\nyy8DXboQDJ6aSjC43scffgBuu41g7bFjyYdJk8TPen9WraL6v/4a+OUvadX+619TPVx20iSauPW+\n7txJv5eUAPv3U10XXwyMH2+8Dz/8QONTXk5tf/IJtfPiiyQEdP/92vrnzyc0Q0br3G7jPd+9m/xf\nsSLydfn52uvKyui6Cy803svrr6cx1pcfN07s/Vc9k2btnyirra1FDz2kcdQi/W3Fo5n5m5achDO6\np+Gz7w8hxW5FIDGznzQWDAEb/l2LgkkXYMO/a5Fqt8FqBUpvHISLzujWUm5PdRNm6PQPdlQ2In/i\nefh6b53pdQCtxKe+/C94AyH4gyE0h8LU5jUXYP2eGgSleToYCmPtrmp8svMQfM2i/GffH8LU4Wcg\nLZnAbPmZjNT2ibS2vAs6lEXP8KrFomV9T5hAcVszVjwgRFsYsh4w4NiFU1RiO3PmCJGa9esFFL93\nr2CWb9pEHxzBIGWCu+oqmhCiMd+rq0mwRxabMfNxwwZqQ89eT0oilr7sD9dfX08fD3qxIE7iY7eb\nM/6DQSrD5yIJ0nA/9+3T+rBhgzn7XIbXzVj6gCgj/8z/t+Y+y/dIX14P08dTSthTjUX/2a5DKHxv\nB1wqvdKEdUpjpjxD5ypI/H/Xl6Po/Z2GaxdNHtQidGPGZFeJ4HCbRzx+3Pva/2kEdNLsNsACzTE9\nm58tnlLCdjoWPSBenAw/MzzKMKtZytDKSoKMmX3f1ESQrFla1/Jy87oipWQ9dEiUq64mSH/aNGqT\nJyQZ7l60iFaF991H5Q8eNIfCr71WsPlraqgPZj4y/O1yacMPTieJ/Mj+MEweDovynDa2qYkm3Qcf\nFCGDujqa1H73O6p32TIKZ8jtmEHuBw/SufvvN/rg9Qo4Xobl9fC6Cu5n7gSLyejh9UghABXMbhaS\nUEHvsr8J1vyJs+yMFFxxfk/4g6HohRPWacwdCLZMkCr2+btbK7DgI3WypiFHy0di1qtCAAynD+zT\nxSigEw4Z5JDN4PfOyJhXWVwI3SQnGzXKVQx7FliRhW4+/thc352Z5iqhG2acq9LFMiOcWeXJybSS\nLSrS1pGaajzGWvEZGWome1KSWis+K0stMsP67XKa1kjMehausViMYkEq9jwgjuXlGcuwfr5K9CcU\nUuvbm0Ha0fTdS0q0pDZVeZU/kQRyunRJCNZ0FmsnMDFhHWTBUBj1Lr/ynJm+OwD8auQZOLtXprK8\nzG6f+8FOFEy6QClAI4vTpNktcNitWDh5MBZO7pyCNcdqHQbRAzRBvPkmMbtl4RqGWWXY2+mkn64q\nxQAAIABJREFUiTYpySiswtCzLE6j107Xi+akptLqliFwMxEZhtCZXa9v2+uliSg7W9RrJqTDWvEW\ni/CbRWdYoU/vI0PFZj6aweR8TobozSDxoym9TeHs9eupfn0IAzDXt1etfiPpu7OvspS5WfnYQgBh\neDwWU5g/3lfnpxJED6j1vhPW+W3R5EGYPOx0w3HV/U5JsmLxTYMxabAxpqwqH0sI4LDThy+/2anJ\n+BZP8Hss1ikheoAmuzFj6GVttRIkzHD9hAnA6NFEqBo5Enj4YXp56wVlGhroeF2dEKdhkRZAsKpl\nJvuyZQLqraoyh6AZQq+pMTL9ZZEXi4Xqu/xyLfS+bx/lP2fhmlGjhIAKs/QbGghFeOgh4WNVFbXn\ndNJ4mMHS/7+9c4+Oqrr3+HfOTJJJMoS3EEEIadCIFhEoL4UiWAGtuIooghe6bi4tr15EgQTyMAiJ\nrISHbWm7rLS0GqQVtNR3sZfUImLCkiWoiK6iASFiIA8kM5PHkDn3jx97zmPOmTzIZB78PmuxyJy9\nzz77nMDec777t7+/+nqqf/68duIWkv5f/kL3od6doJfEnU6lTbEcYPYs1Pd26hT90RsViSh8IwJF\nqjsc2sk9UH2zJQBAOfbFF5/7ylh6D38CmaIwkYtZjgGjaHWLBRj/vd5tri/k9UByem9HHG7qY9eU\nRYv83hZCOtQJUxS1OUogb3kzD/f6eq2kHyiNqzBmEcY4arnfzHfe6zU2iBFtCUncyGTHKKWqPpWs\n2+1fbrXSNfPyyKDGSO4X/u564x0h6RuZ5uglcXW6WHU6V7U/f3y88b0Z1dfL7Gra6+/OfvDXFkam\nKEx4YpNa/10ZSe2C9vq7R7IffCgJidGNID6eJiGLBfjtbxUL2qQkf4OZVav8zW+EJJycTJNW//70\nltqtG6kDcXHmpiv33kvGORYLvU1nZiptCrMXYfwi5GijtoTJS0ICXTsxkd6+W1qojYYGYwOXlBTl\nZ/0uh6NH6Y1W3O8PfkDLF0bGNaL+gAEkdTud1Ic//IGeidn9FxdT/MLs2YqBjpD76Toyqqos8Hrp\nOYl7a2qiLwXr1inLIeoyu93/TVwgSZQzQBjetCaXt7c+E7mcrWvwM0VhQkdCjISFE1PxnasZO8u/\nhnpvQ2KsFU/NvAUpvRNw4D/V+OPBrzROhCS1D8ePbwucC2LmiAG4I61Pm+Xy9tZnQvwG39xMknpZ\nmb/8rZalV62i1Kh685viYtpD73IpMrwwiLl40Twy3emkyXfCBGM//AsXSOZXy9HV1YGj3Csq6Nrf\nfaeNeDczcFGnkhVpa9XlwjTmf/9Xu8TgdNJ1xOQu6tfX09v+pUuKtG0muVdU0HMvLVWeneizuE5D\ngwWyTM9JGO+cP69MrufPK8sn6jKzyV3QXrmc5fVrg4E94+Hk9fewwe3x4vcHvsLzuskdAJout+Cu\n9Oswekhv/HRCil+gXIvXi/Hf69Om67RXLr+W5PXOIKTD5eXLiv97oOjtGTOovLHRX+5+8kma1PQS\ntyTR265eQtb7qRtF2Ks97EUke7du/vVEmdoX3u32vxe9hK73yNenVxXR8Jcu0f3pPfeNZPEPP1R2\nIIi0r2Zpb9XXFl75+ih9p9N8d4GR37woY5iOUOdqBsfQhx7193OjCHfAfymltc9M6AipRC9k+G7d\njL3lMzLo7VCUd+9uLDkbSdx9+9LkuG4dSbzCpKZnT2pbsG8fyfRCBnY6SWIXXuzx8cDDD9P5v/ud\nImcLr/h582hdWAS4XX+9uXe9kNDV7X/8MfD119o+Cp/59evNn4vax/7sWZL8hwyh+keOkAvf3LnU\nf1G3poY+r1+vTRMry9pnAgB9+gT2ZmffdqYzOXrmYqi7cM0gWQCvwbeppZNTkdrHgXWvH4ezydxw\nyG6z+rzZjZZW1OVMaAnZG7zXq0TM19cbS8ktLUoOdiE5L1xIb7FlZcD+/UqO8/37tcfcbpK3JYmU\ngnffpXYliaxQ1ZL5hQs0ye3eTTEB2dl0flUVlTuddA0h5Y8ZQxL3smUUva/2hTczVqmvp/Peeotc\n4wC6v6+/Jrm9tlbZ1rdhA90H4N9XEXVeV6ccGzqUJuSaGuXay5dTVP+OHco2s8ZGiuoX/S8tVbb5\nHTpEz1VcK5BnfWu+7S0t9My8Xvq7xXysYBjUOJtgj+G1ly7DRCoZNagnrkuKg6cVw6HmFi++a/Cg\nxtnUJu/2k1X1ePnDMzhZVX/VXWfaR0i86IWj2Z495GFeVQU88IDWB3zbNpKos7Jogl64kLzoJ0+m\nALPkZJKfCwvpLfiuu2gSzckBDh8Ghg+nt/fCQuCTTxRv9mXLyPN89WrF0jUvD9i7F7jvPvKmnzeP\n3urF+V98QWvTd9/t7+GekAAcP64cmzGDviTo6330EXD77dTGmjVKv372M7pmWhpN1Bs2KGUjR9Jb\n9qOPKn0tLKS+qe995Ejg1VfpntU+9T//OfCTn5BHf2Gh/30XFtIEL8q//JLW37t3pzaNPO/37gWG\nDaPnbeTbLn63WVlK/yZMoIDHrlw/D+TfHAlcC170ALmTzd1ehn99fgGXvV6W6YOIZKG53egZWwC8\neuwc3v70W1z20guPHnuMBIuFEsa8c7wK2w9+hfT+3fCjYf1Mvduf/PsnWPnyx3jnsyq8UHYata4m\n3JXeL5i36ce1PBaExOjG5aLgsyNH6I1x7VoyWRk9WjG1Efvijxyhc1atokQpK1eSTF5crJQBNPGI\nRCMvveRfPmoUnTdnjvJ561YKyBN7yEeNIjlbkmhfuv78J5+kCTElhd5Wa2qUSHy1OY3HQ38SE+lL\nx7lz9IXEatXek2h3yxb62ahM3OvWrfRFx+ulLwhm9Z55hp5vr15KQJ6+rrhvu53ken15cTGpGY8+\nStcT5j3q5/TLXypl6uh2p9P8Hh0O038unU4gc4hI4FowuqlxNuGOolI0ejh4I9jESBZ4DHR5M7le\ney7wl5+Ng9tDWeKaLisn2GMkvJ81BQD8ottPVtXj7mcO+LX3f49PMt0+Fwyu5bEgJLqYOvf2vn00\nOVZXK+UxMf7b5DZvVo6JrWlq1GvfRuXqrWnis92u9VEX293Mttf1709SuMVCfwYMoL/feENJrzph\nAu2tv/tu+hY8dSplhJs61Ty3fEKCedngwTRJC5c3o3gF9TOx20lFGDuWJlSjuuK++/c3Lnc4aE3e\nbqd+TZigPKdp06g/sbHG3/LVWxnLy+nvvn2VnO8MIxC5t5kuwCTurS372WOsFsTYrOgeH4tY3TYZ\nCRYc/+aS4XlmcRUcb9F1hDwfPKBsl8vMpLVfl0ubgEYgts4Zbf9Sb2Mz2x4mtqaJz0bb09xu4/Xn\nhQtpnVxsDROOdOXlNJmvWqW0IWIK9O2b5Y13Oo3LRI774mKtc9/TT/u3IRz52uJMJ/oV6DkZJXAR\niYBKS7UOeeoc60ZbGZcupeMMo8Zo/ZYJDlcT197cImNgz3jD35fb04L//tNhjNu43y/HupmLndlx\npvMJ2Ru82qFMbJc7coQMXXJyyHNevx3MaqVtXkbbvxwOZRubcLLTbyUrLQ3s0FZYSHvEjbbXzZkD\n5Ob6u+iJLX4zZmi3rBUWkkSvbkNsSdNf8623FGe9tlxTn2RGnbAnNjawM9369cq2PKPnJLb+CTc/\n9e9KbMMzcsjLzqYvA7JsvIWO84gwetTuZPExrRgoMO0mzmbxub7lz7zFb5K3AMifeQvsMRLirJYr\n5/hPCeL/rvh9xdm0LbXIgKdF9iWByXzlY9Q4m9AzMRZWnUJglSzomRjbWbfItELANXiPx4Ps7GxU\nVlaiubkZS5YsQVpaGtasWQOLxYKhQ4ciPz8fkoHM1t588GVlFCSWkEDBd/fd55/LPD5em9xEXZaQ\noM3rfv48XSM5WZsYRp10BaBJKyWFyuLi6O+PPybJXZ24JlC++fHjtYlfGhtpmcFqVa4p3OcAJYGO\n2pFOJFFxOpWc8oFysVdU+Cd4KSsDxo1T1sRFf9T3IRLFiGQtTU3KWrp4xk6nsoVOkuj64lmPHx84\nQQ9g3udgqrH6XO61tZW44YbATlrhTLitwQdzLKhxNqH4H5/jpQ/PBvMWrim6xdnw20dvR/f4WAzs\nGY/j31zC4pIjcHv8c6GLZC2JsVYcPXMR+a8dh0uTR92Cv/x8gi9n+hvHvsGqPcfQaLJPXrQLwDRB\njD7/emejTihz/sxXvAZvxGuvvYYePXpg165d2L59OzZs2ICNGzdixYoV2LVrF2RZxn6xn6udSBJN\ngnV1JNHfeKMiQU+d6p8oZeVKqjt4sOI6N3kyScYuF02Wake6+++nSa+iQpsYRji37dtHf+bMIQm5\ntlZxcbvxRqqXmakkrjHLNy/keHGdixfpZ6eT+iP6n5lJyXM++YR+rqyk+xSOdCJBjFgCUCfe0V/T\n6fR33quspAm/qYkmubo6xZlOLH3s2EF11claRHCcSIgzYQLVnzhRmfyFy6B4BmbSvllOdrP8652F\nPs/8E08AdnsyG+90IsEcC3o74vDQqIGd3ONrmwbPZdxyfXfcdkMPHDxZjZ+98KFmcgeAxsvafO1p\n/brhrvTr0HRZW6/psuzb9vbq0Uqs3HPUdHIHlG1ybdlCFwz0eePf/era3Z4XcIKfPn06HnvsMd9n\nq9WK48ePY8yV/KKTJk3CoUOHOnzx5maSnNUSvc1GPxvJwDk5NKHp5WmHQ5HFjfLBqxPDmOU3f/ZZ\n7XWEO96OHVrHOiMHOfV1cnIUX/d16/wTvSxerOS117eldtg7coTW940kfXWCGLXznXCTM8u7vnix\nIr2rCeRMp24r0LMIlJM92AlijO43N1cK6peKa41gjwX7Pj131X28lkhOisXEtN6m5cJNLlDedTPx\n1t+ZDrq2tOdZLRSIFygne1cliDHKG//LQ9WocTYF7ZrhTEAnu8TERACA0+nE8uXLsWLFChQVFfn+\nASQmJqK+3vzb0YkTJwJe/Kab0tG3r0UTQS4iv80i4R0O48Qww4ZpE7JUVCiOcOLclBStQ96QITQ5\nvPEGHVu/XpG8xdZCcX5GBsn9agc5u53a1F8nIUG7U0Dd/wEDaN9/nz5KYpyKCuq73k0uO5tysVM9\nGW43EBsro6HBja1bE2G3WzTOd1Yr5UGna1kMr/3kk8D69TJOnPhc83swqq9vS/ssZGzeTErApUse\n1NdfwPnzl678DpNQVNQXSUkxfmXBIFD/1fcZSTQ2Nrb6/6crCfZYsPejM53X2ShnckoCsn7YHwBw\nPC0W/zx5Ce9WuKA2n4uRgPc++gwAIJm4C8RaLXjvo89wUx+779gX1Y2IkQD1y76oZ9RWnBXIu6sf\nvtfbjiqnB/0cMegRdwknTtD/96FxwJ9m3WBYFgy+qG7066P1yrNQ32ckcTVjQatWtefOncOyZcsw\nb9483H///di0aZOvzOVyISkpyfTc1tY93G6Sx4UULTzQ1TKwej+1SMIi9rID9IZYWUmT24ULJM3v\n3eu/D17dptNJ5WLP+8SJ9MZ69CiV5+eTZC/Yt4+i9Ddvpmh5UW/LFuPruN0kGRv13+mkN/vcXDKh\nEezda1z/9Gm6RmamBcXFQGGhBT16ONDURM9OX7+hweL7WV9WUUHPqKHBovndiN0JbWlLPIutWy3o\ndmUra48esejRYwAA/zXvQGWdRaD+R+raW2vrbqEgmGPBT25vwfb3T3daX6OZd0+5ca6hCvsen4yb\nbwbuGk1+AlA50HlhwcTbh9HP73wLI3sbUUf9Rn2ds8mvfosXpm1ZJAkzxn0/bGxpA/U/XPrYXq5m\nLAgo0VdXVyMjIwOrV6/G7NmzAQDDhg1DeXk5AODAgQMYPXp0R/oMQJGG1RHzly+bJ0oxkrb18vSo\nUYrfulF0uDrK3Wo1l6eNJHR9QhYzCb2igiLV9X3Iz1fSyOoTzMTH08TfWjIbkXQnkBRuVCbaMpLL\njeoXFHhDJrm3l0D9ZzqHYI8F49qYfYwhvqhyYf9n3wIInCtdXSbsgOOsFlO53KitFRP6hExyby+B\n+n8tEjCKvqCgAG+//TZSU1N9x3JyclBQUACPx4PU1FQUFBTAapAjtC2Rvl6vkIzpjVkYqxhF0YtE\nKepoeH0U+gcf0DGHgwLDYmLoZxEdLqL2Rd75w4cp6tws6ltEsos2jSLH339f6Y+Q7UVedHXEvzra\nXSTBOX1aieAXe9szMpQ1fL2DnLpv4l7E89HnSldHlYu2xBcDo2j2QFHo+rJwzMnOUfTBJdhjQdbL\nx6I2it5qAWJsUquOfRIAdY0YCQh0ypzRA5E5Pd0XLQ74u8kJRFR5YqwVruaWVvOpB4pCV5eF68TJ\nUfREQIk+NzcXubm5fsd37tzZzi4aI0xR3G76vHIlyd6lpcD06f4S9KJFJGvn5CgyeV4eRaZXV1M7\nU6dqbWsFajvXTZuUyH2xJGAks0+erLSVmWleb8oU7XW2bKGodRHVry4TMvnp00rA4KZN2oQ1y5aR\nimBkySuuuXKl8gyefpqy5KknXZE/HVAsYsVnI9T1ExOBr7++BCGr68vCkUD9Z66eYI8F9wzrF9UT\nfFt8IKySNuVyaw6+SfYY3FFUihhJgsfrRfGDwzFzhPG/efEG3lbU9c9fZVuhIFD/ryVC+h4m5HFA\nm0M9P984Kv6RR/xzrYvo8MJCkvpHjSL52yiiXkj0sbF0fk4OmcwYyexC7hdtmUXRq41lxDFAJHPx\nmprIqHOyq418Fi9WlgxE1LrREoCRyQzDRCr/+rwq1F0ICvYYCY/f0RebZg83NJER3NQvEVseHgF7\njITEuNZNf9L6JqCk/LQmWlwYzDCMIGT54L1exX9d7V8uks3oo+KdTnozM4tMFyYvxcVk0jJ7tpLj\nXZ3XXRi4xMYqudMBJaLd7QbefJPqbNlCMvgrr/jnVlfnU9dH1jc10VtzZeU5bN06APHxSv54cW2R\nD95up7dPkQ/eYtH69ANKxL+of999/s+A15uZSKXG2YTXP46ebXLJ3ePw8MgBmDIsWSURD0Ctqxnr\nXv/Mr37GhMF4cuatAIA70vrgX5+f9zObEdgkYM30dPxgSG/81x/K0agS9WMkifOwMxpC8gYvjEkq\nK0liVvuXjx9Pk594k588meqtXm1u/FJRATz/PE2iIs/5qVO0rr9kCbUxdqxSVl+v9X7fvJnKliyh\n65aWUvnkySSll5bS1ralS+mYOp+6kMvdbprUbTbFRMbpvARZpnanTqUvIHffTZnq1PWFtL50qb+h\nzr599FwaGqh+U1PXG8kwTLAQpiRGk1mkUpIxFo9Puxm33dBDM9nemWYcSDhv7GDfz70dcbgr/Tq0\nmGj6NquEn4wcGDITGSayCFmymexsin7Py6P1cH0k+4YNFHCmjoqvqAgsvf/jH9pjRlK9iKKXJPMy\nIbOr/drNJHrRJ7M36Ph44+uYRbIHMpFR1wvnqHaGaQtqU5IAxmgRxYLxg0xToab164YF4we1Wl8d\nCS484kUUfChNZJjIIyT54L1eJXJ92jSazANFsqs909VR9OroeJuNpG/1Mb0ffCCveH2ZzaZEqDc2\nanOf6+uLVK56RPSj2std9M+ovtqf3yw6Xl0vmFHt0ZxDORIItyj6q8Gsv8fOXPTzKu9MLDDa/a0l\nBoDVZsGktN6oqHbjP9VuTXmsBfhe/264pb8DFxtbMKRXPC41teCeYf0AAO98VoXvX58Ee6wNI67Y\nverR/y5PVtXj6JmLpvUFbYl874qI9mj+vxQJBC2KPlgIv/IjR0iCzsgwN2YRkeZqY5iXXvKPLh81\nitaxHQ4yPlm50r88N5fW5keMoLfonj1pzXvJEvO21HatRlHrIkI9EFarUi9Q/bZGvkdCVDvDtEZn\npIulzGYWjRWrPUbC+1m0teWOotKA29M8AOb+4Aasf+D7qHE2+dWXbBJ2/s9Y9HbE4dWjlch65WPE\nSBJePfYNih8cjqLZt7W7z2n9ugWc2AVtiVaPhIh2JnSERbpYo7Sm6kjzdevobTZQ/dZkbCO/efH2\nG0jyNvI556h1hrl69DJzjNUCm0TbyswQRUKy3jT7Nmya3brJi2jfqO0XPvgaJ6vqA8reRh7nHLXO\nhDsheYOXJHoDVke52+3aaHRJIs90t9uC+Hhapxf1Gxootau6vpC8XS6qo26/oQHYuFG711xE7+v7\nope8zTzlI3nNOxKMa5hrg5kjBuCOtD4+mbnO1YyjZy6iZ0IM6twejLiSVvStw59hwq1piLFZDSXr\nYclJOHrmIlJ6JyDGZkWNswm9HXF+7b9+7BvDSPajZy4irV83v/qi/bN1DYiRpKiMWo8E4xqmY4Rs\nm5xIVVpXZy5/nzjxuW/tQT2hGp2Xn0+JZy5cUNoQ8rUs03E1wjDG4QgseauXE9TnNjREpjwudjCY\nPXOG6WrE27ZaAhfGLULK/lFaEm4eYpw9TZwHAI0eL+KsFlgki8/4RS1jm0Wyj1DlJzeSvaM1at3o\nmZuZ5TCRR0iH9I7K30bnPfUU2cIatWG10hcAvWRvFOimJ9qi1nnJgQlHOiqBq88Ta+dNLbLp+T0T\nYyHpZHrJQscDEY1R67zsEP2E7A0e6Lj8bXZeSoryc1wc7WVPSKCJ7NIlxcxGbVLTGq1J+IFwOJJ8\nSwbtOS+YEno0LjkwkU9HJXCj8/TnV1xw4sB/qjFpaJ8rEr9NE7mfGGtrk9RuJt+3lY5K4cGS0KN5\n2YEhQjrBd1T+Njvv1Cn6+emnKdmM8KxfuJAi8DMztZJ+U1PbJraORK3Tlr5kPPFE+6TwYEvo0bbk\nwEQHHZXAB/aMh9tjbJLj8Xrx9FufobyiDgDw69KTGDekJxo82m15DZ7LbZbaOxq13lEpPJgSerQu\nOzAKIZXoOyp/WyzGkruIuh87VutZP2WKv4e9SC8bLBoagNxcqVOWHzpTQo+2JQcmOuioBF7nakaL\n13+3e5xNwqJJqb7JXVBWUQclFp+wWAKE7XcCFxtbrnr5IRgSejQuOzBaQvoG31H5226ngLrMTJLl\nv/2WJv3165U21DJ0SkrXy9KdvfzQWX29miUHhgkmHZHAj565aHh87Yx01LqaDcv0a/B2mzWosnSV\n09Npyw+dLaFf7bIDE96EfFgX8rf679Zwu5VUrGPHAg88QHvl3W5qQ+9Zf+pU1/u3Cym8vdfs6Hnt\noSPPnGG6gt6OOD8P90Coo9/V3JnWB5OGGkfM69/ggy1L93PEdHj5oSsk9PY+cyZyiMihvTV/d7td\nW96aMU6w+lhQ4G33NVlCZ5i2E8jfffSQ3piYpt1aNzGtNzY/1LWydA+7tUNSOEvozNUSUom+o1it\nJDOrjW7U/u42mzbVrDDS6UpZWpKAxkYlXWxbr8kSOsO0j/UPfB8LxqUY+ruXLByHDytqfFH0o6/s\npe9qWbqjUjhL6MzVEJETPNC6v7vN5l9uu3K3XRUt7nRewg03DGj3NdlrnmHaRyB/99FDevsmdkEo\nPNw7ek32m2c6Cr8XMgzDMEwUwhM8wzAMw0QhPMEzDMMwTBTCEzzDMAzDRCFtmuCPHTuG+fPnAwBO\nnz6NuXPnYt68ecjPz4c3mHZwDMOEFTwWMEzk0OoEv337duTm5qKpiewRN27ciBUrVmDXrl2QZRn7\n9+8PeicZhgk9PBYwTGTR6gQ/aNAgbNu2zff5+PHjGDNmDABg0qRJOHToUPB6xzBM2MBjAcNEFq3u\ng582bRrOnj3r+yzLsi85Q2JiIurr603PPaJOWdZBOqONUBLJ/Y/kvgPc/86Gx4KOE8l9B7j/oaaj\n/W+30Y2kslRzuVxISkoyrDdq1KgOdYhhmMiAxwKGCW/aHUU/bNgwlJeXAwAOHDiA0aNHd3qnGIYJ\nf3gsYJjwpt0TfFZWFrZt24Y5c+bA4/Fg2rRpwegXwzBhDo8FDBPeWGRZlkPdCYZhGIZhOpewSTbj\n8XiQnZ2NyspKNDc3Y8mSJUhLS8OaNWtgsVgwdOhQ5Ofna9b9wo2amhrMmjULO3bsgM1mi6i+//73\nv0dpaSk8Hg/mzp2LMWPGREz/PR4P1qxZg8rKSkiShA0bNkTM8z927Bg2b96MkpISnD592rDPv/nN\nb/Duu+/CZrMhOzsbw4cPD3W3g0Y0jAMAjwWhgscCHXKY8PLLL8sFBQWyLMtybW2t/MMf/lBetGiR\nXFZWJsuyLOfl5cnvvPNOKLsYkObmZnnp0qXyPffcI588eTKi+l5WViYvWrRIbmlpkZ1Op/zrX/86\novr/z3/+U16+fLksy7J88OBB+Re/+EVE9P+5556Tf/zjH8sPPfSQLMuyYZ8//fRTef78+bLX65Ur\nKyvlWbNmhbLLQSfSxwFZ5rEglPBYoCVsvsZMnz4djz32mO+z1WqNqH22RUVFeOSRR3DdddcBiKw9\nwgcPHsSNN96IZcuWYfHixZg8eXJE9X/IkCFoaWmB1+uF0+mEzWaLiP63ZV/5kSNHcOedd8JiseD6\n669HS0sLamtrQ9XloBPp4wDAY0Eo4bFAS9hM8ImJiXA4HHA6nVi+fDlWrFjRrn22oeRvf/sbevXq\nhYkTJ/qORUrfAaCurg6ffvopfvWrX+Gpp57CqlWrIqr/CQkJqKysxIwZM5CXl4f58+dHRP+nTZsG\nm01ZJTPqs9PphMPh8NUJ13vpLCJ5HAB4LAg1PBZoCZs1eAA4d+4cli1bhnnz5uH+++/Hpk2bfGWB\n9tmGmldeeQUWiwUffPABTpw4gaysLM03q3DuOwD06NEDqampiI2NRWpqKuLi4vDtt9/6ysO9/3/+\n859x5513YuXKlTh37hx++tOfwuPx+MrDvf8Co33lDocDLpdLc7xbt26h6F6XEanjAMBjQajhsUDX\nTtB62E6qq6uRkZGB1atXY/bs2QAiZ5/tiy++iJ07d6KkpAQ333wzioqKMGnSpIjoO0BGJO+99x5k\nWUZVVRUaGhowfvz4iOl/UlKS7x969+7dcfny5Yj5t6PGqM8jR47EwYMH4fV68c0338BLwqVdAAAC\n9ElEQVTr9aJXr14h7mnwiORxAOCxINTwWKAlbLbJFRQU4O2330ZqaqrvWE5ODgoKCuDxeJCamoqC\nggJYrdYQ9rJ15s+fj3Xr1kGSJOTl5UVM34uLi1FeXg5ZlvH4449j4MCBEdN/l8uF7OxsXLhwAR6P\nBwsWLMCtt94aEf0/e/YsnnjiCezevRsVFRWGfd62bRsOHDgAr9eLtWvXRsQA1VGiZRwAeCwIBTwW\naAmbCZ5hGIZhmM4jbCR6hmEYhmE6D57gGYZhGCYK4QmeYRiGYaIQnuAZhmEYJgoJq33wDMMwTOfy\n3HPP4YUXXsD+/fsRFxcHAHjzzTfx4osvAiC3wPT0dKxevRqxsbGYMmUKkpOTNXuxs7Ky4HK58Ne/\n/hXPPPOM7/jmzZuRmpqKWbNmde1NMW2CJ3iGYZgo5vXXX8e9996LN998E7NmzcK///1v7N69G88+\n+yySkpIgyzI2btyIv//973j44YcBADt27PB9GRCIfdlM5MASPcMwTJRSXl6OQYMG4ZFHHvG9sZeU\nlCAzM9Pn6GaxWLB27Vrf5M5ED/wGzzAME6Xs2bMHDz30kM9+9tixYzh79iwGDx4MAPjoo4+wdetW\neDweJCcn++T3jIwMn0QvSRKef/55AEBZWRnmz5/va//MmTNYvnx5F98V01Z4gmcYholCvvvuOxw4\ncAC1tbUoKSmB0+nEzp07kZycjLNnzyI9PR233347SkpK8OWXX2LdunW+c40kegAYN26c3xo8E76w\nRM8wDBOFvPbaa3jwwQexY8cO/PGPf8Tu3bvx/vvvY+bMmSguLtZkIjt8+HAIe8oEC36DZxiGiUL2\n7NmD4uJi3+f4+Hjcc889qKqqwpw5c7B06VIA5N+enp6OoqIiX121RA8ACxYsiIgsbIwW9qJnGIZh\nmCiEJXqGYRiGiUJ4gmcYhmGYKIQneIZhGIaJQniCZxiGYZgohCd4hmEYholCeIJnGIZhmCiEJ3iG\nYRiGiUJ4gmcYhmGYKOT/AR0vhw+EGBVEAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["#Si vous voulez les deux graphes en 1, il suffit de reprendre la structure de matplotlib \n", "#(notamment l'objet subplot) et de voir comment il peut etre appel\u00e9 dans \n", "#chaque m\u00e9thode de trac\u00e9 (df.plot de pandas et sns.plot de searborn)\n", "\n", "from matplotlib import pyplot as plt\n", "\n", "plt.style.use('seaborn-whitegrid')\n", "fig = plt.figure(figsize(8.5,5))\n", "\n", "ax1 = fig.add_subplot(1,2,1)\n", "ax2 = fig.add_subplot(1,2,2)\n", "\n", "ax1.scatter(df['AGEH'],df['AGEF'], color=\"#3333FF\", edgecolors='#FFFFFF')\n", "df.plot(x='AGEH',y='AGEF',kind='scatter',ax=ax2)\n", "\n", "plt.xlabel('AGEH')\n", "plt.ylabel('AGEH')"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Exercice 1 : analyser l'\u00e2ge des hommes en fonction de l'\u00e2ge des femmes "]}, {"cell_type": "markdown", "metadata": {}, "source": ["Ajoutez un titre, changez le style du graphe, faites varier les couleurs (avec un cama\u00efeu), faites une [heatmap](https://en.wikipedia.org/wiki/Heat_map) avec le wrapper pandas [hexbin](http://pandas.pydata.org/pandas-docs/stable/visualization.html#visualization-hexbin) et avec [seaborn](https://stanford.edu/~mwaskom/software/seaborn/generated/seaborn.heatmap.html)."]}, {"cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [{"data": {"text/plain": [""]}, "execution_count": 27, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAEjCAYAAADjQ3L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXuwHcV1//tdPbP3eR89EC+BBCiW\ng4BgfqAr8K8OOMkPIqccl102BD8KEmObxGUck2tiMDECChNMiLlFIH7E9XP5BkIcHD9CnPxyf7Fs\nhxAI5qoSbI4P9rWNQUi8hR7n6OzHTK/7R0/P9Mye/Z599sxWf1RbZ/aenu6enp5Z02ut7kXMzLBY\nLBaLxTJUxLArYLFYLBaLxQpki8VisVhygRXIFovFYrHkACuQLRaLxWLJAVYgWywWi8WSA6xAtlgs\nFoslB7jDroDJrl27hl0Fi8VisawA55xzzsDy/odv/xPWrzm26+PK5TJ+5Vd+ZQA16oxcCWRgsBep\nGQsLC9iyZcuKlzuq2PbMFtue2WLbM1t6ac9BD77WrzkWWz/x9q6P+39v++YAatM5uRPIFovFYrH0\nTQENslYgWywWi2X0IBp2DbrGCmSLxWKxjB7Fk8dWIFssFotlBLEjZIvFYrFYcoC1IVssFovFkgPs\nCNlisVgslhxQPHlcxEF9c5gZZnjn5HazfWlp047rNf8s9qWlW6l6DbPsvNbLtkm+yu6mXubIybZJ\nf/lbsmUkRsjMDI8ZftBPBBgMIOh6EAAkmu876XWbUZUc20dhCgUF+/Q2hXm2z7/bffH8W5WtjjPT\nRXUeTL06aZMTTjoZNV/mok2yKDttn1mPzurVe9lHH3c8qpJ7bhMKvo9Sm/TTT05+3WZUfDnwslu1\nSfN9w7tvu8nfAcMVBMqzWljkuG5NGA2BDITCGIg6Tdr3tH1CiIZ9yXdATmyb39vl3+2+ZP6dlp2s\n8yDqhSbfzXqVx8Zy0yZZlD3sek3NzPRVdqt69FOvPF6rTsrWQmTQZWexbyXv227y9wE4yLlWONeV\nS2ckBHK/7c7M+X7TKxi2PS0Wy9Ap4DNoNAQyEcoCqEtueBu0WIqOfbnJFvvC2D9lQRB5b8OcVy+N\nkRDIFovFYrHEsDbk4cDMqEk7NraMJnZEly22LfunJhllgXyPknNctWaMhkDu83h7g2aLbU+LxTJ0\nCvgcGgmBTFAef36Px9sRSLbY9rTkGds/+yf3HtaAVVkPCyKCKwCW3OCqb1l57MMuW2x7WvIEAfmf\ngwwU4I2hkZEQyNqGbK3I+cCOQLLFtqclTzCAqmSMiZy/LOa5bk0YDYGM/uzIue5UBcS2pyXP2P6Z\nDWoVsByT68qlMxIC2S4Mki9se1ryjO2f2ZD7FrQ25OFARBgLFgaxNuThYx922WLb05InCGphkNz3\ny5xXL42REMg6uIQVxvnAjkCyxbanJU8wAE8yXGtDzpyBCORarYZPfOIT2L17N6anp7Fjxw7s378f\nt956KxzHwdzcHK666qrMyksGl+iWXHeqAmLb05JnbP/sn0IElyhgcOGBCOQHHngAk5OTeOCBB/Dz\nn/8ct9xyC1555RXcfffd2LBhA6688krMz8/j9NNPz6Q8a0POF7Y9LRbL0CngM2gg7xA//elPccEF\nFwAANm3ahB/+8Ieo1WrYuHEjiAhzc3N49NFHMytPBZegfL+tWSw9Yl9usoXZTpDsl0IElyggAxkh\nb9myBd/97ndx4YUX4oknnsChQ4ewYcOGcP/U1BR2796deuzCwkJPZbqlEtYdcyzGJyfDB5g5UtM3\nIRHFtjU6bXJfq+P62Tfo/IdddjJdq+NW6ryH3Sbd7DvS22SQ+Ztl5KleeS7b3FerVvHcC8+jXqsB\nACqVSs/P7YFSwPeFgQjkd77znfjZz36Gyy+/HGeffTZOPfVULC8vh/uXlpYwOzubeuyWLVu6Lo+Z\nUU0JLmHegM22k78l97U6Lut9o1J22gNwpcrOcl9eyk6aAPJSryOp7LzWaxhlj42P48STTwlHyQsL\nC10/t3ft2tVV+p5Iec7nnYGorH/4wx/inHPOwb333osLL7wQJ598MkqlEp599lkwMx5++GFs3bo1\ns/JscIl8YdvTYrEMHdHDZ8gMZIR80kkn4a677sKXvvQlzMzM4NZbb8Xzzz+Pa665Br7vY25uDm94\nwxsyK49gg0vkCdueljxj+2f/5N7DGijkCHkgAnnt2rX48pe/HPvt2GOPxQMPPDCI4kBkg0vkCfuw\nyxbbnpY8QbDBJQbFyCwMYoNL5Ac7AskW256WPFGY4BJ26czhYINL5AvbnpY8Y/tnNuQ/uESua5fK\nSAjkfpvdjkCyxbanJc/Y/pkNuW/B3FewkdEQyGSDS+QJ+7DLFtueljxBKEZwibzXL42REMg2uES+\nsCOQbLHtackTRQkukee6NWM0BDJscIk8YdvTkmds/+yfIgSXKOJlHgmBXMB2H2nsiM5isQybIq61\nPRoCmQjlwIbcy0DZChBLnrF9M1vs/d4/RQguUcRrPBIC2WKxWCwWEyuQh4ReGMRiGUXsiC5bbFv2\nT00yyiLfauEiXufREMh9Hl/EC5dnbHtaLJZhU8THUA7iW/SPDi7RKzZgebbY9rTkGds/+yfvHtZF\nZSRGyDa4RL6wI+Rsse1pyRNFCS6R9/qlMRIC2QaXyBfW5pkttj0teaIowSXyXLdmjIZAhg0ukSds\ne1ryjO2f2ZD34BKU69qlMxIC2QaXyBe2PS15xvbPbMh7CxbxGo+GQLbBJXJFEW+EPGPb05InihNc\nYtg16J6REMg2uES+sCOQbLHtackTRQku0e8c6Xq9juuvvx579uxBrVbDhz70Ibzuda/DddddByLC\n5s2bceONN0IIgXvuuQff+9734Lourr/+epx55pl45plnUtO2rHNfNc4JNrhEvrDtackztn/2j4/+\n138YNETU9cfkwQcfxOrVq3H//ffji1/8Im655RbcdtttuPrqq3H//feDmbFz507Mz8/j+9//Pr76\n1a/izjvvxM033wwAqWnbMRIC2d5e+cLO87RYLMOmX4H85je/GR/96EfD747jYH5+Htu2bQMAXHDB\nBXjkkUewa9cuzM3NgYiwfv16+L6Pffv2paZtx2gIZCJl0+jxeCtALHnGjuiyxd7v/VOM4BLdf0ym\npqYwPT2NxcVF/MEf/AGuvvrqmPloamoKhw4dwuLiIqanp2PHHTp0KDVtO0ZCIFssFovFYtLvCBkA\nnn/+eVx++eV429vehre+9a0xG/DS0hJmZ2cxPT2NpaWl2O8zMzOpadsxEgLZLgxiGWXsiC5brMah\nf2qSIXPeL/sVyK+88gquuOIK/NEf/REuvvhiAMBpp52Gxx57DADw0EMPYevWrTj77LPx8MMPQ0qJ\nvXv3QkqJtWvXpqZtx0C8rOv1Oq677jrs2bMHQgjccsstcF23a4+zTrHBJfKFbU+LxTJs+n0Off7z\nn8fBgwfx2c9+Fp/97GcBAH/8x3+MT33qU7jzzjuxadMmbN++HY7jYOvWrbj00kshpcSOHTsAANde\ney1uuOGGWNq2deYBvH5/+9vfxj/8wz/grrvuwr//+7/jK1/5Cur1Ot73vvfh3HPPxY4dO3D++efj\noosuih23a9cunHPOOV2Xx8zwJMPvsb52Wkm22PbMFtue2WLbs38cROtZLywsYMuWLV0d3+uzvpv8\n3/KPf9j1cf/4lv9roPVqx0BU1qeccgp834eUEouLi3BdtyePs04hIpQcMRr69xHAPuyyxbanJU8U\nJ7hEf05dw2AgKuvJyUns2bMHv/mbv4nXXnsNn//85/H444935HG2sLDQdXlEhPUbT4JbKvXcSUbK\nTsecj95lseSUkbrfVxjJjMWah727n4X0fVQqlZ6e24Mm7y8MaQxEIH/5y1/G3NwcPvaxj+H555/H\n7/zO76Ber4f7W3mcdav6AFQHqUl7g4UUsCNammNVrJY8QUQQ5TI2b94M0YfKetAU8Z4ZiJZ3dnYW\nMzMzAIBVq1bB87yePM46JYvgEpbssO1pyTO2f2ZD8cRd/hnICPl3f/d3cf311+M973kP6vU6/vAP\n/xBnnHFG1x5nnWKDS+SLIr6Z5hnbnpY8UZTgEnlfuCSNgQjkqakp3HXXXQ2/33fffYMozgaXyBlW\nxZottj0teYIBeMxwke+XxRxXrSmjEe0JNrhEnrDtackztn/2j8+AQ/lWWxfxOo+EQC5es482dkRn\nsViGTe/RDYbHaAhkIpQDG3IvA2UrQCx5xvbNbLH3e/8UI7hEvuuXxkgIZIvFYrFYTKxAHhJs5yFb\nRhg7ossW25b9U5OMssi3J3OOq9aU0RDIfR5vb9Bsse1psViGTRGfQyMhkAlqsXMbXCIf2Pa05Bnb\nP/tHIP/OtETFi24wGgKZCCWHwL60c5FzgH3YZYttT0ueIAClAiwMkvf6pTESAlnbkK0VOR/YEUi2\n2Pa05AlGZEPOc78kYUfIQ4HRnx05z52qiNj2tOQZ2z/7Rz9z89ySVmU9JLIILmFv0uyw7WnJM7Z/\nZkPeW7CI13g0BLINLpEringj5BnbnpY8UZTgEnaEPCRscIl8YUcg2WLb05InihNcIr91a8ZoCGTY\n4BJ5wranJc/Y/tk/xQguUbwRcvFqnEKeO8WRiA0Ab+kHTvlYLEcCIzFCtsElLKPMkd43sz57e7/3\njw0uMRhGQiBbLBaLxWJSRJX1SAhkG1zCMsoc6SO6rOe7HsltmRXFCC6R37o1YzQEcp/HF/HC5Rnb\nnpZ+sL3HkgV2hDwkbHCJfGHb05JnbP/snyIEl4DIfQ0bGA2BbINL5Ar7sMsW256WPFGc4BJ2hDwU\nbHCJfGFHINli29OSJwoTXCLHdWvGQATy17/+dXzjG98AAFSrVSwsLODee+/FrbfeCsdxMDc3h6uu\nuiqz8mxwiXxh23P00fcbIX7vUWJfJ3l0e1y/2P7ZPza4xGAYiEB+xzvegXe84x0AgJtvvhnvfOc7\nceONN+Luu+/Ghg0bcOWVV2J+fh6nn356JuXZ4BL5wrbn6JJ88W31vZWA7fW4LLD9Mxvy3oJFFMgD\nrfEPf/hD/PSnP8Vb3vIW1Go1bNy4EUSEubk5PProo5mVo4JL0GgsOzYC2IddthS5PXuteXHPePQh\nAGOFsCFT159hM1Ab8he+8AV8+MMfxuLiIqanp8Pfp6amsHv37tRjFhYWeiprdvVqrD5qHUSPQant\nco8WS+c0u1uSqudWd1UneQwKe7/3jmTGC6/sw/59rwIAKpVKz8/tQVLEEfLABPLBgwfx85//HOed\ndx4WFxextLQU7ltaWsLs7GzqcVu2bOm6LGkXBrGMMCupYk3eRc3Uza1q066mWuD2k4dleBAR1qxb\nh2OPORqCCAsLC10/t3ft2jWg2kXkYcTbLQN7hXj88cfx3//7fwcATE9Po1Qq4dlnnwUz4+GHH8bW\nrVszK6t4zT7a2NFHPuk1aEPaMYTs7zvCYPK1HJkQia4/w2ZgI+Snn34aJ554Yvj95ptvxjXXXAPf\n9zE3N4c3vOENmZVlg0tYRpmV7JuDELJ5w97v/VOywSUGwsAE8gc+8IHY97POOgsPPPDAoIqzWCwW\nywpRBFFHPfoTDZORWhjEYikiaT3XfOCZI7pWNt5O7L+dlN0Jnc5B7XUKU7s26Ycijpzyhg0uMRhG\nQyD3eXwRL1yeOVLbM7nQRRZ5dbq4RrN0g3xNzTpv+0ptyZI82IS7pXg1TkEHl+gV64SULUdie7Zb\nMKMdnQrwVoKXOkjXSf5Z5JPMMw95aI7E/pk1hQguUUBGYoRsg0vkiyN1hGzSTQu0nSbUQXtS4m8v\nZC2Is8rH9qZ8UZzgEvmuXxojIZBtcIl8Yb1Y29tYu7H3dtKeWdhcB2G3zapeR3ZvyhfFCS5RPAXw\naAhk2OASeeJIbM+0IAsm7ezLWug0C7iQlkfSfpymNm+16lW78jpJ182+LOqVyYj7COyfWVOM4BJ5\nrl06IyGQbXCJfHGktmenjlXNBFEnARc62ddJWXmsV6sXC3Pb3u/5IO8taEfIQ0IFl1ALg1gb8vCx\nD7vWtJqqlH5A5zbkLM02Wdp/29XL9pjiQADKBbAhwwrk4cDM8NgK47xwJI5Auhm5dZSWg3TUuQ2Z\nkj+Yv6e8BZj7tONxMlm/l7Gb+cpHVo8pLgzAY4aLfL9857luzRgNgQzA72NoUMQLl2eOpPZsFce3\nZ1Uyx7e7EfTNtsmQeA3pOPE9mWkGQjlPHEn9c1D4DDiU75coq7IeEnnuFEciR+IIuRM6VVWbAj05\nnalT4ZaWB1Lm3xLiK4A1HNfiMnatem+TR6vfLJZuyfMqYs0o3itECiq4BPV8I9uFAiy9QimfZvva\nHRd+KPiE29TZcS3zUMcnvZcJDCJAULDYQ/K4FmV0fD4d5rFS2Pu9fwoRXKKHf2k88cQTuOyyywAA\n8/PzOP/883HZZZfhsssuwz/90z8BAO655x5cfPHFeNe73oUf/OAHAIBnnnkG7373u/Ge97wHN954\nI6Rsb1QdiREyYN+qLaNH78+7aFxM1EbnbBZC6T9bLEmK0D2yUFl/8YtfxIMPPoiJiQkAwI9+9CO8\n733vwxVXXBGmmZ+fx/e//3189atfxfPPP4+PfOQj+NrXvobbbrsNV199Nc4991zs2LEDO3fuxEUX\nXdSyvJEYITMzqv0sDGLfmC0DgLP6GP2TWX0kp20zmDn43ridWkdO+XRYr17P1VJ8apIhc/7cJKKu\nP0k2btyIu+++O/z+5JNP4nvf+x7e+9734vrrr8fi4iJ27dqFubk5EBHWr18P3/exb98+zM/PY9u2\nbQCACy64AI888kjbOo/ECLnfblHEMF15pgj242Sf6aXGg3gcxZ9xSe8uaum41eTImH2Y0Oin1Wtb\n9Hr+fd+v/R5fgP5p6R/KYLy5fft2PPfcc+H3M888E5dccgnOOOMMfO5zn8Nf/MVfYGZmBqtXrw7T\nTE1N4dChQzFfGv1bO0ZCEhFscIk8kff2zKJ2WQiVpFhoJoyZA+0Pc0sbdTsxI4MPG38ZiTwTmWQh\nuvIm/vLeP4tAEYJLZDFCTnLRRRfhjDPOCLd/9KMfYXp6GktLS2GapaUlzMzMQBgDvaWlJczOzrbN\nfzQEMhFKjhiNkxkBijYCWenadlte2J6Bl1XopGV8tPNXT3mbefZRz9T8M8jDki8IxQguIUh0/WnH\n+9///tBp69FHH8Xpp5+Os88+Gw8//DCklNi7dy+klFi7di1OO+00PPbYYwCAhx56CFu3bm2b/2io\nrG1wiVyR12lPzfpHu6m2WfertnN/k+l1ewZqa2NHU1V1p2poNVps3KtV2/1KVHtPjh6MggSXGMDr\n4E033YRbbrkFpVIJ69atwy233ILp6Wls3boVl156KaSU2LFjBwDg2muvxQ033IA777wTmzZtwvbt\n29vXmXOkv9m1axfOOeecro+TgUC2WFrRrIeQsS/tFu6kZ5l5pOXZIDjbZKqnHWnHmYZpRkSQKQJZ\np0v7PblPEIVOXK3qkSw87Xw62dcp7fK35INyMPVpYWEBW7Zs6erYXp/13eR/0wv/3PVxNx335oHW\nqx0jMULu9ybN64iuqBSpPZMP/1aCudM8gPQ8k8e0RnlIq00GJ9szsCenOWmZ+bdy4JJhHq2mRaXV\nrFWtu6NZyYPsPUXqn3nGtmD2jIZAtsElckVeH3ad1qqZcMu07DaZxkbQTdpTt3OrrGLCODEsJ3R/\nrTrVFlhGF0IxgkvkvX5pjIRAZmb4NrhEbsj7CKTdKNgcVTbbDr+3MtbG7MScqhoPvwfqY7Uvropu\n1p7MiTyJQqGbln8aKm8YZVPiuN60BjqPhvbq4ThLvmAUJLhEAXvRaAhkAF4fhqs8d6oiktf2bKVW\nNmmmxk47RibSNwvi0DYvjiYgJR2zzJGwNPbpcqOyuanAF4ZjWIPjV8yOnJgI1eZ80mg3P7rVi1An\n6folr/2zSNjgEoNhYAL5C1/4Ar7zne+gXq/j3e9+N7Zt24brrrsORITNmzfjxhtvjM3T6oc8d4oj\nkTyOkLt5X4uPThv3h+tCc0r6FoWlDaZNAZtUKZvfBOLCt2E/xV8MUl8cmuQ/DAcq64JpGTSigJJh\nIK8Qjz32GP7zP/8Tf/M3f4N7770XL7zwQriu5/333w9mxs6dOzMrzwaXsAyCZLcgGAsidN1lIj9n\nbbtt9c6SJlCbFamFMVHrtYnaVdmsl/by7ve9ilI+naYdFPZ+759CBJcg0fVn2AykBg8//DBe//rX\n48Mf/jB+//d/H7/6q7/a07qe3ZDvrmEZGfruaKa4ya7XZvFspKZfLJY4Regeg1ipa9AMRGX92muv\nYe/evfj85z+P5557Dh/60Ic6XtdzYWGh6/Icx8GJp2wCELcPmU4uScx9mb0xGws3dFp2N/s6JZOy\nk4tQdFG2OjxqW8pBmyDII3lGbOTfxJc5aIu4OppjGSS2zb9B2ToPMMAJI3Waip/AIBBkkFm0irU6\nmELXL+UMJpFwBgu9tCi6lonfwnbVtmWi0A6dbPPYqSXaK+20kzbsxmaN8mhsrsH2UXVo7AIc8fdt\nA23apOJJ7H32GdRrNVQqlZ6e24Mmi7WsV5qBCOTVq1dj06ZNKJfL2LRpE8bGxvDCCy+E+1ut69nt\nBHOg9cIgrd56TEGRCcmHagdld7uv86r0WXYfdUi+FGVarwStHoENHr4peYRj1dgKWCkCCJEaVx+n\nF7kKBRBpYRZkQ1GG2ltZqYHji3poVTMJCiM0UXCAQwQZ/A3PAxT+1XUxHb+YGRKR6hm6/qRG59E5\nsVocRO9LTKPqtL2S431KSZ9GrM7G782uVfK4TARPSj5H6n2byLBl2USETZs29bUwyKDJw4i3Wwby\nCnHOOefg3/7t38DMePHFF7G8vIw3vvGNXa/r2SkEG1wiT6xUe7YrpZdamCtXpf01ByKmk5UExwI3\nRMEb4um085YAYh8tpP0gX58BP/grmeFxWmAI42NoJHRanxHmF5YdfEs/t/QW6+dqdnJsWppB9iB7\nv/dPMYJLFM+GPJAR8q/92q/h8ccfx8UXXwxmxo4dO3DiiSd2va5np6jgEgT2pZ2LnAPy8maadS3M\nEXK/+YAanRCbyYl2QSPMEXIyi26qO4ir1mue+ehBljQIxQguYechG3z84x9v+O2+++4bSFk2uES+\nGMS0p14ETfKYtutHt8mUjf+67WtJlWxaZbTqtmGPtu8GB5v7tSo8dQ6WUef4uTUfCSfV/P2SzHPQ\nx1kGD6MYwSXy7gWeRtMx+mc/+9lw+6WXXlqRyvRK6kOsC/LcqYrISrRnaNPNONPQ7tqkVzXra0m7\nqUNB4IaUxFqd7BkfraJOy1sQwSV1sybV1bpOoZqcjGlQCASxUTltf049h4yvW7vro+uRTJP5dU3m\nb+/3vun3mbsSEETXn2HTtAb/8R//EW5fc801K1KZXun39rI2pWxZifZsOppsc0zLvkKq7ub4V3k7\no+3HrIdkta56ZN9Fg83YIcCl+F+97VLcJ0KCQ8GtEUE6bcuL2aMR5Zcc8UqjpvH2o0yfsO3uyQaN\nAQYviMPy7P2eCXl/rRmpaU+xKQ8578A2uES+GETH7jTHdgIXQKrat+VhDftTDmhxjzjUvE2aeySb\nlWw8VjuCpe2NCeGm07l02kZv6VZ08iTo5eoP/1Fo6RRCUYJLDH/E2y1NBXKrqSt5wwaXyBf92pDN\nEVNf9UBMBjfNr+3UTe3BbNQr3Cb9S+t66HCJHQm0RGWatmeyXsZ8Ue041p6oZZq1V6/XI80m3fQa\n9JC/ZTgwbHCJQdFUIM/Pz+Nd73oXmBk//elPw20iwle+8pWVrGNbVAfp/fg8d6oi0mt7NjhhofVD\nOk3Atfoe2p2DA5sJGkK8bHO96WS5xIAgDm0/EmpEHC3WEeXjA+F0KRFkEqYhhPGPXaj7zIWak8zB\nPGUEaQTF6yVZl8Nh/lpdbQpVcz1s/Xs0pzm9vZD43slLRSd5DBN7v/ePDS4xGJoK5AcffHAl69EX\nee4URyK9jJA7fZ/q9b2riRNy9JuxIy2iksYUcjIQqFogms5WMRt3sNiHztchtfA9G0LZLKTOQXQm\nJNawNtIKiuzTgOGMpl8GGNCreyXP2VxQBF0+VLMyXtl71mJppKlAPnDgAE477bSG37/97W/jhBNO\nGGilukUFl4gcabolj9GJjiRSPX4zyjtt5NdNXdKEsVpFKx7GMObUlcgj6YzlaCcSZnhN6pHMQya3\nAzU7UeSZqesljMZL0xDEvrcYsnbbdsnj8oq93/unCMEl8l6/NJqO6T/96U+H2+973/vC7b/6q78a\nbI16pHhNb1lZkqKplWJ1hcjwgdFzTvbGsfRAEbpNEac9deRl7Xle6u95gZlRbbKWdafH2zfm4dDs\nqvWrmk7LqVF/EhfKce/k9Dop2y+H9l42HKv06FmPpKVh04X+jZUt2UmpTSuSo1WtZicy7NDMDa8a\n7WgZ77mLfGJ5ttlv77TioxcGyfMotIjP9K69rPN4kv2+Iggx/DejUWKl+kgnKtVG+2m6c5b+rh8w\nvhn8wcjLtBcDjbZcl6Lz9yRDBjZdgrIdq/Wldd6RLVcv+gHEna9EUIbO05dxoRuzVSd+N7+b06T6\neHeNkVR/F4U8PsMs2TNSXtbMjHq9rhZKSGznDYJaSMHv8Xg7Qs6WbtozTSi2EphJgWNut/PgpcTf\nhm2jzg51KmQo7U+QB6kFPsj8rXlOnbwWipTjm52P+d08Ny3wzTRhu1Jn1yOtnGYvA62OGwb2fu+f\nogSXKBpNBfKePXvw5je/GYDqwDoYRB47sg0ukS+67SPNhEi7fan5NCTosb+2CeigSE4Yih8RtUN2\nk30yuf9SPKs7bfNOXni6Pc5SLAgFCS6R8/ql0VQgf+c731nJevSFDS4xfGJt32aljSxUnU3zaGFD\nbpunUedONEFKzHLDdhh5iRv3pefRKv943brTUJmmJiPfhjyo5df2uaebBiyjCaMgwSVy4KTVLU0F\nsud5+MY3voFLLrkEH/vYx/Dyyy+DiHD77bfjuOOOW8k6tqVbR5Ykee5UwySpuux0Xzvv4V7Gi+Z8\nW+0oReH3SBCaazUnx7jJucj8OxQXAAAgAElEQVS63+hUDjOE0DbkKJ3Uy0+G3k7p9mVmoCQie62X\nWMq1QXXbRI2cVNU7RlKzXkC6CjsqT78KMIh1e6W9GsSvSKfXJrtx/8pi7/f+Sd47eaSI17npK8Sf\n/umf4mc/+xkAYO/evbjpppvw5je/Gffcc8+KVa5T+m32PNrFh01rf+Q2aTscXXbS6smISbFtMKTx\ng0yUawaGSAphmfKbBzWXPQwMESzJqtODGS4pdV2JEvmxHjkAVZ9R9WUYvcn8AMHxQR5Je2tyGwB8\nMDypPtG5xfu9GVjCRL86hOfc4tok8+yEfl+Gh4G937Mh7+JOEHX9GTZNR8hPPfVUOOfYdV1s2rQJ\nmzZtwjvf+c4Vq1yn2OASwydmLc2gY/er1m5wZgpcnQnpU33MsprV3jFuWtZ5NsmjWX3C0IhGvdq3\nVnx5y+jcgjwT+bXNrYNAFybtchz+Y8yykhCKEVxCFLBnNhXIUkai7WMf+1i4PT09Pdga9YANLtEb\ng/J8zcKLNVK2mnSepzZjZzkaklBLWoYF9EIgWbupV7v21C8H6ero1OLb7utGHZl31aUlWxgFCS6R\n47o1o+W0p8XFRUxPT+Oss84CACwuLuZS3aM6SO/HF/HC9UOayrlvtb+xnVV7pi/yQaEKmhIiW5eq\n1cdhIAbD7kqk5grr4A9AfA6wtktLBhyhEtY5iHHMDJ8Alwg+R/kLKNsxg+Azq6UxwfCDhnWC/P2g\nzLrkIO/42SW9kvV5msElTH+5Blt4yr1pCthOXFxaqc6bUbS750i73wdBEYJL5EEF3S1N79H3vOc9\n+MhHPoKnnnoKS0tLeOqpp/DRj34Ul1122UrWryOK1+zFJGkvJOMTT5jdS5upplXqXg7/+YF3l+Ro\nsQuCDt5g1E+rdinq8EyRHVkGtmifg79SbXtSSb+SIJQFhfkKUje7E9iT3UB957MSwl6grdGBJ5gI\nTpCPVnvreunzcknnq+rvCIp7Rmv5TdELlLYb6/M2r4XKl6DXDaPAos6g0C6f/HQigdPutfy9olss\nwEgtnfmWt7wF09PT+MxnPoM9e/bg+OOPx1vf+lY8/fTTK1m/jrDBJbojizNN5pG0+SY9hXvJ04yT\nGK4ylcg16cVMwXHCnILEbERDigSnrqtvZGkuLqPPg4L/hBb6wQgYFNnRKl40Bz7pCR29GOhgh4l6\nJey/Oq6xWa+0mWTqO6nIUKRLirdX39cgQSv7eFE40u73QWCDSwyGpgIZAN70pjfhTW96E37wgx/g\nvvvuwx133BEuEJI3itf0luaY1m0CUfevWVrgBV9iEq37AXz73tVEux4eHQp3M61Zx45KSa9XJIzV\n3wI+hywFowhdbKQEcq1Wwz/+4z/i/vvvR6lUwuLiInbu3Inx8fGVrF9H9Btc4kgn2XKddOO2zkPG\nCDSJKT/iwjHNuh05eKVhCjg/sOmGQRYYEIGVWQbbOn04txihAzZgqLSjaUyMklD761KNrFyo4BI+\nM9zgAIFodK1V43rEXJMMV6iRbGi3Dk5cxy0mI71IeWMw64ogrTDaB9DnE/fI7paeNEwpvxXvUWjp\nBhtcYjA0Fci//uu/jt/6rd/CHXfcgZNPPhkf+MAHuhLGb3/72zEzMwMAOPHEE3HppZfi1ltvheM4\nmJubw1VXXdV/7QP6FcVFvHCt6EXAJulF5RyVn15izAErRWAn1bzh74xUD3o9hcgLTBUE5dwXqZop\nXEREMsOTRj6BcCQjLwfKzssAlj2VUnLcYZCYwRSppT1Dr0wIFgYJbMR69TgO6qhV5vE2iV4IdN10\nvcxRtV4AxDeO81PU2Ga+JgmNdvR7H10/aaYoCqN2v1tGh6YC+fLLL8e3vvUt7NmzBxdffHFX3tXV\nahUAcO+994a/ve1tb8Pdd9+NDRs24Morr8T8/DxOP/30PqoeQbDBJVrRbsRkCt9wJNZlGfHjGJG1\nNL0+rfI3nZOSwtg8zk9oRZJCu2ScdNUQxjJhn3VIO2Axagl3fbMuelEQAHCZUZGN6bRTV1oeuo+5\nzS6Gca5s/JXMYFA48o5U3sk6NmZspk0NKdlCqOscOxkBp/WhvDLq9/tKUITgEkWch9zUrezKK6/E\ngw8+iMsuuwzf+ta38OSTT+KOO+7AT37yk7aZPvXUU1heXsYVV1yByy+/HI8//jhqtRo2btwIIsLc\n3BweffTRzE5CBZco4sqlK0Mn3dIUPH2XF3pQ9ZeH+vR6fDyfZkLdTNsOEdaJwImDQuevtLogEsah\nV7SRV5hn03MxMiY0XCydP1FiPyFwGmt+Tu2EcTdk2Ycs+UVpgvK/MEjaPdbuM2xaOnUBwLZt27Bt\n2zYcPHgQf//3f4+Pf/zj+OY3v9nymPHxcbz//e/HJZdcgl/84hf44Ac/iNnZ2XD/1NQUdu/enXrs\nwsJCl6egGv74EzegNDbWc6PmcX51P2RxNp3mkRxFJc3C0QjdtAmjYds8PhwhspFJaoGc+FENBRkU\nbKr9kQaFDfuuTq8r0VizqG5qVO1oPzHW9miOpw6HnFG99FrSACBJvbnHA08olB2aGxuFoaY9Nbkg\n6Zb3JpjZt8iz1TXtx5yRF0btfl9JJDMOVet4/rndkL6PSqXS03N70IhRCr+YZHZ2FpdddllH85BP\nOeUUnHTSSSAinHLKKZiZmcH+/fvD/UtLSzEBbbJly5ZOqxQig2hPlnTSBF7a7632JVWSzey96ZkE\nQpFE6EyVVI0LonAtanNESYEAk8H11Y7JHAzChRDwg1XlHOFASgkZLKRhvpyNuQQpJXwQ3OD3uuRg\nzq/Kg6HmCQPK5uuQmT+FI2QEeU8IGGULSCnB4RxjEZ6PqpcS3YLQEHhCm1yEIBBHNmQh1HkzRTbk\ntPZKOtYQEg7myesT5tF8X7cmDsuRAxGhPDaGzZs3QxBhYWGh6+f2rl27BlS7iJFSWffD3/3d3+HT\nn/40AODFF1/E8vIyJicn8eyzz4KZ8fDDD2Pr1q2Zlddvs4/a23KrEVNym1O2zXRpNuVW+UtW7amc\nlTjmyKUDNTAQLpzBwTF1qUag+hOOIIMFOnyoEW6dVRAIH+pvTTJ8EHwQqr5EjZUTVo3j17XuS1Qk\nUJfAsi+x7EvUmVGRjIonUQv2VXxGxVerc1UkUPEl6qzKrUuO1atulF2TDC/Y9kDwGJAgSETClxGd\nm0PKxh16dQORkCYEjmNKGIPiwTBUO+txLgVtHlwLjjzEddsm3560GrtVr29Q66N5Xyja3TNq9/uw\nyLu4G0mVdS9cfPHF+MQnPoF3v/vdICL8yZ/8CYQQuOaaa+D7Pubm5vCGN7whs/LC4BLMsAPlRtqN\ndnrZ17rA/jp2bLEMdP7AN9MlwxLWOT1d8nvDPsPpyTFu2m4EkamBDv8ai4H0+xhoZb+OFdplnoNI\nayk+hIIEl+ilfkOWHwMRyOVyGZ/5zGcafn/ggQcGUVwUXGLEhHGafbWTfVnl000ZpjEyud5y17cF\nG7bZpK04HLo3U8TrOqhKsKEG17+FdtSwjhyzFreoVuSh229f4/RV5dK8npt7BUet29JbuoeLYB7S\nTj3d0zW2FBZGQYJLFLBXDkQgrzSqg/R+fN46Vbeq405q3416MrmvEyee2IiR0utpoqfvaPWqiYrb\nG6lVWX838hJQ05XAxtrRHJXGAHxfwg28l31Dpxu2G0d1pSBPVxmfUfUbR65e8NKnbK9s2GmjlGTU\nK7kMp/5rBr1IIylcSdulUw8JXid0m6cl6rF7p2kSMsx+aOTtfi8iIxtcYhRHyCtNnjtFOwZx/bP2\ngu00L10uJUIB6t9NDYZEFEhBC2C90IfPhs2SlOB0hBJKnq/syRwIYUdEL2MElc41nKYcUl7OktS2\nIyiwBQNlRy0cUg8X7YBy7AIw7lAQtCKI3kRKIFNQb8lqprUb6MbN9aslN/bJcPWuIJ0AQs9pfd66\nfbSzVSvVuj7ftM7fr7xJe/lL22+x5Jk8ryLWjNEQyDRawSWyMAf27ejWbf56qk+gC9aBFNRoT22n\nmRSIlAAMJioBRHCC0vV61FpggaJwi4wgpKExwXjM0R7OhJKI8mcGHIfC78LcB4ZnqNc1Iqiz9rom\nIpSMOut9ut/45lKcibxco/5m0AtKBJdIBsRIahnMNtfn2Q1p13QgPgQ5J2/3exEpQnCJPERv6paR\nEMjA6D48ikVybG6u19XBuD2h+g1/a7ecVHoWxm/U9CFM1LxeaceF056aHtW6YrHyKL6eWc6fbxZL\nSBG6at5fGNIYCYE86sElujmzVo43/eYRy8/IUI3e1A+RujYeSIGIAlVvMp8oEIQOsqBV1gIcLmmp\nO2rJUSpnFSxCCTGd3pcMCoyzHqvReUkEPgZ6XjEpTQqg9qnRNIXrYZvOYByUrZcJ9IM66oVFmBlO\nsM+luNraFNg6sAVg7o++U8o+PYJuad/XZnGYLzDpaTt9NHWtGbEckdjgEoNhNARyn8cP88IlS06z\nHXZDFq8lYR6J+ZpxYROvuTSEg0xURNlMlbTS9lGtTNLCUftjmWVom6tkQBIHTleRAHWEUkpp265D\nKtZxxVioWq/I5TMaFo9hKBu2AKugEhxNl4q94DFHDx5W6vVori+r0OaGPVwY+ZtlNbs2aYEzdNsL\nEFK9wA0LgVlWWk/WATaa2ZyPNIr4oLZ0T1YvC0888QT+7M/+DPfeey+eeeYZXHfddSAibN68GTfe\neCOEELjnnnvwve99D67r4vrrr8eZZ57ZNG3LOmdS4yFDUCsd9UpeFgropBahs1OGpD/E0xfxCAWu\nqWpF4LQUGlHj4poRLPgR/NULgehoSGbegBJs5cA5q0TR8XUGljyJw55ETTKWPYnDvtquSsaSJ0Nh\nLABMuQJjgjAmRDjKNe9RjxlVqY6vSw6+x7Ut+sVA51kKnMNcimxoEsqxzOMoOpTH0SIn5sIdOh/z\nOiavabJNtEDlxG/msfoaJElqMpJdPdnnklkk7dajQF7u9yJTlOAS3X6SfPGLX8QnP/nJMGDSbbfd\nhquvvhr3338/mBk7d+7E/Pw8vv/97+OrX/0q7rzzTtx8881N07av8whgg0v0Tu83VfxIc6Wbfkcg\nBGPlnHZ5NXm2CqMuYXAJ0nWNZ9u2vmFexnm20xE35BFP3c3KQE3TGdK40yZvJXBTso19t1gA1RfK\njsi9piGLlbo2btyIu+++O/w+Pz+Pbdu2AQAuuOACPPLII9i1axfm5uZARFi/fj1838e+fftS07Zj\nJGQYM6Pqy3TV34jRr0obCEZcsU/0hdlYHrJlHmbaxHGG7bObuupq+GbeZp5p9WryTPDM5TsDW2/T\ncjuspW4r1kPWLjDtvQjr1emx6QkbRr+d5JXy3fxYLO1gAFVf5l7TIEh0/Umyfft2uG5k2TWdPKem\npnDo0CEsLi5ieno6TKN/T0vbjpGxIffTNfLyphdqfDPIp9M80h7QSXSgBt+4Ac10flLYJNpTIAqq\nEAZZCPSrSbuuXuDD8xkC3Jh38HdcENxg+b6K58NH5BWt+8OiJ4MpR9pdjGNtUw7mJQtSgScY0cha\n18vsG+GCJYnz16pwvU+rjnXdk93LDCph5taYrzEyT5x/p+h6heWZmoGU/BijPxrOy/1eZPQ9dqS1\npGkD1kGSpqensbS0FPt9ZmYmNW3b/LOt7nDot1Pk7U2PEp9uj213Nsn8Y3bIxEcJG1UL8zeHoo92\naHKDv6Xg4wYfLYzrUqLGjDpz6MxVFoSxwFFr3CFMOur7hEMYdwQmXYFxR2DaVZ9JhzDlilAYA8CY\nIzDpKHvxZJBuylW/TTgC4w6hLCj8PuEIjAuVhwjrFQWQ0PVSduzG83FS/uo20edKRGH7pLWriLV7\n9M+0Z8WuDUWCudu+QUG9kgfkq9evHHm734tK3oUx9fCvHaeddhoee+wxAMBDDz2ErVu34uyzz8bD\nDz8MKSX27t0LKSXWrl2bmrYdIzFCHvXgEv12/Ibj2/+Qno8xB7fZ0c22gWjEqPKK52mqlN3EKE5P\nA9LpkiOc+D6E22x8d40KJUeKZr3MEIvtzqfVPrNe/T+4jPpk/BTM+0PVkj8IIxxcog3XXnstbrjh\nBtx5553YtGkTtm/fDsdxsHXrVlx66aWQUmLHjh1N07aDOEevi7t27cI555zT9XE6uESv61mv9Mo9\npqqnG7VPs+M4oRpNa4bYcYFu1VRlJlWw+nusXRI2XK0i7hTTe1mNLimmUu2GZL04sW+Q9WqVf+v2\nSqiPkWhLGPs4eqFI65+t+lDTfpJ+OvHr3STNKGFX6uqf6D7pPR5yL8/6bvL/j8lq18edd3hsoPVq\nx0iMkBnFCC7Bbbab1aLZcXoRDjZ2NjuV2HEAyPBLMv/q/PRvwnh46d/DNZeN+bg6hc963ebI5qwF\nmF7MQ6m41RF6kQ+PWd3gUIt4UJDGY/VdvZEDNV8tpTnpRl6eHkfzjB0ilEQU/asUTHz2WKuUo3qp\nOkQtIxCFWPQDpys9r5goam8BDqciaXuxuU/XS9uKw3blFtfaWI3MTKft0mnXsdl2s33JF69maUdd\nVFlh3D9FCC5hoz0NieI1ezq9vFOkPYhbDQ7NtaCByBbZIJwDoaCEt3KGCgVMMCLVql4B5aTFUFLL\nS4wMTe/r8GUg+K2qR4wMVAznpjJRGBiijvgoVjKwWJfKXi0IVRk5cjEYntTCMphbSOocfAak0WKe\n0VC6DXRACdNjX9fZbC+tYYitH2K0l3n+yW3TnBtr95bXrX+yyMNiKQp5XkWsGaMhkKkYwSWajVC6\nzQOI20ejH7rPi4CmwQzM7VbCJXSwYiU8jcFe0xFZLTEKNNONBU5YpIelKWhvbKm9oREEcQikpQMl\nrEP1codv835KX9Df9IigWb2SauLG8lQPCPOAnvqUsFk36JvTa572a7f9q3iPrP6xKuv+KURwiZRp\nTHlnJAQycGQ+WGLkoQGCEW3/C4OYWXb7GkMNmXSfR4fFJLNsedqUkqhNO+XhmlosKRSha6atvJV3\nivcKkYIOLlEElVy/XSS5qEe3Jx0OvjiKzatHDGbdkkvjmdsO4uJF5yEDVa3+6yDynibot2r13UXk\nTe0IYCyId8yslsSsSbUAB0HFJtYjTj39CIimHel9wjwHjtfL7OiEqOMT4rYwc2RrpgOi4BFa3d6F\naEXyQhlrnrSnw4RF6P+W0aAmo/s9r+jlfLv5DJuRGCH3rQbOs+rFODmi9EAEWpA1/Ibmnrj6Nxk4\nZyCxXzeJGSwhdOYKgjpoxw5BhLovg7WbVVSlcSdYsjKYcyxIC3KCD8aYo3Kt+QxHKI9Nh4CaVKaH\nZU+iVHYgAnOECEbfJVLLYHqS1TxiRLZgN/BUNuvlSRmqxB1E6nUObMpEgX04iAoVnivi9vXQpq6d\nWUjFNjZt8cl2jre5sZWi8abg95hpgI3rmHIBk6aDJFmotEeRXN/vlswo4nUeCYFMUA9bv8fjV9Km\n1M0DseEFlJXAiD2IKXKyMstIOmnp7bQgC1qgN/NU95NOTsYXD8C4owSdC2DMEAOeZCx60VXxDS3G\nkicjG5QPrCo7Ko/EayozY9GLXLEqxhlVZXzkW0MUlckHMOYEntQx9bU6H70AiG5TPbZOvvC4FLR5\nSnuZaVvZ39UxhkRtdh1j5x0dz8GhaULZLMfUoncqjHtwPSg81obcP0UJLlE0RkMgE6HkEPhIWM+a\n+r8RUh9GPaqfkgt8mA87X8avRqsS9PKcUcogD+7cFBFTuSfqFatHUpvQ7uFMKRMoum6vxFi5i+sY\n1q/FAWkW6u5qZbF0BkEFl8g7vb10DVeHNBICmTkK5Zcneq4PNz82bUGKTsoJR1yEVGES7m8jrJLp\nJAMsKNyh7bWMQCjGBCoHHthxAcfBiLUkovPRy2ToKVfcwVCOgwoqVXn0PQklWkwyN/UYbZZHt9eW\nEYWkZP1fhw+M8CWnzQi5Fc1KOhJHyJb+YKjgEnlfras3L3ArkPumB9+mGFl2qlYqw5bHcRM7YltL\nYSMOUageTk4/MhfyCNXahtA0NLkAgDKpxTaEIFR8GU4LkhxXP4MZPoJgEKzswhVfqavDRUhIqbWn\nXBfjjnL32letwWfgQF3ZnseEgBfoh12KHKnI+DCAsgBKRBBCYLmugksglFlK/NW0StscvRvnhsCG\nrG9cvWgJEC00o9uj7SAa8WtPMINIxErtqI+E103budsd0IbkNe8zu0KTZyFSFPQzN88taVXWBq++\n+ire8Y534Etf+hJc18V1110HIsLmzZtx4403xiJh9Eu/zZ6FTSnF3Nth2fFjzJWZGsf8nHquyReS\nuuExlOY8pL2UQ8EQODnVDCciBDbSig+AlWjxgvS+78NnGdqkV5VLKAknLNsJnK3GhMBLlaVwZSyX\nHHhCoFLzUSIBh0S4b8pxMOmqPHzWXtNq9HrYj1bG0mXWJVAHQ/i+sWAJYgK4RJFXNyN6EPvMqJnL\naDFDCArnNsfaiyJHL/MBlGzzdLtx2t7u+ms4Y6vPTp4UxmativfY6g9rQ86GvLdgEa/xQAwB9Xod\nO3bswPj4OADgtttuw9VXX437778fzIydO3dmWp4KLkG5cFs3oZRPpwem9SU1gm4fVLsV2kOYSE3s\nF8l8KG2UHgljAKEwBgBXCJSECPMoCQqXn6xLPxay0ayrzxwtrQlg0nXCPBxSYRGJVGVYJ0JjG5pW\natMOnYy8ZJ5n8rVGtOg4Os9kHt13tagXEKI8OuobHVzjtL7WSd45u2UsBYAQTFPMucAzI6d1+hk2\nAxHIt99+O971rnfhmGOOAQDMz89j27ZtAIALLrgAjzzySKbl6eASeYv0xMbfzKoWTGDl4AP08FA1\njueuJsQiKC8qUc9FNOsjpQpe7oioi7eqY9g+YR5R3Xq9RSK1dOJcU+rSNhBFSpt3XH7KL6bKvJO5\n5N3Gf+kmdc5uGUsBYKiphjmKS5RK2uCl3WfYZK6y/vrXv461a9fi/PPPx1/+5V8CiKuIpqamcOjQ\noabHLywsdF2mWyrhxJNOBgVq8PDBSxTb7mRfWrpO98UcgNR8pNB2ah6n9wVfAnUiR4LOEBzaFmnO\njwUMLWZQtjCm4TjBweEcY1bTgHR302s167Woy8EIcUwQvMD2XHLUSLIuJVxHQEA5cgDA9FgJHjMq\nno/xQM182Kth2avjQL2K6VIZx4xPY8otYf3kDA7UKiiRwHS5jIrno8YSU44LQYRlzw+nOnlSxUqu\n+GpK1ExJzUOedgVqvhqVl4LAvnUp1cgc0RSmUrCeti9VoApA2YKZGT70PGQ9FxnwfBXEwiUy7L1o\nmCdstjkQBdww2zx5rZKPKgot21Ff4MDIH754UPz6634Se0xoo3IyXZBnsq912kdX4v7oZt9K3rd5\nKjuv9Uqmq/sSu597DtXKMiqVSk/P7UGT96U908hcIH/ta18DEeHRRx/FwsICrr32Wuzbty/cv7S0\nhNnZ2abHdxvGC1Adxww+YL7pJN96BrWPoy/mDiQSRra88KGqH946j/ijXBp/zbl/bHy09IipmYN8\nZRCGSD+DfQCejBa+CBcFIRXhyNee0CB4LENhJ0jZbdXDW6LiezjseQBclMpllIQLdoFFr46DtSqW\nPR+zpTJKjquEP9Q8ZCIBB2Q4S6mz8qTylPcCAeEYamHTfqy2lWCTzKEKPmwT5kDlrl5ZVLAnCl9C\napIhiJWKSkRlhNcFhrwyfzPSGRc09p0TxyCxT19j0sdSoi+E2Sb6kDkSadK/GvIx2kR/D8+hRR8d\nxr1jy85/vZLphBA4+eSTIKj38IuWRjIXyH/9138dbl922WW46aabcMcdd+Cxxx7Dueeei4ceegjn\nnXdepmUSjUpwCW7xLciDglw4ni4mjI1tieh5zgB8w+iqoyXpN+CKsfOwbyzGEazCpTlUqULP+K5I\nH6tAcBxlS34FywAIdZbYX6/CDTyta5AAnLCdlzla1EPFsg5GnUSYcEQ4pUIyY9moV42NxT84eBcJ\nLp3HiAlxULTCl9ko6mWAQyFlag8a2jEYdJKRRrVXf+peMgts1/U66Jtp9bekY526+qckqG23HTZ5\nsAl3y4rM7r722mtx991349JLL0W9Xsf27dszL6N4Ta/p5RGazdn2/lAytBHGN9LCLzY66/78WtWq\n4xrHBoHZ9Y7M+9kKd9zi3ieWPEHI9r4aBETdf4bNQOch33vvveH2fffdN7BykirrlaSbUuMq5WZj\n2pTjgt1KbR0Nd011qjnQ0kJSzy/WI71k2XWfwYJQEsF8XyOhBAcqYQGX1BSiipSQgTqbg6lQy56H\n/bUKVpXGIMEYEy48rxao56NxpVIxSzikbM5lUupkPf3INGtWpbKbukKp3E2hLxHZcInUG2XaEpZ+\ncC66g6elM9urGaaqOmxCNpf56I2ueqtpN26RXyc16jSdxdKKmuRwjfm8kue6NWNkFgbphzy86Zlv\nnFqQJu2TjMgRK01Q6IAK2uvcM4ScoEAgsY5sQqhL5RClg0L4wT4Gw5MSRMBs4FgFAOTVcdirw4MP\nRxAmnRIOe3UcqFVRkz6YGUt+HeOOi9nSeCDAGdOlEhiEms/h/ORxV0AQwfEkvKBslwBHRPbkcF4w\nURjVSc9R1sErAKgAEogcsdT85UgoE9Trr45SpQWz0A1oXoPgOpgLn5ikmxEar2WztL3SaQ9tVfbw\ne3k+yMP9bhk8+VeqNzISApkwnOASrR56aQIzuR1X9zbmgZR9aTiJ71U/8v4VpLyn02pZjv0eTzOT\n0jMmHRcTjot1YxPhC8OasfHYeRxr5JZ03dsvPfis7NMeM2ZKDsYcigWkANLq2xpHN1Dz04mRtNMk\nvai1Z3M3QjDN6avTvtBqX3u/g+Z1SpZtUVgbcv8UIrhEAa/xaAhkykdwiWbyIHVbjzpTM+rv3S65\nWIbKMhp9Rw+j+Dg8OeUhzQOTgn3CqL/5PXlcLNiEIVn04iFGwhZvHq0VrX0/XDku8nrJr9URnfSL\nlun6OL/iPZIseYdQjDrV/XcAACAASURBVOASRXTqGgmBnJfgEm3L56ZfVNcxhFonWaV1NwrUu1pd\n7TNQMvJUWlzT3SqyhkpGGONXB4lIU6XrfWFdjLmyPks4yTFoIJTHBIW2fk/GFxZQU63Sz1udKxvb\n0bnq8lu1SSuSwk7b3lNStvya9nNm/dGO6Cw5glGM4BJ5rlszRkMgo98pKN1duE7Ujq2OS+YBRAJJ\n2S8Nhy1T2JgjTzTOMS4R4Aj19upKCR9q0QsiwuG6Dy8YhUopoeYdq+Ncil5opPTgwUdNShCAEyam\n4QZLYx6sVXHQq6EmfRCAKXcMNd8HiFAiwAejJpVAni2NwQ/ObsZVU6Jmyi4mpVJXl4M8lz0/PF8B\nNXLWsYe1zRjQS1hG7VcKpn8RUfjykXZdzOOYG80EglXwDL3imGlDbrx6UQVajeVb7bcMnyI+qPNG\n0pE0j1iV9ZDot9k7tSmlPaJbfU+ihEF8JG86hzMDiI0a42kdRNGI6oHTk/K2Vqmq2uuLoyhJYAkJ\nNc8XAHzpo87K2l4mgbXj42qlKma8WDmMZb8e1Ish2cfPFvfBJYFxp4Sq9MPzEBCo+B4IwLqxcUw4\nLhjAa5VlLEuJJb+uVFuihEOeBCADm7U6AY9l5A2O6BpKAMRA2YnU4zWOa5UJwdraifYK2023F6Wv\ncGaiyjPaHK1HyJ32tay1NVbQZ4e1IWdD3lvQOnUNCaUOBeqcv/WsNaT/484f1snRtw6WACAWtCGJ\nZ+xSIRGjH7QwBoBJ10XJWG5UC2MAkEYACY8lqtJDJJREWI9xx8W444b25ZrxsBMkYqNa00wsOXq5\niBbeUD+4giKbdHCg6bfV6mFKxl8z2ISZR7fEVizS59JbVrE80vJJzb+Vv4HFssKoF+18q6sBO0Ie\nGrkLLsGG3dNQKbdTabfMMlh6ygyQEHkFa5V2BxUztussIVmGgjCmzjWOaBQHaiqRGpDLcCQL6FjM\nMlz9q4MptKm1DEepHdjTW+bF7WcMt1W9cXyzbx+yFuWl7TPXoU47Lu+qQ8towVDBJVzkW/1vBfKQ\nUB2k9+M77VSdCFROPLz1Ac3s3HouLOsRI0dpSwQwEWq+WpDD82QQXEGNkJkZEtGc2TGH4BAw4RLq\nrNaOnnJdSJZ4rVaDJ5UA9qRETdax9/B+TDguTpxahSWvhiWviil3DFNuGatKY/DYx4GaChYx4ZRw\nqF4FA5gtlVGXEq9UK6hLxvOHlzBTLkOy0lKo8yK4wgVB2ZddEhhzKJzz7AYLe2gnL33OAoHDF+ll\nL6O2J2jvbKWS14EzzHnFjGC5UKg+4VDra5Z25ZPXueH4DCRgZ+aNaNv8m5aHVWl3Tp6FSFHQ91+e\nW9KqrIfESjZ7K3WjuZ8T23qfuS0CYeGzXoFKjaq1kxMJUgtpOEKt021MLxLEEELAIUItWEFr3FGO\n/pKBqvRUYAhiTDgO1pbLqEofhz3CWFnAoQnsPayE3rhTgmSGV5I4ZmwKk24JEozFahXLfk3FJgaw\n7HtgMCaC+cjrJ6ex5NXhS4mScMCBs9aYEJh0y6hKCWZgMlgExGe14IgvAcdRDmcTgZD2JKMUxLT2\nglGtWuCDIMAqQlPQdto+rtXepsDSqmrTMQ6J/TEhT/F1qZPCL+06pl3zfpUzzV4MknWwWCyd0eVy\nBrlgNAQyqeAStR511lk6eZhTfHWeodMQEYjj4e58jhbxaLALB09iEZwfEAWCcIJ5gEQEh6JtAHit\nWg3z1M5cJceBKwSm3FKY9nWzR4GCPCccF0eNTYb7nl86iIP1ChhArXoYB0XUVSjw3C4RYVWpHP7G\nzBh3nKb1WqxHM6T1dCxBSvntBmGniAglsxxwFPkpWF1Mt5J2amtYVIUoXGJUB+OIVOeRDcGMEpUk\ndh11xj2o32P16pFmfbOAz5tcYJ26+qcIwSXyX8NGRkIgA42jn2ETu98pviPp1dtRHrHfqYkncGOe\n8aIp9jAyO2xyn+nUFSmVWzsXJfNoRat6peXZrSQkMoz3IBAZ9W+TVUzAN9m2WI5ktHYpz1gb8pAY\nZnCJJKEvEgKnLpjqUA7TmItgaGGkXyp0yMSqr9S4DtS61D5zMFJWE/MdUoEhlj0PHktMl8ogAKtK\nJRzy6vAk40Ctgrp0MFsax7JfwwvLizh2fBqTbhkvLB+AgMBxkzNY8uo4UKtg3fgUSkJgzClhyVNB\nEycdF5PuGA7Va5BgvFw5jHVjk5hwXVR9CZ8lJlw38NT2URICZSHC0WxZqDYwFyzRq3XrqV2hkwii\nuccOooVI9PKgjSrnqO11jGethQAi7YR5PYyr1SBlOUqc+DFBD45qPWNHdJacYYNLDIbREMh9Ht/N\nw65VWTGHLkMVrcpAaKvU3sdsHCfAEIHNuCoZ9cCO6vlqsQ0BNRXIC148apLh+XUs+hUIqLCHL1cO\nYbo0hqPHpnC4fhhPHXgJx0zMYn+N8NDBn0OC4YCwQGoesSsExhwXy76HJa+GRa+GF5cPYcxxURIO\nHOHg2LEpTLkllIUDgsCSX4cP4OXqMso1NxRoSvgyqsGCIi45cEhNj6r60ZQjl5S6SzunVfxIeHrg\nmN2HEbWZHxvZKzuxTmsuyZm8PqHTXGJf3FbMsd9ShXSCdj0mT9oaSxz7cmPJKyMhkENHnh6P73Vh\nkHge8e8xYQzTm5pRN9MZDkrsyViAjJr0Q7syA1hVLoeCYHF5CYteDQCw7Nfx3OHXAnswsHdpP6q+\nBwnG04dexZhbDoX2hOOq+cGQOGZiNc5ZdyKI1XzlH+1/MZxzrEIplvBK9TBerSLwmFaUyIFLjlrp\nCoSjxsfCOh+o11HzJXyohUXK5ADGlB2GepmoSw7mG8fbTjtzuYZ910s0sPaklpwuGHU5TkK4N6RL\nHBwbVTeZe6xH5e2EbTtnsKTATo7807Yt2WBtyP1ThOAS1oY8JIgIZSeYHjTsyqQQjsbMNRwDWj1s\nzeUbdUQjnUfV98J9ailLggzmTC17dWgLcLDuR/idjDHhmvKEcrwitYKXz1HrKYFrjB+ZwcF3PfIF\nADcoQKuHfGkuDELN7eDmdiKNgLnoADdM/m11m+lkyaAaDQEkWuWUrBBFfzq9xVvWsUma5m4HxXuw\nWEYXQkGCSxTwvsl/q3YAM6OaU2EMNFGjBrR6KDuGitZLCJSZ8lgoIMYdteKWQwQBwtrxqcC+7MAB\noUQCLqn9ZeGoOcIk8Ep1KRT6LglMueVgNK+Eu85fjVojG7e5OIkn460+pr2/w3TpgrTdi4jptNbL\nbdXJCLb5zs4c5nrNv9sRbyfBRiyWlYKhfFjy3i/1bJBuPsNmJEbISftgt7S7EM3yjgmnQI+pLaIl\nQZCBU5O55KUOFSmlGrOKwBDqsbLvCiHgBftct6QcpaSPceHE3vjWjk1gtlTGwXoVq8sTOHXV0Xh+\neT/GnTLWjk1hqV7Bs0uv4fWrjoUA4ReLr2FteQKrxiawWK9gf62CEyZXxer1y6uOweEgeMSq0jgY\nwGK9hknXhSscVDwPDGDccSBZ2bbLQsTqNVMqYdKRqEsOhbPHKjqUIwT8YG6yE5y31HOOhYjaxLg5\n1PQqxNpS25UpaD8ptTagMUiEJhlAwhwFixb70lTL5t9mquXkaLfZvnbk+5FXTPLw4C06+pmb55a0\n4ReHRL/N3sqm1KlKOfm2GJsvy4ALDqfweMyhIxJLCU/qObUMHx5qwaiT2cNrtSXUpI+ycPC6maNQ\ndtQle25pP36w73lU/DpcIizs+zl+sn8vBBG2rNmIV6rLWPZrWD+5BuunjsKr1SW4JPDLq47Dsu/B\nZ8aLU4dw1toT4AgBZsazS6/hxeVFMBiry5OYdMfgMWN/nTAhSuEqXGOOAwEBCaDi+5gtUziar3o+\nDgeOWlXpq8AVQTu40oe+Wl7g6KXbSPjRNCvBDFdEU57CQBlAw/KobBiSzXncHOQTTeOK7zPtxEoj\n3tn1N23haenScmmWRyu6yd/SHdaGnA15b8EiqqxHQyBTEFxCcm7U1q1GRKZXcCiMof7WDBXwa7XD\nqAURlkrCgSuccN/8ay+GwSB+cegl/Hj/HmUDZuDpxX2gYFGOA/UKSpVFAECNfRysV8OH0aryBJzA\nBlxniReWD0We36BQTa5Hw5Fwi07KCTzDNYf9+IuINB2rDF+ppMDRU5aA+Ag5La1JM+E2qFuxE9tw\nP3mkH9DS4m2xrCiEYgSXGISpa9CMjA3ZXPEqP2gP6eCvYRtNbgPxIAjMDGFcnlqwbKXPEp70MeY4\n8ANh7ZKADByyoiUslfD2pYypYyVHCv5KsOwlM4M47pWof9dQQrByKKyj+nKgmk6GkExrk3atxqqQ\nnmNLsLmRkkevN14WtmFust00veFpb7EMG4YyQ+Xdhhx5wHTzGS4jMUJWHaT349Pe9LrJLvaA5bgw\nYHAwRUcJXJ/VtB+CilNc9X0wgGm3jLJDmKYyXqlWsFivYMmrQrLEi8sHsGfpNfzv3U/i1JnVOLD8\nGh786UOYHl+Dzce8Hj/f/wz2H34F244/A6eu2YC5407FrlefxT/v/iGWvAq8pVdx7OQauMLBnqV9\nWDM2hVXlSew+vB+H/To2z67Dsu9hyh1DXfpK4+CUIEgtqTnlljAuHOyv1VFjtRAIg+CSEv4H656x\nZGagKgrsxFq9a1pllT1Z/VZPaWifGQwVKAMEEMfbOBpJt75WElHAiSzpZcTeKo+0Y0y1eDOvbEtv\n5H1kVwQKEVyih+s87FeMgQhk3/fxyU9+Ek8//TQcx8Ftt90GZsZ1110HIsLmzZtx4403QohsBugr\n1SmSIxViI/C9HjEadYoiEwVOR8Fj1iU9rYjhSx+vVA7jxeXXsLo8jprv4bt7n8L+2jJOW3MCzlx7\nAk6aXo1518WLhw9h4+zRODw+ic1rNmDzmo04f+N/w87dLv7+wB7M7/kBlhZfxvqJVdhXOQxByjY8\nU57AUeMzkMwYcxz8H+s24rjJWexe3B8Gl2AGZkpjWFMeR8lxcbBaxWHpoS4latJXC30IF2VWI+4J\nV2DSccPAFjqqko5lXBIEz+dwXnVMqJDSByiP7ugW0O2lR92hMKdo3mOaFiTpQKWuUdIxyxj/D7jD\npN3UySI7ufFNx7E8P/gsljxSxHtmIAL5u9/9LgDgK1/5Ch577LFQIF999dU499xzsWPHDuzcuRMX\nXXRRJuUNIrhEs4spm2wnNaN6JSq9JKbeFmzuEzh0eBkH6ktgAL84tA//69knwIGS+5TptThhahUc\nEjhq7PUxJ4VzjjtVBZkQDjbPHoelwwewX3rYc+gl7BeTGHcnABCOmVyFjTNHQwQ25d8++axA8BFm\n1owBoEAou1gzNhHW86CoAhLwWGKxXgezq+pPAqvKIgifSBg3Akgwx4NEMKXEqA4EtwwMyuF8Zora\nSC9xqbdZ+23p5c6MNjevVah0Cto8tr5HC/t1O7od8WaVZ5jWjugyxTp19Y8NLjEYBmJDvvDCC3HL\nLbcAAPbu3Yt169Zhfn4e27ZtAwBccMEFeOSRRzItMx8WgDjNgiWYf3UsYwCxVbkAYMxxQ9d9HRs4\nnDMHCoWsz34orBkMQSJaGCQQuBrHEIKE+MtCrM4xCdPZy0pDHl0+9MylMaO2CxYX6TQvI5kKKNG4\nbbFY+kMg/y+KRN1/hs3AbMiu6+Laa6/Fv/zLv+DP//zP8d3vfje8gFNTUzh06FDqcQsLC12XJRwH\nG07ZBCDeSdpFRTJpls4chTE4RVAphSIl0kuO1LE1X42ly46aY1yVEuOOA4cI6ydnIVliX20Zx4xP\nY/uJp+PRl36Gqu/hhcMHcMrMOkjp4eGf7cJPXnoa7zxrOxjA//rxv2LL0ZuwdcOZOO/4M3DJqRfi\nmz/5HqbLk9i65njs8xl7D+/HhqnVOGlyDZ5bPogpt4RXKktYOzYJEPDS8iEICBw9MY2q7+GwV8ds\neQwuCawuj4GrwLL0UBJKA6Ht9HWfoR2+65IhmcOVe+pB0Avlfa2CQmi1tUN6xbCgvcIhrLIZ69Gv\nZAAsw5cQFQfaaHF9nB7pBN85vAAcpokCeqhhdprqOIw2Zf6W+IvEvuR2q+OSeZi06qPd9N+syWvZ\nHdcrUqs02d19/nltk64w7rnQHtRl2WptBGDvM8+gXq+hUqn09NwePDmQsF0yUKeu22+/Hddccw1+\n+7d/G9VqNfx9aWkJs7Ozqcds2bKl63LUtJzmN1EnJJ2GkupQtd2oBNGqaj0P12MO0jGqPrDsq2AL\ngggVqSIwVX0f+7GMsiCsHZvC0RPTeGF5P9ZPzuDUVUejcvAlHKou4uyjNmD3/udx7mcuRs2rwxUu\nfvDij1Euu9j5/z2C8fI4rn7T+/GrJ2/D5b/yFpxx3OmYKo3hjLUnYl91Ga9Wl7Bxag1KwsHrqksY\nd0qYcct4qbKE3Uv7sezX4QonmG7lo+J7qEofs6VxTLou1k1MoubLYBUwJZCZVQQqyYzFuhmiUbWE\nxwAxYwzKqavkAI7xDNCCUxjtp8WmjnKlWzucXkXRWtjqq9AXN9wfXZBA42DMMQYSacyXtvCnlN/Q\nSJq9ut3fdrTqo92EtMyaYY6A2rVJBxkMr+wBkUnZhuapG3mVHOgAwKZf2gRBhIWFha6f27t27eoq\nfS8UUWU9EIH8zW9+Ey+++CJ+7/d+DxMTEyAinHHGGXjsscdw7rnn4qGHHsJ5552XWXmE/oNLmDdw\nchQUpYsf5xvq5now9UofVTPm47qCMO0KAAKSGU/u34e6VGtRf2fvj/HEq88qj2Ovhr//1y+DpQ9m\nxscfvB1CCIyPlbDxqOPx7Q/93yg5KkjhzNT/xP/++SP43OMP4Ms/+Ce8fuM2FQCCgFPXnoTVY1MA\ngIUDL+H4idlQ9T1ZKsMhganSGI6fnMX6yVkgsNO+WFmGZMaBeg1LngdXBN3Dl0GwB5VHxVcjVhEI\n2alSuHI0qr5qhzqrkbSTaEh9k/hotJeQ8YxI86COW4+jBMnnFMVTxI/v4aGW7AvNXtgsxcDakPun\nGMElisdABPJv/MZv4BOf+ATe+973wvM8XH/99filX/ol3HDDDbjzzjuxadMmbN++PbPy+g0u0asX\naysFkrlPCyXtpFSTUWCIVyuLYVCHxcoiKvVleEHgCEcIeL5S+G5Ycxxc4WCyrByvFl75OQCgLtV0\nJZ8lZJDvhDsWvhyUAk9rvUCHHo0SESbcUmBfJvjBGNe0L8fOxxB85h4nHKyqXyXiYRK7Jhz0aoHL\nKe3cOJqNfojKTlMn90Pa6HglsMLDkicIxQguUcT7ZiACeXJyEnfddVfD7/fdd98gigMHKutuLSyt\nRjnxkXHa2CyaYxuslBFLS4gctmo+Y0wQJEswS4AZHkvU6zXMUglevYayW8bMxAxOXHMC9r62FzWv\nDt/3QUI5b/30lWfx/KGXcYI4FkQCb9xwFp6b/38ghINKbQlghhOsK131qiiXp8AAKr4XE0aSJRxS\nBuAlr4Y1gYAnZrhkrM4V2H81DStnBQJah4/U5+8gcE4L7b+JQWnDD+lt33oxjOiMWgnarKx9WQjz\nvsq3IzpLjmCo4BJFWK0rC97+9rdjZmYGAHDiiSfi0ksvxa233grHcTA3N4errroKUkrcdNNN+PGP\nf4xyuYxPfepTOOmkk7oua2QWBunr4ZvoVGlOOMnvhCiARFXpQkFgeFLZURlq9FrxK2qJy2XgBy8/\njSf37ca+2hIOv/QiXnn6Z/jOf34XJAS+c/uDOP3ojZh+46X4k3/+HD73r3+DVw7uAwg4ddMpOFRb\nwm/+zytw4Rn/A7Or1uFHrz2LdcecjJNnNmB8YjUEObhw/RacsfYEHD+1Gq9Wl/DEvr0gEKrSw1Hl\nSbiOA4cEBAjjogyHHLxUqWBCuCq4BblwAlW0E9hpxx1CKRD0Fc9HXUZNplut4ivhrbXa5qLuoZkX\ngT0USt2lVdJ6GdHkfR21d5rxwBiBj/7zwJIxR4IQGTT6mTvqLal9n+69997wt7e97W24++67sWHD\nBlx55ZWYn5/Hnj17UKvV8Ld/+7f4r//6L3z605/G5z73ua7LGwmB3G+nMEcgzRx5TLFg+hERKaGl\nRnWECUf5VnuSlU0X46j4dQCEX55dh7eefBaePfQKTjpvHRwQnvjFjzA9PolTj39dqCa+9jeuxP/5\nP67ArmeexHGrjsbGtevx4uIr2HPgBbxh/WkgIvz4td1YP3UU1ozNYF91CUteFRum14bCcG15Er96\n3Ouw5FXBDEyXxsBgLHt1paoGoR6sT+0GgrIuGeVAUvpBm5jTG8YcgTFH7dPhGPUoWAtYyUAQYrlB\nA6EHx6QbDoCDaCTc+jo27k2dodUHSRW3ZTSxGocjgyycup566iksLy/jiiuugOd5+MhHPoJarYaN\nGzcCAObm5vDoo4/i5Zdfxvnnnw8AOOuss/Dkk0/2VN5oCGTqLbhEK5tg7HuKB65ZdvS7kjhq9Bzt\nm3DL4UNgSozh1DXrw31bX3dmOJ9Y4wgHjnDwxl/6b+G+E1cdhxNmjw2P+5WjTgm3j56YwTqebvCE\nJAAzpXHjAUSYLo2FaUpCxOpfNursGOeWPFdznxK8bOyLVNIExFTUac/AvuzNOo8+jl3JPHvFCg9L\nnlDPivyrq7Oo3/j4ON7//vfjkksuwS9+8Qt88IMfjM0Qmpqawu7du7G4uIjp6enwd8dx4HkeXLc7\nETsSAjnr4BIMZVPV2wBic/HMEZ5Zh2Aj/C1av1qGU6Fq9TrKpRJqtRpctwQpfdTZQ9kthR2ImQN7\nM1DnGsbcMqre/9/eucbKdVUH+Nv7nDP3Mfdev7Cb2Dh+4Dh2SOokpAmPxFJbjFFKaFO5chzVP8of\nikiDJYLAxCQppQkQkUqNFECklBYalYBUCpWKSqxIbmKwghtbxLikhMTGsX0Tx772fczcmTln98d5\nztMzc2d8z0zWZ115zuxz9t6zz2OdtdfaaxVwLBs30GoVipLn4mgr+s5flxv00IQLkfxlWCbYDjVX\nVdnvGttVmkTCwSosK0+QEe9XNl6JsYz6lxxtk+iTiofQ/03lyyUvZjOu58jVSlmjOucD0eiENGHw\nl3fapPtlsRM9W7NmDatWrUIpxZo1axgdHWViYiIqD5fw5vN5pqeno+89z2tZGEO/CGQ6k1yicolN\nZJs2oDCRA5Ol4iU7XvAyUPJMkFjCJe+5TBVn8YzL+dlp9o+/jDGG5RcKPHv4p/zngb386eYPcdXK\nd/D1H/0zC0fGeOqBJxgOQlf+4tRLHH7tKE/89HusWbKSne+9g33H/4dfvfkqf3H9nzE6tIiDZ15l\nRXYxv7d0Db+dnmC6NMu7l65mxMmgFBSNy2SxwJv5GVw8lg8toGQMM8UCWWeAIcsm73ooBUOWhWvi\nKWut/Cl3fzo+1qJd/Clp14uXPYWOa3Hc7sBGXDFe4ZiqYCzjl4943MPy6DwESSbiwvgjlAtUanxu\ntazelHUahLLQOdIsRHqFnkgu0YHeff/73+ell17iwQcfZHx8nFwux/DwMMePH2flypU8++yz3H33\n3Zw+fZpnnnmG2267jUOHDrF+/fq22usLgTx3G3Jtp63IRhrsEwof1wOlfIGVL5bIuS6WUoznzvOL\niZMMWDZ2Lse/PP2v7H/p51x/3S1sv+V21q1YwcSFCf7jwE949Adf9xcauQa9aJDNf//nfGDD+3j/\nO2/lW7/4Ef/7+m+YmJ2gODPMN196lqmZs6wZXcrykSUMZbKMOkOczk2y/41XUcCIPcArU2fJ2hmW\nDmaZdT0uFGcpeB6W0kyXvGBhk6bkGXL4SSEyQTKIUPctGj8VI/jCcdYzWPg2YxciTdsXtmGNvnAO\nBZeXFKTBvkkNNzkDUXUuapyH5ItR9L3qvJ23UX3VLmUXPzbNDytBEC7Otm3b2L17Nzt27EApxUMP\nPYTWmnvvvRfXdbnlllvYtGkT1157Lc899xx33nknxhgeeuihttrrD4GsFE5gQ24HU6EDxU5byWlg\n//sgCibGwIXZQhQz+rdTZ3nh7Ku+MxRw35fvZraQp+SW2JAZZdvaG8nYDusuu4JdT9wfpUeyL8ti\nLxzi12eOcfL5cf574ihaaQaHhrl+xTvJDi5AKc36xavYfcOf4AQxK1+eOsdEIQf4NuplQ6OUjMf5\nYh6lfG9qW1ss0A4ZK5wONzhWJppyH7J8Ry2lFNozlBKm7KQjm68Z+1qt7+gVa7gaPzFEOGVeqb1C\nLIzLx7yewCpPLlFLbrci6Gpp0XM5Zj6ErGh0nUVMAHOnJ5JLdOAcZzIZvvKVr1R9/9RTT5Vta635\n/Oc/P+f2+kIgQxw5pjNaU3OTlMmVz36O4PjoYqkYBfgYtAeiVJNK+cE+QvuqZVmBxDIUPa+sXkvb\nhGEiM5YdHK+i9kIqo+aUC0OVEIjhm0XF/1G95aNX74Kue6FHduzyl5vmUdH/De+ltD8JBKHP6Ynk\nEj34oEh/uJUmMMYw20ZgkBo1EYpDY0zwl3AyIraHAow5TpRKcc3oEq5ZeBmO0ow5g/zdR/+WjW+/\nEhR8+/l/59sHfkC+OMvx8yfZfOv7GB0dITs4zI5Nf8SHr/kDHMvmuss38OG1t7B0eBEjmWHes2wN\nv7v4ChSK84U8h8+eoOCWKHou7xhdQtbOoFAsyAyxKDOEpRSOthiyLDI6FOSKgeCzpfzt8CcU3dD2\nHdiBEyOhE3ZyBWUZoyptrZ6Jx0sRO3hV+W+1chZMg/XlLZzounVc5Bhofmq628xXQgNBqMdskFQm\nzag2/uabvtCQ27ksymyCwRKh5Ix36JAU6qEOoLQfhtK4/jS2Y1m4uORKeRYNZdm06HJeP/cqy5xB\n3v3e23nfumv51oF/43uHf8zf/OSrHJs6wctnj3OccT73l/fy0Zt3kLEznM1Psu3kHVy9ZBVrxn6H\nX59/g1mvxIaFl+FoixfePMF4forj0xcYts8w6gxS9Dw2LFjG2pHFaK2DZA8FLKUYth1KxlB0PQZt\nCwUMuB5WkCTC/vH8tQAAEW1JREFU01D0PFwUhVD6odBaY5vAYSv4rck1x+H4VAb1CIVyeFVrpVAG\ntI69u6OxRkWe375FoNzByz8fyXNDVBaaEub6GEhOSVe+XFTelMl5g2aUdnEASz9p1+yEDtGD57kv\nBLKiteQSVQ90YzBBEIzo4RucSyvaVrhBhqOQF8+d5nxhBoC9x17giZ/9Y5D1SfHVD32OjcvW8uBt\nf8Vf33YP4IetjPIVGw/HcvjxsZ/zD7/8MQqFpS2uv+x6MpYD+KEtb166mk2Ll4cyMxJMb1cLot9e\ncF1O5aaifg2W4vCYObeEE8addT2ylkYr33ZcezB9O3EpWtPtZ12qvLQ15bMFVdXUEMYQ2+sjj+uy\nafNqARh+rpVsom7bVAvRmrbtGsfVq69Zeu8R8NZDbMhzR5JLdIf+EMhq7skltF9Rw5NY6TM2VcpH\nTl3jk+P4kbAKAKxd/HY/YImd8dso0wTjz786d4Ki5yeQGFQWxphoe8XwgmjNcaRN6uo6wv0j4ZWw\nRPi7xHqbVjT1MGok+HxNtd3LXdX8mNxsJDSbrb1ZYdsLiPAQ0oSiR5JL9OBdn/5RbQJjDLPtCOOE\nfdgk7KDJPy/xvyL+HmBJZgSFwjUely9YjqUddKCZPvPK8xTcIrnSLDOlWXKlAvlSgaLnMlnMU/Rc\nip7LdUvfgaNtBiwHg4ejFbbyY0f/3/k3cD3Pz+QUBj9J/IV9cbRFmKtZAR5uYmzi3wj+gv5av7Py\nr9GlXG+syv6o1o6jQa/xMdxs9NcMnagjbYgNWUgTBj+5RNqvS9XGv/mmLzTkVh+2ldOY4RRq6Eik\nlB/8wjX+NLjnecy4BXJuEQMscAYYsR3euXgZy2YG+eZLz3EqN8Gm9X/Ib04eYqYwyZd//iT/dPS/\nuObyDTw/fhQD/PG693NyepKzhWlWj7yNqxYu52Ruhg+s+X02jC7gmiWrWDQ4wpGzpzg+PYFtOfzs\nzHFWDy9mxi3iYRixB3C0RcHzUMCCzCAlA6POELYyZCzNgGVTdF1mXFOm+VvKt/uGEcRijZpyj+uK\nMo1vD3Y9E421l9i33klJRuvym4iXMbXr8FXtC95cmSCEyIzD3AmfA2keyV48zX0hkFsd98qHtmfK\nw25a+OvsHPxMRrMGbOUwZGlO587xem4ChSJXmuXIuZMoZbFsaCEAV1y1Bc9zyRemWT52ORkrw4rR\nlbx72SquXLiCfKnIvvGXsbWNpTQrs4tYNDBM1hngjUKenGcYzgxzlTOEazyy9iAZbeNYGYZsRTaY\nAp8uFikZRcnzL7zQYcs1irzrAYqMDqbjK6biw88asIL1hCZ4+Ui+3PhLG0KnLVN1gdebHk7eqNXx\nsOufl2ZIy9pgoXcRG/Jbhd47x/0hkFV7ySUInYhMLEJCB7Hwhi0E9lmlFAW3RN4tRIujDr95glmv\n5AcmUXa0NEhbmjWLVkd1bFq6NkooMeQoBu04wcPizDDDji9kPWPIu24UgGPMHsYOAoEMaJsR20o8\nSKzI0Snsc/gbjAkcpAJBXEsDhmBpU/S9Pz1QJrgTG/4I1Z/UaSbWdCt0wELdN4jwENKEokeSS8x3\nB9qgLwTy3JNLxKeuUgPTgXc1xDmCwyMcy8I1HiXjRSkM/WM0HoaM0rjGMOuWIkGlUFjB1K2HwWsw\nyZq0wlZaZCvjeLQVSMP49Xb6xuqEBpL26bBLiWh0Qpow9EhyiRT3rR79IZBpLblEpa0xXL7jmnh5\nTciIrSl4hoJnGLEHWehczun8JJZS7Fx3M69MnuE3k2e4ZtFyhu0Mh948wcLMEBsXXsap3CRv5KdZ\nNbI4oZUq3rN0Na/NnCdXKrBieAGWtpgo5MjaGbJ2hqlSAdcYxmwHlGbW86LgHiFZW1P0jJ8QwtJo\nDKVAw7WiaeZ4utoj1qQj+0/S4VkpLEzkSR4uQQqPqzeGNcs6cCP03q0k9Aq9+KBOG72QXKIX6QuB\n3MxFUbUe1pQXlkyQnUj5DkwhXrCUacYtUdIWRnnMuiW00hQ8l0UDI1ypLbL2AI5lsXZsGRltoZVm\n8UCWYXuAIdupsKvCmDPMsD2IrS0UmmF7CEf7q/sGdCYQmL5TlB1ORdf4rVopvCCYh4rKg6nq8DuV\niMLV8MUlDlmZnNauv3cdwjnzBse0awuWB4AgCM2QBq/pVukPgdxicolKb/2k7bmyijP5HHnXtyNP\nFwucK0xFwmSymA8yJcHJ3AVCcTENvhd0wg4dCSJjGM/lovoniy7hkr6c6wVOWv7eedfEAjFIjRgy\n68Z9dhN9NsEPLEspmZCPyWn9pNyszHg1lyljmW7uLKLRdRYxAcydnkguMd8daIO+EMgwt+QSjY5J\nxmuttbbWJP6v6/DU5qWh6m7U1vhbfcZcdP82r2h52AlCf9MLySV6UST3T2CQOsklaq1Rjq8jP4hF\naAsJncPCwOmeMQxZTiRQfU/nQTQKR2neNpAlG4S5HFA2g9oJbLgaS1no4LgZ1yUXZHjyDGQTdVoq\nPgm2UmVvnmVezoY4EYQxfsrDcL+KfeulOwz3DQnjdddb39/Kuv/kOKc9YECvIeMppI2eSC6hWv+b\nb/pCQ246ilMyKIXxPZzDKWpLK4zna8QFzw9f6QXCechysBXkPZcF2mLtyCIGbRulFEXX5VyhQClI\nhzikLQyKojH+WmalKHiQK3lgFB6gtc0CbWFrFcXUchTY2hfhRc9/MQiXLQWRn/Eg8Pj2rx5bgUqo\nxoogEURge3YTWnNSyCtCjToxrV1BmYBvMMa1bMIq6k95WfJ6T5al4D4Q3kKkX7MTOkH6J9Wr6bhA\nLhaLfPazn+W1116jUCjwsY99jHXr1vGZz3wGpRRXXnklDzzwQJQfuBOE3sP1lj0pKjM5GUqJtzsN\n2ApsK3aLAo0Bxpzq+kKHq1zJxTUwZDloBcO2VS6Ymui76/l9MSiKXhCyUqlIcw6TVdRFlYs5lVh+\nFXpbt+oJHQYDCX/DxYRx8nOlDbtyv0Z1CMKlQGzIc6cXkkv0Ih0XyD/84Q9ZuHAhjzzyCOfOneOO\nO+5gw4YN7Nq1i5tvvpn777+fvXv3smXLlo612Si5RDMXTXXChTAMRvXNa4J0hEBiiZAKBGccaKPx\nTR+Lycp1wMkQJc0mgqhJQkttp4Z2zcvhC4XQOUR4CGlC0SvJJXqPjo/qBz/4QT7xiU9E25ZlceTI\nEW666SYANm/ezP79+zvaZjvJJcpsqUEdcUKJxHZFWbgNvlYd1RF8V/e4GvVjTNWyoiobb5PJIJJJ\nL6rGp8W/Zmi0n9g8O4uMp5AmDD2SXEJsyJDNZgGYmprinnvuYdeuXXzpS1+K3vKz2SyTk5N1jz96\n9GjLbTqOw/JVq6Np8HparYkiU0FGazzPwzP+tLBSirzrxkuITBjj2q/H0XHwkQHlvyEO2BaO51Ey\nBkdrv45gGjsMqGEpojosv3UMvjC3lMLSGm0MrucLZ601XuCgFmrIbpnDWoXmnbQhB5+jaebEtldj\nTGqlg2xUVllnvf1CG3ar9bfdry7XP9/9SiJj0lpZrbGbr37V6ktaxqR2HR4qEZ0wWeZ6Lq/+9jXy\nuRz5fL6t57ZQTVecuk6dOsXHP/5x7rrrLm6//XYeeeSRqGx6epqxsbG6x27cuLHl9kIv65DKCy8U\nELEXMBSNLxxRBALQdzm28B287KCOgmei7EiO8rVWD0XeNSgVW1oLgUBVyne28hJT26EtOAyZGdqv\nPcAkQmNF20H3PQIhS+xJraKp7kBAJqamw8/RSCS2a41JvfFCxXboKltwneMa3fyttN1OWbfrn+9+\n1dvvUrSd1jFptqzW95WC+VL1q9v1z2VMateh65ZpbbFq1Sq0Uhw9erTl5/bBgwdb2r8detGpq+NT\n1mfOnOEjH/kIn/rUp9i2bRsAV199NQcOHABg37593HjjjR1tUynFgFYNf0y99cPJz0optPKFcXjD\nKog8lxUqkYzBF+zJOkJ7sFK+5ht9Vr6Tlr8NyYdBo37Fvy8Uxslja2TzbPAAqIeivq2l3cu5nX4I\n9ZHxFNKEAv95K9dlx+m4hvy1r32NCxcu8Pjjj/P4448DcN999/GFL3yBRx99lLVr17J169aOthku\n8am0IRtAtbiuJhKI7dhHLtZWK0baDjfd6eMa1tlgqk5oHRlPIU0Y/OWXFul+WUxx1+rScYG8Z88e\n9uzZU/X9d77znU43FWGgbBlTUub5077l+ysFtonz//rpCf3paKX8iy2ablZEwTOsIDODF0gxf1mR\nH0va0gploERtAecnegCjFDoxfR5ORYcz1UpRVlb5O7uF6nL9gpAW0ixEeoWSiWPlC52jLwKDNLoo\nKiygcVQrFdtnTXCDhut2y4WlCsLEhTZbojfD0C4dCm+lwCGuI5wONpW9COpMdjyZOaUZwVjvmTKX\nG0RuLkEQ+oVefJ71h0BW5cklqk6ESmjJKnlc8IUx0WeF8R2JgyJtqC6rY/8N+xLvFxxXI8pGo5f0\nXryQhO4hGl1nERPA3JHkEt2hLwQyNEguoSr+r1lYvqOqEtrULKtPxX4Vn3vxQmkFedgJQn/TG8kl\neo/0h1tpgnDZ06W2gcrlWJu0BwzoNWQ8hbTRC8klepG+0JDnelm0+6YXLouSKbByZCyENCPX51uD\nXjzNfSGQFY2TS1yMuQpUucHLkRcUIc3I9Tl3eiO5RPp7WEl/CGRVP7mEcOmRh11nkfEU0oRCkkt0\ni/SPahO0k1xC6B5i8+wsMp5CmuiV5BK9SF9oyHMNgCUaSGeR8RTSjFyfcycZayGtpLlv9egLgTzX\ngRebUmeR8RTSjFyfbw168RT3xZR1M8klhEuHPOw6i4ynkCYkuUT36AsN2RgTpEUU0oBoIJ1FxlNI\nEz2TXGK+O9AGfaFUGvz8xu2S5otKEITOIvf73CkZSUbTDfpCQ5bbSxAEQUjSiy9efaEh+8klVJRd\nySb+YRqwVZx5yQ6yNSXLZvN5FOCo8uMs4qAjtooXw1tU15FsOyyzarTdSr8atV2rrBttO4n6mx2T\nyfPnOzYmtcrme0yS9XfiOrlY22deH6/b54u1PR9j0qjt5JhUtU3rbbdz3xYLhVTdt2kYk5r1N+hX\nLySX6EX6QkMGsJTCsupfIpU/1El8Pnn8GBs3bvTraaHNZB2N6m80yO0e14hOt93qmLzy+jjLlizu\n2Jg0W3axfrVTf7fPRzNlU+fPs3L58jZbb69fNCjr9Wv016++Et3vct9evO1O/Lb5oBdfGPpCQxYE\nQRCEXqeXXngEQRAEoSl6UUMWgSwIgiD0HT3o0yVT1oIgCIKQBkRDFgRBEPqOHlSQRUMWBEEQhDTQ\nNYF8+PBhdu7cCcCxY8fYsWMHd911Fw888ACeJ0EuBUEQhG6i2viL8TyP+++/n+3bt7Nz506OHTvW\n9R53RSB/4xvfYM+ePczOzgLw8MMPs2vXLp588kmMMezdu7cbzQqCIAgC4Dt1tfqX5Omnn6ZQKPDd\n736XT37yk3zxi1/sep+7IpCvuOIKHnvssWj7yJEj3HTTTQBs3ryZ/fv3d6NZQRAEQegIBw8e5NZb\nbwXguuuu48UXX+x6m11x6tq6dSsnTpyItpPZarLZLJOTk3WPPXjwYDe6dFHmq91+Rcazs8h4dhYZ\nz86StvHMZDL88tALbR0XMjU1xcjISLRtWRalUgnb7p4v9CXxstY6VsSnp6cZGxurud+73vWuS9Ed\nQRAEoY+59tpr51zHyMgI09PT0bbneV0VxnCJvKyvvvpqDhw4AMC+ffu48cYbL0WzgiAIgtAWN9xw\nA/v27QPg0KFDrF+/vuttXhKB/OlPf5rHHnuM7du3UywW2bp166VoVhAEQRDaYsuWLWQyGe68804e\nfvhhdu/e3fU2lTFG8kwLgiAIwjwjgUEEQRAEIQWIQBYEQRCEFCACWRAEQRBSgAhkQRAEQUgBIpAF\nQRAEIQWIQBYEQRCEFCACWRAEQRBSgAhkQRAEQUgB/w/73Rf7T/+wTQAAAABJRU5ErkJggg==\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["df.plot.hexbin(x='AGEH', y='AGEF', gridsize=100)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Avec seaborn"]}, {"cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [{"data": {"text/plain": [""]}, "execution_count": 28, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAE4CAYAAADCeyCZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXmYHOV56Purqu6eXTOafZAMYhFG\nRmBZBuRD7MNyjDkHhxhD4jxcGRsDNhCIScDHxKDHAUmWMD5KIuyY3WxRnIvDYg4+zxWOWWLfBBGM\nYyNfsJEEQttoRstopjVbT1XdP6qqu7qmq9fq7urp96enNd3VVV99XV39ve/3bp9imqaJIAiCIAh1\nh1rtDgiCIAiCUB1ECRAEQRCEOkWUAEEQBEGoU0QJEARBEIQ6RZQAQRAEQahTRAkQBEEQhDolUu0O\nOExOTrJ161Z6enrQNK3a3RGErOi6zvDwMEuXLqWxsTHn/iMjI8Tj8VnbW1tb6ejoKEcXBUEQchIa\nJWDr1q2sXLmy2t0QhILYtGkTZ5xxRtZ9RkZGOOO/nIVmKLPea29v54UXXhBFQKgbful6/tGq9aJ0\niv0cyrXXZtxu3n9/Sf0pltAoAT09PYA1qPb391e5N4KQncHBQVauXJm8b7MRj8fRDIX3+yaZiaRq\nc0VmFI7db70/l5WA0dFRHnnkEQ4ePMiCBQv4whe+QFNTU7W7JdQhYVBAFGX2ZKCahEYJcFwA/f39\nLFy4sMq9EYT8KMR1NRODmahrQ51E5Hzve9/jsssu4+WXX+YjH/kI3/zmN/nOd75T7W4JVaKWZ/9u\niv0cYVMC6mQYEoQQoCqzH3XA5OQkH/zgB9mzZw9nnXWWWAGE0PBL18P7+pd+B5WIqigZH9UiNJaA\nXJimiWmaSS3K/dxv/1L3rcQ5am3fsPWnXPs6zwPV2jVAc7VnBNd0mIlEIvz5n/85S5Ys4cknn6Sv\nr6/aXRLqlDBYIaop8DNRE0pAwjDQHVeqe72jXGsfBbFvJc5Ra/uGrT/l2tc00TCJagEZzFTFUgQc\n9GCaDTsf/ehHefrpp/nNb36DaZpcfPHF1e5SoITBzxwWvLPnUq9Hpa/tR13nLNf5xB0gCPVKnboD\nfvWrX/Hwww9zwgkncP/99/Pv//7v1e5SyZTbZFwsfv3Kp7/V+kyVMMH78VHXw7utXKiqmvFRLWrC\nEiAIcwLNYwmok3IY+/bt43e/+x0jIyPs3r2b0dHRancpcOrdAuAQ9HWYi9c1bJYAUQIEIQs5HAmF\noSjptrdwjQVl4ytf+Qr//M//zA033MC+ffv4+te/Xu0ulYzbbFwuMrVfbaHoNc9ne+1sCyN+boZs\n/Q/KNSExAYJQQwT6c61TS8CHP/xhPvzhDwOwYMGCKvcmOMIo4IrpUy7hVoqyk82/num8mVwC2YR0\npn3y6U+plBI3IEpAMQQ6HROE/An01lM9lgCJyBGyEKSSUa62vO3mI7DDQqZrku06uRWVUhB3gCDU\nK97sAFECQk8tRP5XwwSfyy3gt7+fGyVIhSGXiyLXMW7y+WyFUs0gwEyIEiAIWQhUZ48o1iP52kTM\nXOEkzLPYIMzzDvma6QtpM5sQLqTvhVgVCm3X7XYoVLCXqgiIO0AQaojg3QGuAUAN/AxCGQirBaCa\nFGIaz7Sv3wy72Pb89vE+z2f/Qt4rBrEECEINEajOrirpFQPDNRYIQt4z6kJm3vmY/4O2vIQ5S0Fi\nAgShhgh0nq55lIA6yQ4IO5kERpiEhpdcM+FCzdzZZuretvIp6FPIvtnw+xzFtJmrSJJznkooD+IO\nEIQaInBLwCx3gCCEg2J84/kK5ErUVXDO4yVs8R2iBAhCDRGkJUBVlDR/oKrUxwpCu3btYmBggB//\n+MeYpslFF11Ec3NztbsVGEFEj+fTRqkBe/kIyEKi93NZIoKiVNdDJY4tBHEHCEINEeTPVVMVTJcl\nQKuTtQMefPBBmpqaOPnkk+nq6mL9+vWsWbOm2t1KEmbTfzay9TufojrlTtWrRLu1iAQGCkINEaQl\nQPEsFKKEaywoGy0tLei6zmWXXQbAL37xiyr3KFiCUCJKjWAv5rggfO3lJFeOvl9Z5WI/R6VcFmIJ\nEIQaIsifq+qxBKh1Ygno7u7m1Vdf5eqrr6alpYXjjz++2l2qKLlM7rmEe5BrCORr/g8DxWQQlMsV\nEaS1KGwxATUxF5FMaqFaBBsT4Fk+tE5MAcPDw5x11lkkEglGRkZob2+vdpeEEghTOeNcx/uVBs70\nqBSqomR8VIuasASoQH2EUAlhI1BLgKJgKu7AQH8V44033uDxxx+nubmZY445hvHxcaanp4nH46xe\nvZodO3bwwAMP0NjYyHnnnccFF1zA3XffnbZPLBYLsPfFoygKv/3tb3n88ccBQhMPUKmSwO7ZdpDn\nKWQxnSCD+MpV4rccx2eLe8hkkamEZaRQd0C5x4KaUAJEARCqRaCWAE+KYDZ3wOjoKGvXrqW1tZWr\nrrqKhQsXsnr1ap566ik2b97Mz3/+c2699Vb6+vq46qqrOOWUU5I/eGefiy++OMDeF8+RI0d48803\n2b17N2NjY+zZs6faXao42RbaKaWdTHiFXDFCLcxugqDIJzCyLHUCCgwMLPdYUBNKgFgChGoRbEyA\nCu4UQdVfxTj33HMxTZN7772X5cuXJ2cP/f39vP322xw6dIi+vj6rj4rC8PBw8rWzT1i46aab2LFj\nB4lEgqeeeoqvfvWr1e4SUDtZAbkC++a6sA6CbNeq0vdBoZaAco8FZVECBgcH2bhxI+3t7ZimSU9P\nD3v27GFsbIzbbruNzs7OgtoTBUCoFkHee6risQRkGQzi8Tjr1q3j4osvZtGiRdx7772A9dvq7e2l\nr6+PoaEhent7MU2TgYEB9u/fn7ZPWOjr60sOSqtWrapyb1IE5Q4opp1S6+jnM1OvhZz5ShHktSr1\nvinU/1/usaAsSsCOHTvYsmULS5cu5UMf+hCvv/469913H6+++ipPPvkk1113XUHtiSVAqBZBVvZV\nNQ1FS7WoZGn8W9/6Fjt37uSpp55C0zT6+vpYu3Yt8XicNWvWsGTJEr797W8TjUa54oorGBgYoKOj\nI22feqLUgTlohSCMVoZ6MPEHQbm/u0LdAeUeC8qiBPT39/PYY4+xcOFCrrrqKvr7+5Pbh4aGCm5P\nFAChWugE9yNRVdJSBLMlB6xfvz5rWyeddBIbNmxI23bzzTeX1L96IyhzejHtFFIXoFgFJYiyvrWm\nOOTTX7+MgULOUQqFWgLKPRaURQnYtGkTl112GYqi0NbWlgwEKtZMKZYAoVoEaQnQVBUzrVhQfaQI\nCv4UWrWvXCb+SpUALjfFrIJYaatN2OoElEUJuPTSS7nnnnsYGBjg9NNPJxqNcscddzA6Osqdd95Z\ncHuiAAjVIlBLgJJeLChslcNqmWq6APzaKIefP9e5a01ol4tCCzJVkrD97suiBJx66qncd999gbWn\nKWBIxSChCgRpCVAUFcXtA6iTYkFC/hS6HkAhqYe1Ztp3KEe/q6kUyNoBRaCLAiBUiWBjArxLCYdr\nRiCURqVWE8y0fz519SutAJimNXCXOvMNoqBRPtkY2c4VpNJQF5aAoBFLgFAttAB/r1adAJdtQa0P\nR9eRI0dob29ny5YtGIbBihUrqjobKrZuf6GCwG2iL3e6XrVm+EEJ+kpSbQWpLmICgkYsAUK10M0g\nLQEaaPWnBGzYsIGenh5M06Szs5Of/exnoaoXEBT5KgnZZqJh8l3XAkHEUfhtL5diIEpAEYglQKgW\nQVoCFFVDcVkCTNWoi8Wx5s2bx+joKLfffjsAd911V5V7lJtKl5QNo68+0yzfuy2bBSCXdSAIK0Kl\nrluQ9R/CZjWpCSVALAG1i/urC9etnx/BWgJUjxKgowfUdtjZv38/69ato7W1lfHx8ar2JZf/PFOw\nXbEm+XwW8wmjAgCZhZWzzRHgubbns49pmmUXjJlm927Bnq12QNDfjwQGFoEqloCaZC58ZcHGBHgt\nAVpdKAH/5//8HzZu3MiuXbvo6enhzDPPrHaXcuIXdR+kQMhWoMdNoWmFtZYFUA4FINe1DbqwUyGI\nJaAIRAEQqkWQlgBFUa24ABujTlIEly9fzgsvvMDY2BhXX311tbtTEKUW7in3Ur2lBLl5zfH5mOf9\nZvrZLABeKiEEw1z8SGICikAsAbVJuG714gg0JmDW2gFBViEIL9FolFtuuYUdO3bw2GOPsWvXLu6/\n//5qdytJMVH/+ZSmzSezQIr8BEO+VpUwIEpAEYgCEC78vg7F571w3fKFEXR2gJqWIlgfSsDSpUsB\nOOGEE0KVFZBNSJdbKNeC0C9mdp/tGL/3grAM5Jr5h0kZEHdAEUh2QHgo9GsI1+1eOEFaAjQ1gqpF\nk68VtR4iAmDlypXV7kIapQrgYtwAYSnUk0kQZwrUK/Z82SYB+SgK5SJMJYQ1CQwsHMkOqCzeiP58\nL3+m/UxqWxEINCbAYwkw68QSEGZKMdOLKb+y+AVBOtTK9yCWgCIQS0C4KEQxCNftXjhBVwxMVwLC\nNSMQCiMsQsc9s/bm7/ul8mV6z3lVyC2f7RjvNr9AxHwJqtJfJhdBJS0FkiJYBGIJyE22fHzv5Qti\ndp+JTO1KnYAUqqqhamIJqDb5LtJTbbOxH4UI9mzHegV4rnEj0z7O60KG6LCXGs5nXYFS7o2wfe5w\nqSQ+BDkbqydEdyqdSMB1ArwPQQirslEtCrketXjtVEXJ+KgWYgmYg5g+z7NtC/q8fu/Xmj43Ywa3\nnLDicQcYITMLzgWKWQWu2jnlxZ6nkCp9DhkDA73HZHk963jH/ZDhfdPznl+fvJRaJ6HQYyutSEiK\nYBFITEB23MI162XKJoXdtsEy5vnVmiIQ7NoBERQ1kvZaEPzwM/sX4lM3DMM52Gl09k6e90xP+0am\nmAO/vlZZwOW7LLBf+eB82y6FsLkDamIUEktAbnJeItP1N8M9mNxsgmnvnPZzD0h6h+v2z02gMQGe\nioFqHhUDd+7cyU033cSzzz7LN77xDQzDQFEULr/8choaGnjggQdobGzkvPPO44ILLuDuu+9menqa\neDzO6tWricViAfW+eCq5lHAxA3UxVgKhtqhEGeh8KebeL+c4UBNKgFgC8iNrwJ/rTQXvhMAsWDjn\nCi6sNWHvR6B1AhQVzSX4zRxKwPDwMD/60Y9oamoC4Pe//z2nnXYaqqpy0kknceedd3LrrbfS19fH\nVVddxSmnnJL80T/11FNs3ryZiy++OLgPUCRhW0q41Hr9QVBMpLw3Fz/TrTlrRp7PrNMz458VKJih\njWRvvdaKDFYDvz6GbUZcqYqDhX7uco8DNaEE1LMlIJe/Lpf/P/memdoj9Tv1+ZFm2Oa9b/Px//sR\nrp9+dspZJ0DJERjY09PD1772Na6++mpM0+TrX/86K1as4KWXXuKJJ57g0KFD9PX1WW0pCsPDw8nX\n/f39vP322wH1vDS8SwmvX7++bOfKFMFdrhr/peAVBHlV3HP29XltN2S/md6OI+Dds9CkUuGnkNiv\nky6FLP3Oh0quGeC3MmAYsj8KjQko9zhQE0qAWAJmk9flyMNHkE+6oOMmqCnpHRBBGq1VRUVVCnMH\nOBw9epRt27axYsUKOjo6SCQS9PX1MTQ0RG9vL6ZpMjAwwP79+wEYHBykt7c3wN6Xhnsp4YmJiWp3\npyBqbVU+oTgqpRSUEhhYjnGgJpSAerYEeAlSFrvNfpWq+V9reoSRe5e80RQNTXGvIph/3kFrayvv\nvvsua9euZWxsjP/5P/8nIyMjfPvb3yYajXLFFVcwMDBAR0cHa9euJR6Ps2bNmgB7b/HKK6/4vnfO\nOedk3N7W1saHP/xhvvOd73DWWWfxuc99LvB+lZMgFYAg6ufPsgi42/RmA3jad8/qTY91QLffc4SU\nruuz+uY9JsMH8e93SN0AhVKqNaGUz1+OccBXCXjiiSe44oorADh48CBdXV1Fd7xUVIIdjOccGSP7\nPb66WVuY9X7uxvPDba6s7Z97wJYAjzsg3zoBDz/8MMAsP3p3dzcbNmxI23bzzTeX2MvsvPnmm8nn\nzzzzDJ/97GeTr/2UgKNHjzI8PMzWrVuJRCKsXbuWP/zDPwy0X7mqyVWivGwpQi7TsbOyAzzbzQzn\ncQv5bOfJtQ1Sgj4tO8BzTFIZyJJ6GFRKXCkWGb97oRougWKDYss1DvgqAT/96U+TSsBf/uVf8vjj\nj+fd6O7du/n+979PV1cXLS0tjI6OlhSxXK8KgJ/Q9nWNeFN4XZucY9yCOflXyaxHuLcVU0rUe75a\nJMh7TyHdHaDURq2uNG688cbk8y1btqS99uPgwYMsWLCAbdu20dLSwoEDB8rZRTHfz2GKUeaCvhdK\nVRzCZgnJaxQqtMbzI488Qn9/P8PDw3R1dRGPx1m1ahVnnnkmmzdvLriT4bpk4SHf6+IV6mnZgjkC\n/kq99rX+3QUppiNqZNajlsl3MPuzP/szRkZG2LBhA/feey9//ud/XuaezeaXrke5UBQl72ti4lPI\nyzRTD2c/97ZM213tOX0wTDNtBj+rDft9wzSZ0XVmdD25XTcMdMNIvs70GWd9VkWZNZgUOnnIRbm/\nv0qhqWrGR7XwHYXGx8fZvn07hmEwOTnJtm3bku+ddNJJWRvduXMnN998M4sXL+aqq67iYx/7GFB8\nxHI9hATk8xm9ulj6jDuz6dB57ms8MFPvm4CaQSlQvQ36kKlgkVgCUpQSGBgWnHHANE0mJibyGhcW\nLFhQ9pRAvzxwCF5wmKaZU9g7+7j/Jt/z7ouTtpuhXZ8JmLd9xw2gqmrSt++0ZJhmsn0vzm8/azqf\noqT64drP7Rqo5Ow2VxEg73fvtgyFocxw2CwBvkrA4sWLeeihhwDrx+34IyB3ik9PTw+tra1Eo9ba\n6aVGLIfrkgVLzlS7LDsos0R/ert+mrjbHaDYo4C7WFAm60Ah30E+GQe1QpBiWlG0dHdAAYGBYcE9\nDhQ6LoSBUl0FBeXze/5CZgXAt90sCoD7rzsOIJMC4Nd+yh2YPZ8/Uz8yBiUGTKHV/9x/M213v1dN\naqZs8Lp16zLeHPv27cvZ6DXXXMOGDRvo6uriT/7kT9i2bVtJEctzRaCUjpnllfVbdQS2d0avArrn\nOHc9Ec2c7S4AR5EoPHJ5rhDk5/FmB2g1qAR861vfyhjYlM+4UE4qZSbOZxaXLeffL8c/U5CfN+c/\nWczHid73CHw33kDDbBYtbz9V98DgwSvAZtUNyKP9QmbC5fheq20VqBkl4Itf/GIyGHD16tV885vf\nBODWW2/NGSR44oknsnHjxsA6Ga5LVjqFx9vPJlvRIEWZ/b6igGqmDwaq5/2MbZWoANT6dxdk/1XP\nAkJhW1c8H6688sqix4Uwk6mwkAQYhpN8hXeuYkHVombcAW7t7Z133sm4vVLMpdllpsC7bP56v2Pd\n5nuD9ECjGcNEJaVxGmQ+h266XAJZ+haye7aiBHnvKXjcAYGtT1g5wjQuFEMhKwa6txWS/pdP1b9Z\nrz0lgd3Pc5rtXc/dsQGQnt7n7Zv3M3nbVzNYNIqZwBQr9HIJ7Gzvl3O2X2qdgLAp/75KgPuL83te\nKeaKDPIdANzbnPgbZg8K3n1UJSX8kwE8NgYQUazUwGzDc/avs/ArP1e+K4cgP4+1doCW9rrWqOS4\nUMhgm6v2f6mz+kJq/GfFK5Sd9jPu6j8GpLWV4XtwCv1428rYjP1Xs491hJTTltt8nWwlj2WCq6EY\nZvqeM90L+VCuEsM1Ywk4fPgwr7zyCqZppj0fGRmpZP/qjlk/Kp+d3LN0zSRt7W6DVO6/AmnzTbfl\nIen6I9Ng5HIEFBAZWOvZAF6CHMas7AA17XWtIeOCECT5KGd++/gJ5nL7+kttv2ZiAi688MJkdTD3\n80996lOV6VkNU4xvPJNbwO+YTP5+9zbNfZNliA9QPSlLTpvp+2U3/Pm5McJ1e5dOsDEBxVUMDBO1\nOi4E5QvONIvz/pbyURxnBQZm29drEfAG/bnOn5iZAVzuAE8pYDLM1B1V1C/iP83ik6Wf3mPzmfEG\n8b1ki+OodiZAJmpGCXBXAtu5cyeJRAJFUTjxxBMr0rFaoJBZYjazvvV++g/dKZVsuoL5FNeBBpaw\nVzGZMe2KgAoorql41PYXzIoJMFNLB7uzCPzEfkZTZY735wpBWwK0Gq8TUMy4cOTIEdrb29myZQuG\nYbBixYq8/KKFDODFCJNi/Pzufb1L7xaC13efyXQ+q32PMuCY/N3X0lv331ti2F2URvEz/2fpk5//\nMDB3CbNTA0tVFPJZTTCT4lAuBaJm3AG/+tWv2LBhA//wD//AjTfeyNKlS9mxYweXXHIJl19+eSX7\nGBoCFXzm7NaSabk+J3D8/k4cgKqk0gJNTwedmb1fUGC+hOt2rW0iikrEJfgjNagEFDMubNiwgZ6e\nHkzTpLOzk5/97GdlLx7kJdNA/3oJ7XkD7oT8KEfGRbZCUWEkbIGBvr3ZuHEj99xzDwAdHR2sX7+e\nhx56iP/9v/93xTpX8+Q5TpiYqQA+JTU7d5voDXv27ww+UfsNVVGIKtYX6Z7JR5LvWzEBGrO/bPd5\nZnd7toMgE6Ik5I+qpJcJrUVLQDHjwrx58xgdHeWrX/0qn//859G0yrtBMgWLFVLm18Eppev8OtxH\nO8p4fr8cC8MwMFwleg3Xw3tOp31vWV+nDcPerhtGaqKgqqg+pWmdbX79VRXF13Ttd0zGksIFMlfK\nA/vhLb1c6vUqFV9LgK7rdHZ2AnDppZcC1pKghS7+U+u4BavbD55TvjuzejN9g/urnuUPtMtvKp73\n8QwIipJuSlaUVO1AE9CUdL+T4jpRpvOnPy9wUCz4iPplLhQLKnZc2L9/P2vWrKG1tZWJiYmy9jHI\n2WZeFQL9XueK7s9yTMZ2Pe4BI/XGrGOS1QTt10o2d0AeBX/83itUeJVTuJeSTVJJ60HNxAQYhsHR\no0dpaWlJLhcaj8dzLlU5l/Dm7HoVgXyPdxf3TfP5u/z1zo92xrBmGTFVIWGYzBgmCdPa37l3dNOa\nDcQ0FQWTacPW+u22DRNmTBNNTSkUuitVMOkqMN1BhZlvTCcDQSidiKoSdQUDRkJmFsyHYsYFVVU5\n5ZRTuOeeezjrrLO46KKLAu9X2E3AQv5kWup3LlkGwuYO8FUCvvKVr3Dttddy+eWXs2jRIoaGhnj0\n0Ue57rrrKtm/0OEoA7kUAX99PtVIzjZMtyLhEdNKuiVBwbvDbFPlLHyCAtOiFUQBCAxN1dBcSoBW\ng9kBxYwLw8PDALz11lsoilJU6fBK4Rfpn9fPwGfm724zaeb35vh7SgNn6otf4R/dpYDN2M8jtsvF\nmXU6rzMG+TpZAj7CKdNsP2zBbbVEzVgCzjnnHI4//nief/55XnvtNTo6OvjEJz7BP/7jP3L22WdX\nso8VJZt5O29XwKwjUhj2JhVvzv7stD3rDcufr0D6Yl7J+buCppjeQ5KDS6bsgmRbyV4Wf1OG63YO\nN1axIDXtda1RzLjw1ltv0d3dzcGDB5menubgwYOB96tciwJ5XXbu+91by997TLbFe5LteRSHTAGH\n3swE06MwuM/vCJjkb90bte/aV/O6AwpwC5Qbr2k/H0tPrViDwqYEZB2Fjj32WD7+8Y+jaRrPPvss\ng4ODfOlLX6pU31KU6ZqZnod7e2kNWy2mtetjEMAO7vH6/d07pWb56UEkqd9uarvqE2SSGhRIWiEy\nuQEc87/zEIJDVZSkIqApaugGg3wpdFy49957ufjiixkbG+M///M/+fKXv1zB3pYHyQ4IhloR3EFS\nM4GBDzzwAC+//DInnHACF154Ie+9917F03rKST4/4UL8/5kaTs0IrL8qVtCes4+mWLPwGSMVNRBV\nQLPD9qMqROw5v27CjAkxNdW2oxxETJhxnd6xHADJhYOyuR/SLAwF3Iu1KcIKI8jPGFHUtDiAWkwR\nLGZcGBgY4DOf+QwAxx9/fCD9qFRBGL+gv0zlcb1xEZmC/RymEwmAZKZEpmWHvasFOu1793Wb8aft\nYkFNdqBmrlX/0jvs6WcFBFMpFpxS7oFqFhSqmZiAn//85wwMDPCxj32M5cuX1/QKYflSjDXASRfy\nzqwz/XyUWU+8vzMTRVHTZ/ipE9mz89nr+jmC3s+X737uDQ50NrozCHw/QO63hCyonuwANY/sgJ07\nd3LTTTfx7LPP8tBDD7Fnzx7Gxsa47bbbSCQS3HXXXbS3t7N48WJWrlw5ax8nkj8owjouFBJAVkjE\nvzciP+N7WdLo7B2SlgPdUyQoU7R90jXgKBU+FfzcLgTH5+8I/2gk4nueQnz/+byXD7kyNmot178U\nirmW5RwHfJWAJ554gn379vGTn/yEq6++ml27dvH8889z7rnn0traWvCHCBtFzfIhLWjAm4ZjvWUm\nZ+5pSoVppm1rcKL/TbdvDyZ1AxVoiqhM6wYz9vkULK1+2kgNSk5FwPSlQlKVBrU0v3/mj+K0Belj\njeI6rxg+g0FTlbQULU3NPhgMDw/zox/9iKamJqampnj99de57777ePXVV3nyySeZmpriiiuuYPny\n5Xz5y1/mM5/5zKx9gg7kDcu4UEjd+CAjy70KQD4U4joo5rcWKaDuQjGz0KBM1UEL9lLaq6aSUagb\nsNzjQNY7YmBggGuuuYZ/+qd/YtOmTbz33nt8/vOfL+gDhJlCb+1ktL7Hh5/agcy+/1lRvd6D0p+W\nOwlTyVjqJDOiAASHOx7AGySYiZ6eHr72ta/R3NzMyMhIUpvv7+9naGiIAwcOMDAwAKQK8nj3KQdh\nGhd+SXpxmV9meDg4xXWykcs/m6kNv4I/TuGeGV1PPpyxw9lXdxX4cRcAcrfjHOvd7hTzSXvYxYGS\nn8M+X0Y/NK4g4gr6qLN9R5n2mWtk/N6yXO9yjwN5q4WLFi3ixhtv5Nlnn833kFBSilCzfjRm2mtI\nRforLrmqkqrU55w3qlgWgAb7qkdVhUZVoVmzHk1a6jlATFNp0hSaVIWIfZNEFYgpEHV+xIp1joiS\nOp/G7GqAKbGfXozI3WfFfYzbneB51BNBKkGOO8B55OMOcOjq6kqu1Dc4OEhvby8DAwMMDg4CVn3+\n3t7eWfuUm7kyLgilk2l2nW8nuEQ6AAAgAElEQVRkfz1RSmBgOcYBX3fAXCbnwD57co7ifcO13XT7\n1J3tbj98MuhOsSv+Ka79MkTnp7Vjxxi4/I+ZYgK85/T20SvVFZ+LkKkNb5/qibAEBkYiEVasWMEd\nd9zB6Ogod955J5OTk9x1110888wzfOpTn8q4T63izAD9BIjf7DEb3nS5bGl/eN7z/lzc+6WCcK1n\n3gC+TO07q/15VwJ0zwh1T86/057m+cF7ywG72/V77T7e2zfv58mXbN9JORSBsK8W6EcpgYHlGAdq\nQwmopE3azHxKt6XfvcJf0kdoR/irCkQUhSndTKsGaAJThmkrBAbzohpTusGUy/Zvlfu12m/QVBKG\nmVwd0CFhpJSIiO2wT6sD4NrXvZ6AG+9+uahXBQCCtgQoaS6AfH2DDz/8MABf/OIX07a3tbWxYcOG\ntG3efYTcpHvnPKb+DKZ/L4bPe86RM67tmQIBAUx7n4SeivDxxh84wl6x/2Zbg6GYUsBBrgToxU8Z\ncAIGi6kLkOtcmc4XBop1tZRrHKgNJaACmKb3h2JmfGU6QtltLfDk9ac35M05UDLv5sJtrvea5fMh\n534FTu3r2RIQJHNh7YBi2LVrFwMDA/z4xz/GNE0uuugimpubsx5TyOBdjpXphPIRlGAOo4DPh7DV\nBxElgEyBepmN/ypgKqm9kik6pKwCzvfboCkkdINxu/4/WF9+s6YQs2v6Z9S3TZJrf0dUBdUwSZDu\nj1dI1QIw3Q25+ua4ABTXa3emgJKnZA/X7Vp5gvz8VnaAkva6HnjwwQdpamri5JNPpquri/Xr1wda\nOrhoBSDLjDfXXNhtIfCWAnbe0TOk+DlWAd0z888kGJwtjgUgaQnwVPrLeGyutEVXP/NyHQiBUTdK\nwC233ML555/Pvn37ypq3nItsP+b0CbzbH5Y+s08KT8XtIzRdx9vVAZOmecVWCBRM03EKKGCa6KZV\nC8A5l/d+cNwHSTHukt6KbRrwHufvx3c+kzLbeoEI+HwI1h2getwB4SoaUi5aWlrQdZ3LLrsMgF/8\n4hclt1lMXQA/4eb+jpO/b09pXsfUn62sr4OzrzPYT7tN/Pa+U3axICeff8beJy2F1Kn/7zH/O33M\nR/g7+7gnAMl9Zx1dPrLN2quZOlgN10HYlKyyKAGPPPIILS0tAGXPWy4WfwXA2Zaa3Tu7uo23hgmG\nYaIDup2yM23oNGkaDZq1Rve0McPh6XEiqoaqqEQVlSYlmnYO73kzKQaGaadxFOvHd8URFVMZsJ4J\n8jJFPasIRkNWOaxcdHd38+qrr3LDDTdgGAYnn3xyYG3PxVXmhLlNpkDOahK4EvDiiy/S1tbGsmXL\nMAyjInnLpWGmPVNmb05KTgMlPfXOM7tWsBQCAN000BTVk1ZnlQhGSz+XnyHQHV1cyIx0VkiQ62Qi\n/AsjUEsAHktA/hm6Nc3AwACf/vSn2b17N6+99hof/OAHA2vbT/hnCm6btQpfhuMcM703KM/wbHfP\n5nR7Fu89JlM5YWfG7xzjvOfM8iOudmetAOjJBkhOTjJlB/h8Rvn5V585bwl47rnnmDdvHu+++y5A\n0iJQqbxlN9kH8NkGcUfYmswu2ONE96uKleuv26b9GRN0w7IETOjTRFSrbOf7R0cxTYhqERrUGJqq\noqKgA2MJnbaobeqzH1auKMltYK0VYGJlDXhTAw3TXQsg+01VrOk/XLdqdQjyGkQUNS0tsBbXDiiG\nF198kZaWFpYtWwbA9PR0yW3mmw4IGUz4HuGctg6Ac4zHd58pK2DGI/x1j0l/wv6cme4hJxYg6kn/\nc6ePeVPJvDEBXtdFpmOyUW1hFIYo/mqct2bWDiiWv/u7vwPg6aefpqGhgQMHDoQvbzn5ozHTNhmk\nm8yt7bazwP7PchEoyfoA2GWCrTUEFBKGbhcG0pgyrVxgAwPNSdgzFaxa4rYQN11C2gkdsM9dqAUg\nI4oI81II1BLgCQxU6yQw8H/9r//Fo48+imEYnHDCCVxyySXV7lLJzOjeYt2CkB/VVr68lC0w8NJL\nLy1X03nhO3g7PnHXJm8qnuZE2Zsmk6aVjx/V0g37DZpKw6wMr1jy2cKWtuTzkWlLGeiIpV9uVVGJ\nZFEKIy4h4cxDvLsrrif5Kg2ZbsFqBQyFnUCzAzx1ArSQDQbl5Morr+Sll17iyJEjee1fapGZbLnu\nXpN+mrneM+P3ugFm7CI/mbIDHMUgWQjIfn/SDgKElLXA2dcx9TsWAbdp3ykspXosAF6y+Zi9R1RT\nAIVh5h8G6iY7oJrkIwjdVf6cKn5pqXQuf7xumkRQkvW6wfrhO1YDJ3XQME1UrBKQhr26oKIoRO2F\nfwzTithPrhRmup/bVgjS/Xne2yV9m5L2J99Za6Z2w3VbhocgLQHe9QJyrR0w1zjvvPM477zzAmnL\nLyAwk/B37m3D66v3rOznxhHSjtB3Wp12CfSEx6/vCH9HKDsZAJmsBs452213acRZ9S+DgPAr/JPR\nrOxxFZSzAFA+VDIroFYQJaAamFYGgNvnbya321kApklUtYT3lJFKAdRNK8gvPqMzqU/TqGl0NzQy\nOBFnUp9hxtSTqV8aKu2xBjpiDQxNTqCgEFUjVlS4pjKpG7ZiYNKoqVY8QVJZAKcIgYJlfTCxfP/Y\n73uDfUq5lYJoox4I8vrUa4pgMeQrIKqVHZCoM3eA9/vwzurzmeXXq9D3UjfugCApVYfNlCObejO1\nVTdM2xVgutwGTgSAtcTvtK6TMAxiqsa0rqOREtyaojCt6ximSUxVSRhG+hfumulbVoHkZvzETbnv\nF1EGshPk/KmUtQOEzHiFf6aZ76w8fk9goNsSkLQOOJYAT8GfZEtZ2vea+t3vOt9/YyyW9tfZ110K\nOGnmTxYP89wvWQoMBU02JcvvvUzbP5rjfe8+lcbbp3L0Zc4HBpYDp1Z/vnh945lM37rdpiOUYy7/\ne5OWGkgOTM/QpGl0RGK4ff49jc20RWPsiB9Cs5wALGxNxQF0NTQmn8cTVu+btdk/Yg1I2AqBpUik\nf24HxzlR7I88WxyAKAD+BGsJSI8DqJO4wIqSJvx93vP+1VR1VupewvvaNvW7FYZJJ/rfKQpk7xPx\npPA55wBoaWqy9vEIfW9VQHe73oI/hcwkcxVKEipP2L6LmlACClEAYHaK/yy/utsXgIlhmBiKhonl\n89cNw87zVzAMnaOGjkqEhKHToFmFf3TDQFUVIoqlABiYjM8kaNAi1mvTQEFBURU0xUr3c2ICUsEI\naU+TFgLVs23WJ3OCB4q8Jornr+CPxATUJoV8b8VE+k8WkOYYtuIwpRKU+T+M7oFK9EliAoqgUEuA\nF8O0VvRTFVBMk4QtkE1I+uVHp6fpiEXRdZ1d46PsnxjlSGKC98YOEFEjNGhRmrUoC1vaWdFzHDvG\nDjKpz9AcaUCzKwKOJXQMFFojEQ5Nz9hBgaq9ehwkDANQUBSTmKowg6Opp68loJuWRcCJXXDfMu7g\nRW9WgxA8wWYHiBIQFL5FgjJsm1X611MC2O3fd95zFIPRo0eB1MDtrflvnTQ9O8CwhX5D1KoO2tyY\nsgo6WQBOuWBnVhjNsCJgsihQjuWN3ULFb+YfpEUg1zLOYRTuYSJsSkBNjEL5KgDJgD/s/H7TvSXl\nxlM8eyv2ftO6TkRV0RSFmKKiYNIWaSACxFSNBjXCeCKBbhi0xxpRFAVNUezlf62/M7rV2wZVtaP/\n04V2KiPBufjKrJl5PveIkp6x6L+f6+G+TkJ+lKJ8elFVFc31CJtvUBAc8hHkpS75W69YheFmP6rF\nnLEE+Ak2dzaAU5zHwIn6hwk9waQ+zch0nMVt3cQTU7xxcBdvDL3NnvgQbQ3zmd/QSmfjPD7Q2kVb\nrIGIqnJg8igzhoGqaESUCJqioioaDRFLo58xFTTFCht0KgK6ffCKkh4c6OCJI3Rtz+8m8cZD+JEp\nTVCYTZCL/UYUxVMxUL6BoEjOlvMoF+zg+Pnd7gAnBdD566T5ORaAKdsN4FbgnLgBZ3bfYAf7tdr+\n/6aGhuS+zj6ZYgAg8+88WSHQGxtg/3VbCryBkd5j86WUbAuxCmQnbMp/TSgBBccEmKkV/kzTTC63\na2DPvm0rgW4YTM1MMW0YGIbBvvER5kWjqMYMHdEmDmtRWrQoEzPTmKbJjD7D0cQUEzMJOhua2T8R\nt7MHUj/ChGHQqKnEVEjYkYfu1QeTn8m2BASdaDQrGMr+K+KmOHSC+5Eo9j/363pg165dDAwM8OMf\n/xjTNLnoootobm7O+/hiIrbTiv54i/nYf51APnfuv7PPEdsNEJ+YyHisW/DGbMHuKBsdra3A7KA/\nmJ2/P2t54CzrABRCpWeWfqmamYo+1buSELbAwHCpJD4U2kn37F/HGgOiqkJEUVAVhQZNJT4zzjtj\ngzz09kv82+D/x7KuBZw4r4eepg4uOf4jTI4P8faeXzNpGHQ3tdPb3M4li07n3IGTaIpEWdDczqkd\n/SiKSlSN0qRG6WqIMi8aQQFaIhptESslTLXXBVAViCkKMdVyHSiKVQ9AtR+KklpLABwzfummIre7\nIZN7QPAnSEtAsp6E/aiXOgEPPvgg3/nOdwDo6upi/fr1Ve6RUC4+irgJcqF53ILOo1rUvCUgm+nb\nXR/AWd1PAaYMnZiiYpoG/bFm9o4O8+u9v0PFpH9eDyOTY5zZfyq/PfAundEYDapKayTGvvFRehpb\niSgqBlbwXoOqYZoGqBEShpVdYLkvUudzUHBZI1zb3M8zZwQUJ7JF0JdO4JYAl0JXL5aAlpYWdF3n\nsssuA+AXv/hFYG0n0/2c1/Zf96Ca8JT6dWb1jml/Ymoqua8T9e/8HRsfByA+OZl23qZYKl3YOdeC\njg7rPdv8H/OY/mH2ioB4zPVpd4RPpUAv9VAKOJ/z1IqFIWyWgJpQAjQlVTnPjV/xH0eYOsJfN00S\nBjRHrBK+vx0Z5PeH9/HrQ+/zo3+5j+npCb6vKjx/zYOMTo9z5Y9XcVz/afR0fZATO49jfkMzXQ0t\njOszHJ6eYEHzPIYmJ9BNiKkxe1anMKWbxDTQVIVpnWQ8AEr6F2/4Rv8rKJgFi/1w3VJzi0AtASio\nrm9LzfLN7d27l+uvv54lS5bQ09ODrutMT08Tj8dZvXo1O3bs4IEHHqCxsZHzzjuPCy64IMCeBkt3\ndzdbtmzhhhtuwDAMTj755IKOL2RA99b6h5Q/3zH/OwJ+3Bb+R+Lx5L5Onf+4Lfz3HDhgteeJKxgB\nutvbAfiAvTpqoyP87awA569bCdA8WQCzIsWzCAhvNkC1SgE75GP6z0SlBHRYlYJCswPKPRbUhD1S\nL+BeT/eB2yV5TQCDycQMR6bG0RNTNM7oHNM4jz894xL6Wrs5tmOAF373C5pjjSxfcBpd0QYWtsyn\nM9ZIRFGIqRqaojBjGswYBk1aBE2xgrs0JRXspxuWEE9eWCW9L07fZn+k1MxAUWzfgPPwQcz65SfI\nmI1CIoJfe+01uru7AUuIxuNxVq1axZlnnsnmzZv5wQ9+wK233sq6dev44Q9/GGAvg6ezsxPTNFmy\nZAlHjx5N1uOvZRwFQKiMgJ1LbgbVdkt7H36UeyyoaUuAg4IrGtbe5qTtRTUFNGhJzulirOg/EbP/\nBMsce/oFrP/UDWntfe+/35qzT22qSput6SuKMksrb9DSv9Ssgp/86v+42xDhXxm0AC+0oihpcQDZ\nlIDTTz+ds88+m+7ubq688kpWrFgBQH9/P2+//TaHDh2ir68vZzthYOvWrdx7771ce+21PP744/z1\nX/910W05szuvG2DWan+uiH9v1T/HxO/UADjssgQ4M3/HWrBzcBCAFjvXv80OaFy8cGHymGbbAuCY\n+mOexYDcA7w3MDDrd5fMaU53FYStCmA+mQQSIJii0O+t3GNBTSgBfpYAS/in1wcAkiv46YbJ0Zlp\ndFPn3f07aYjG6Ig285/b3iTaEOOY3mPQNZMpPQGKSmusiQXz+hhLTBNRNTobmjBMq72IqmFi1XtX\nlfTfp+Lpn+K8r3hqBJBu/jftdQnyNXSYGZ4rGd4Lx9AwN9DN4H4khbgD3nrrLZYtW4aqqpimye7d\nuwEYHBykt7eXvr4+hoaG6O3trbpZOBfDw8Ps37+fdevWMTIywuHDh4Nr3FMC2JsJACkTf9K/b0f8\nHxwdtfrnWt549/AwAIfHxtL2dQbXFR/6EGC5FhbYs7NWWzFw1gFwhL7jBnBH/PsJ/4x3Qo4BPWzK\ngFeQV3pxJ7/zh41CUwTLPRbUhBKQzRLgzAfccQAJAxKGztGZGf518G3e3ruNu/7+Nh647i4uW3ER\nf3r39WjzG4n0tvChJafT3trFQOcJfPOMP0ZRVF498D59jW20xxqZH2u1VwK0CgaZqklzRGXCMKyC\nP05kP+CsBeAEADqViZ1Zvrvan6ooSQUm+UGK+C1Lvn95CdoSkBYYmGXwPu6447j77rvp7Ozkoosu\nYt++faxdu5Z4PM6aNWtYsmQJ3/72t4lGo1xxxRXBdbIM3HLLLYyMjHDqqafy9ttvc8011xTdljOw\nvx5M14rGUQDqkXzLBud6P6xCutwUqrSVeyyoCSUgkyVgVj68nY8PdkCeCTNGgk4tQmfrPD778U+z\nZcd/8onTVnDDZ6/i9/ve41DLNCd1LKKhqYmT5y/kndH9/EHfyZzQ2gkoNKiR5MzfqQxoWQaslMMZ\nw3RF+dp9JV0o+xX/maXUiCQPJdWyBCxdupSNGzf6vn/SSSexYcOGgHpWXo477rjk81NOOSXQtr1Z\nAcnSva46AU4MwlE7wv+APfN/x55R7dy/P7mvYwFwigQ5mQMfP+00AOa3WYuEtbe0JI9xSv4632bE\nWx8gi+KXfF3EDC4sFgA/cq0iWCsE7bYoNDCw3GNBTSgBqp8lwF1xT0k9nzZMDicm2Da6n/u2PIaG\nwf/9Z3+bPOw7X1jFMzv+jcff/hdOPuYMPjR/AZ857vTk+2d0f4DhyXHG9RkaI42oCkRUhbZIKrJX\nRUFVlWTgmIKlGCRXJnN+22kdVnDrDG7LgB/53i7hHg5ql2pZAuqdbCZk90Ds/N4cv7+TBhjRtFT0\nv+37d9wBI3YMwG7b/++4ANz7OAV//vC//BcATrZjAPrmz0+ep9WzIqBTDTCSTwEgj/DPVinQ+1n9\nqgKWgnd2n41KmfcrQTXiEsK2dkBNKAHZggINe5lAxTTRseIAJvRJIigcTUzy4WNX8O87fs7/s/OX\nLJrXR1dTOyPTE5zYvpAzek9hUet8JvUEh6cnadQiRFAxFGjSovZCPpaoVrBSAKOqkvT5e/3yumGm\nrQCYDe8MJtt+4bpl6osgLQEKKipq2muhPIy7cv/LgaMA1AuZ/PthSQUsN0F/jrAp/zWhBPhaArB8\n76YJUUVhRjeY0E3eP3qIoYlRfndkkObmDi48/TMMJ2Cx1kRnQwtbR4ZoicS4dPF5NGoxoqqGYWrE\nVEujn5gx0RSN9qiGakcBOrM4ExMVJVnAyFoXwBHUqXm9EyPgh58lINNroXqIJSB8/JL0hcLcf72F\ngCAV6X/INvVv37sXgG179gDwvssd4GQB/PE55wCwxHZl9HV2AqlCQO5V/xxLQHKGl08J4Dxm8X71\n/8MSEJhvXQAhHVk7oAi8CoBJ+oqApmlioBBRAV2nI9YMpsn0vB5URWFyZobepnbGZ6ZRFYXjW+YT\nTyRo1hpo0OyqXopCwjCIKQoRe6avqKkfX2qGb//AsRQQ78/QdOrA5fh9Zpvhi2gID4HGBCjppkBV\nvuiceAVMcibqLA/sCH9niV/b/98Yi81yA+w/dAhIxQDsO3hw1vn+9PzzATj1+OMB6LWrAGZaDMgZ\nzGcpATYpV2WwX3Q5hH+m9Rmy+fTd7+VSBsIcG1CNflRbefNSE0qAOzsgXR8w0Q0TA4iqEE/MMJaY\nYmRqHBM4ts2K4FVRaY7E6G9qBROiWgPdkSYiqkZU0ewlgSGmpZb/daL+NVeObprgVlLG3GK+U8Xn\nuRAugrQEFBIYKJSGowCUi7DN5oqlkFgA73EUeWy9UxcxAW+88QaPP/44zc3NHHPMMYyPj6eVOYy5\n6m7ngzc7wDSdlQLNZJ7+jGnSqEVo0nSOaWpnykiAXavdMA2atRgJw8BAYV7Ueh6xZ/gK1mCv6waa\nqiTLClk/czsmwNYCJKi/vgg0JkDcAYHjdQc4Uf3umIBR2xLgzPwP2tkBTiDfNZ/+dHLfjyxeDEC/\nbf53zP7NtpvAWwMACisA5Gv9q9K94CfE89keltl8rVEXSsDo6Chr166ltbWVq666ioULF7J69Wqe\neuopNm/ezMUXX1xQe351AnSsmXrUNSXvaWxCURQSusGUYdKkzS7JOC8WY8YwksqFihX97xBzl/e2\nqwEqgKoqaW4I7y/aeSlV/eYOgcYEeCwB9bKA0JEjR2hvb2fLli0YhsGKFStyzqRz5Zb/R6A9rH3y\nmZn7ulYCOG+p+9QTYbMilUUJOPfcczFNk3vvvZfly5cntVynzGGhuC0B1oTcTKUGmfaCOy53gVUx\n0EQFErqJqqXq8mmKgq4b6e0pKeHuHpe9Gr7ped+LuzKgMDcINjvAv27EXGbDhg309PRgmiadnZ38\n7Gc/Y9WqVTmPyzbr9AYG6p76AJMuS4BTH2DCDhBc2NMDwEp7oZVTPvCB5L7tdmpgs2cxIGfmn6wC\nmGk25ynvmw+VtADUsul+Llkg6sISEI/HWbduHRdffDGLFi3i3nvvBVJlDgtFU6zB2AoCtLYpipIK\nCjQhpiro9nNrGFBQVfsHaVpxAxG7dJ/pmPRw2iK56E8xBVjD9ZUKQRIJ2BKg1KElYN68eYyOjnL7\n7bcDsH79+pzH5GumNlIDApDKDkgrsW3vc3x/PwAfPPZYAI61xyJH8EPK/J8s+OMpBORdAtj9nh+V\nEPTFCvhMAjWbwK11ARwGwuYGLIsS8K1vfYudO3fy1FNPoWkafX19aWUOC0V3zfIdFAW0pMBPrReg\nYqcUkh7Ep+GU67WqCSaD/JzfdFr74fqShOoxYwa3nLCieCwBdXSbOWsHtLa2MmHX4xfSKSZIL9sx\nuSL8s7UZNsLYp2KpC3dAPpp+IXizAxQ7UM/EnGVacaddzU7DU1L7KLN9+F7qaIwWfAg2OyB97e5w\nDQXlo6mpiSNHjnD++eezYMECnn766cDadmb5jhvA8LwGONZeYW2+PeN3lgFO5vxHUsOg19yf9BJm\nMfUHNbMrZjZfrmPmktANG3VhCQiatJiAtJmU/8X0rqZUTMSuIASbHVCfloB9+/bx2GOPcd9999Hf\n35/032cjlxByhHxSWNu/d2cZ3y5b0AO02Tn+ToS/s49j8nePDd5ZWjZFLWyDeS6KTQcUgqUuYgKC\nJtsqgn44MQOCUApBuQKgfmMCjh49yvj4ONdddx233347e+2KfbVMtRSAfAT5R32eZ3otVJ6wKQE1\nYZHMtIqgIFSC3HPWwlBcj3rhC1/4Av/xH1ZS32233caxdmBeKXhrLsSiUWLRKM2NjTQ3NjLQ2Zl8\nzG9rY35bG80NDTQ3NCT31VR11kNVrJTi5Pdkn8f7EIRiCds9VROWAKdEryBUmiC15Hp1B3zkIx9J\nPm9paWHdunUlt+nMppzB04nqb7ILkUVctf2TF9qnFn8mgh6Us+Xxl2Kml5l97VEXgYFBIwqAUC2C\nvPe8FoA60QHmDIUI60KFc65UvVLaFsJF2CxJNaEERFXFdgmY1sI+LsU+0/MkrvSAcu+rYMUtFLtv\nsgZCzn3tZEZ36kMFP2ep16SUz1np7x4UWUUw5DjFfLx5/BmvbYnXu5DZerUD8Ly5/nOp2E6tE7aY\ngJpQAhRFsYu2hOvieSkkiKy0fcN9HdzUy+fMB7EEFEY2wRUGk2qpi+iIMK5PRAkQhDrFWZnS/Voo\nH4UI6WL29XsdFKW0K1kB4SVsFkBRAgShQhRiCdi/fz933XUX7e3tLF68mJUrV5a5d3OPcprvvfuL\nkBXyJQxWLDehUQKcAiKDg4NV7okg5Ma5T/MpfOMwtH9/ml96aP9+333/6Z/+iSuuuILly5fz5S9/\nmc997nNEbf93vVBKedtChLQIdKGSiDvAh+HhYQCZ8Qg1xfDwMMcdd1zWfVpbW2lvb+dLV3x+1nvt\n7e20uhawcThw4AADAwOAtQDP2NgYnfYa9/VMvgK6EEFejNAXRUEoljNECcjM0qVL2bRpEz09PcmV\nuwQhrOi6zvDwMEuXLs25b0dHBy+88ALxeHzWe62trXR0dMzaPjAwwODgIAMDAxw5coR58+YF0m9B\nEAQ3iuktsi8IQtUZHh7mrrvuoqWlhaVLl/K5z32u2l0SBGEOIkqAIAiCINQp4QpTFARBEAShYogS\nIAiCIAh1SmgCA/PljTfe4PHHH6e5uZljjjmG8fFxpqenicfjrF69mpi9gEi1uOWWWzj//PPZt28f\ne/bsYWxsjNtuu62qkd27d+/m+9//Pl1dXbS0tDA6OhqKazY4OMjGjRtpb2/HNE16enqqfs127tzJ\nTTfdxLPPPstDDz2U1p9EIiG5+2XGff0B3nrrLW6//Xaefvrpotrzjhc33ngj//qv/8qmTZu4//77\ni+7ne++9x4YNG+ju7ua0007j0ksvLbmvbpxx5NOf/nQg7e7du5frr7+eJUuW0NPTwy233BLIdfCO\nLdddd13J7W7atIk333yTRCLBG2+8wUsvvRRIX73jzTe+8Y1Av7NapeYsAaOjo6xdu5Z169bxxhtv\nEI/HWbVqFWeeeSabN2+uat8eeeQRWlpaAHj99df567/+a/74j/+YJ598sur96u/vZ3h4mK6urtBc\nsx07drBlyxb27t3L/Pnzq37NhoeH+dGPfkRTUxNTU1Oz+uPk7t9xxx28/PLLJBKJivdxLuO+/gAH\nDx7kqaeeYv78+UW36R0vtm/fzq9+9StmZmZK6uvY2Bhf//rXue2223jhhRcC6auDexwJqt3XXnuN\n7u5uwFrVMajr4B5blsOSm6cAACAASURBVC1bFki7K1eu5K677qK/v5/vfe97gfXVPd709/cH+p3V\nMjWnBJx77rm0tLRw7733snz5cvr6+gDo7+9naGioav168cUXaWtrY9myZRiGkZzFVrtfYM2uPvnJ\nT7JmzRqee+650Fyz/v5+HnvsMTZu3MiWLVuSP8Zq9aunp4evfe1rNDc3MzIyMus7zJS7LwSH+/pP\nT0/zt3/7t/zFX/xFSW26x4uLL76YRx99lBtuuKHkvp522mnEYjGuvfZali5dGkhfIX0cSSQSgbV7\n+umns379etatW8cjjzzCQw89FMh1cI8tf//3fx/Y9d2+fTtjY2MsXLgwsDbd482LL74Y2LWtdWpO\nCYjH49x+++0sW7aMyy67jP121bXBwUF6e3ur1q/nnnuO3/zmNzzzzDM8+eSTHDp0KBT9AmtwbW1t\nTVacC8s127RpE2NjYyiKQltbG3v27AlFvwC6uroYGRlJ64+Tuw9I7n6ZefXVVzly5Ah3330327dv\n55lnnimqHfd4YRgG4+PjrF69mu3bt/PSSy8V3b+33nqLWCzGD37wA5544gl27dpVcl8hfRy5/fbb\n2blzZyDtvvXWWyQSCVRVZevWrUxNTQVyHdxjy9atWwO7vj/84Q+55ppr+Jd/+ZfA2nSPN7///e85\nfPhwINe21qm5FMFvfOMb7Ny5k2OOOQZN0+jr62N8fJx4PM6aNWuqXlr16aefpqGhgQMHDvDuu+8y\nOjrKnXfeSVtbW9X6tH37du655x66urpYtmwZ27ZtC8U1++1vf8t3v/tdBgYGWLBgAdFoNBTX7Oqr\nr+bhhx/mscceS+vP5OSk5O5XAOf6+70uBO948e1vf7vkNgF+85vf8NBDD9HR0UFLSwu33nprIO06\nOOPIpz/96UDa3bp1Kw8++CCdnZ2cfPLJXH755YG06x1b/uiP/iiQdr/85S/z4IMPpm0rtU3veHPN\nNdcE0m6tU3NKgCAIgiAIwVBz7gBBEARBEIJBlABBEARBqFNECRAEQRCEOkWUAEEQBEGoU2quYqCQ\nzhVXXMEf/MEfcN111wHwyiuvcP/996MoCpqm8Rd/8RcsX76c7373u7zwwgtpy9Y++uij3H777Vx1\n1VWcfPLJAHz3u99l6dKlnHfeeVX5PIIgFEcQY8E777xDc3MzAJ/85Cf54he/WJXPIlQOUQJqmL17\n99Lb28vLL7/Mddddx86dO7n//vu5//77aWtr48CBA3z1q19l06ZNANx8880i3AVhDhLUWLB+/frk\nhECoD8QdUMP85Cc/4ZxzzuGEE07g17/+Nc8//zyXX355Mr++u7ubTZs2oShKlXsqCEI5kbFAKBax\nBNQwP/vZz5IFS5599ll0Xee//tf/CljFRp555hkOHz7Md7/7XQD+5m/+hh/84AcAnHjiidxxxx2A\nVVDFMQHu2bOHpUuXVv7DCIJQNOUYC/7mb/6Gnp6eyn8YoaKIElCjvPvuu7z//vvcdNNNGIbBtm3b\n+OxnP8vw8DAAl156KZdeeil/9Vd/lVzoJh8ToDNICIJQG5RrLBDqA1ECapSf/OQn/NVf/VWyTOfq\n1atpa2vjkUce4ayzzqK1tZWxsTG2b98uJkBBmMPIWCCUgigBNcoLL7yQDPIBuOiii/jBD37Atdde\ny/XXX4+iKExPT3PJJZdw0kknAekmQCBZR10QhNpFxgKhFGTtAEEQBEGoU0JjCZicnGTr1q309PSg\naVq1uyMIcwZd1xkeHmbp0qU0NjZWuzuCIISI0CgBW7duZeXKldXuhiDMWTZt2sQZZ5xR7W4IghAi\nQqMEOKkomzZtor+/v8q9EYS5w+DgICtXrpR0L0EQZhEaJcBxAfT397Nw4cIq90YQ5h7iZhMEwYtU\nDBQEQRCEOqUsloBNmzbx5ptvkkgkeOONN/gf/+N/MD09TTweZ/Xq1cRisXKcVhAEQRCEAiiLJWDl\nypXcdddd9Pf3873vfY94PM6qVas488wz2bx5czlOKQiCIAhCgZTNHbB9+3bGxsaYmpqir68PsPz9\nQ0ND5TqlIAiCIAgFULbAwB/+8Idcc801RKNR9u/fD1hRyr29veU6pSAIgiAIBVA2JWDnzp0ce+yx\nAHR0dLB27Vri8Thr1qwp1ykFQRAEQSiAsikBDz74YPL5zTffXK7TCIIgCIJQJJIiKAiCIAh1iigB\ngiAIglCniBIgCIIgCHWKKAGCIAiCUKeIEiAIgiAIdYooAYIgCIJQp4gSIAiCIAh1iigBgiAIglCn\niBIgCIIgCHWKKAGCIAiCUKeIEiAIgiAIdYooAYIgCIJQp4gSIAiCIAh1SllWEdy9ezff//736erq\noqWlhdHRUaanp4nH46xevZpYLFaO0wqCIAiCUABlsQQ88sgj9Pf3Mzw8TFdXF/F4nFWrVnHmmWey\nefPmcpxSEARBEIQCKYsSsHPnTj75yU+yZs0annvuOfr6+gDo7+9naGioHKcUBEEQBKFAyqIE9PT0\n0NraSjQaBWD//v0ADA4O0tvbW45TCoIgCIJQIGWJCbjmmmvYsGEDXV1d/Mmf/Anbtm1j7dq1xONx\n1qxZU45TCoIgCIJQIGVRAk488UQ2btxYjqYFQRAEQQiIsigBglAKBjBhP6aAaWDG3m5i+bA0IAY0\nAC1AM6BUo7OCIAg1jCgBQtUxgaPAqP046noviiXsI/ZfsJQBHTiCpSSApRh0AN1AK6IQCIIg5IMo\nAUJVMIE4cAgYwZrpa0Ab8AGsmX0zuSNXDWAcGAMO2O21AouwrASCIAiCP6IECBVlAjiIJawTWDP9\nTqxZfDEzeNU+rhXox7IO7ALeBk7CchUIgiAImRElQCg708BhLOE/gTXjn48l/IM03StYykQL8A7w\nLnBqgO0LgiDMNUQJEMrCNJaZ/zCW2V8B5gEDQDvlXbQiChwL/A7LTTCvjOcSBEGoZUQJEALBxPLN\nH7Ef4/b2NuA4rBl6JW+2JvtvooLnFARBqDVECRCKZhprpu1E9c9gzfDnAb1YM/5q3WCOEtJYpfML\ngiDUAqIECHljYJn2j2AJ/Ul7exPQhSX0W6j++tQmsBcrO6C5yn0RBEEIM6IECFmZwfLtO4LfwLpp\n2rGi8edh+eDDxF4sZeUkJChQEAQhG6IECLPQsQL6DmMJfrBm1P1Ywr+JcApXE9gPDALHYPVVEARB\n8EeUAAFIBfYNYc38Daz0vQ9gBfXF/A8NBTpWfYCDWMpKf3W7IwiCUBOIElDnmFgz/v1YSkAM6MPy\n8ddKxb0x4H2sEsLHYZUOFgRBEHJTFiVg7969XH/99SxZsoSenh50XWd6epp4PM7q1auJxcI+r5z7\nmFhldgexovzbgBOxTOhhNPVnYhLL/38Yy12xhFRqoCAIgpCbsgRyv/baa3R3W/Ox7u5u4vE4q1at\n4swzz2Tz5s3lOKWQJyZWyd6tWLPnZuAU4GQss3/YFQADy12xDfgtlhXgOKzPIAqAIAhCYZTFEnD6\n6adz9tln093dzZVXXsmKFSsA6O/v5+233y7HKYU8GAN2Y5n952HN/GshhS5BqhbBESz/fxOW8O+k\n+imJgiAItUpZlIC33nqLZcuWoaoqpmmye/duAAYHB+nt7S3HKYUsTGIJ/yNYQv9kLPN/GDGxfPtx\n18NZLrgJy9/fSXgzFARBEGqJsigBxx13HHfffTednZ1cdNFF7Nu3j7Vr1xKPx1mzZk05TilkIAHs\nA4axAv4WYQnQsAlPA2uWP2L/dUr9NmIpK8dgZSpIJIkgCEKwlEUJWLp0KRs3bixH00Ie6FjR/vvt\n18dgRfyHzWw+iZWSeAirzw1Yqwu2YQl9SV0RBEEoLzLOziF0rFn/INbsugdr1b6wfclTWO6JEay+\n9WAJfzHxC4IgVJawyQehCAxSwn8Gy28+QPjM5waWe2I/1o13LFY9grBZKARBEOoFUQJqGINUrn8C\nS6AOEM4iP0eB97CsAP1Y7gmtmh0SBEEQ/CdhTzzxRPL5wYMHK9IZIT9MrPK4v8UqldsGnIoV+Bc2\nBcDE8vu/jWXqX4IVoyAKgCAIQvXxVQJ++tOfJp//5V/+ZUU6I+RmDEugvoflQ/8QcDxWJH3YMLD6\nuQvL7y8FfQRBEMJFXu4A0zTL3Q8hB9NYwXROidww5/qDFZuwHcsNsAjLVSEIgiCEC18lYHx8nO3b\nt2MYBpOTk2zbti353kknnVSRzgmWOX0Y2INlTj8OS6CGOYp+Bvg9luJyMla6nyAIghA+fJWAxYsX\n89BDDwGW0H/44YeT761fv778PROYAHZizaa7gQWEP5JTx1IAElgKQC2UJRYEQahXfGXKunXrUJTZ\n8819+/aVtUOCNfsfxEqnixF+07+DCezAygD4IKIACIIghB3fwMAvfvGLyeerV69OPr/11lvL26M6\nZwIr8G8vVjDdh8hfATBNk7GZGXZPTvK7o0f55ego/z4ywiuHDvHyoUO8cugQ/zYywq/HxtgxPs6E\nrgfa971YZX9rZWEiQRCEesfXEuAOBnznnXcybheCwymkM4gV6X8K0JLjGNM0GdV19k9NcSCR4GAi\ngW5/P1FFoUXTaFRVWiMRVKyZ+rRhcGB6mvd0nd/E4/TGYixtbWVepDRHw1G77wNYKxQKgiAI4cd3\n5He7AvyeC8EwCryPZUYfwCqm42eiMU2TIzMz7JqcZO/UFBOGgQZ0xWJ8sLmZjmiU9kiEmKJk/a6m\nDYO9U1NsGx/n5UOHWNHeTl9DcVUGTLv/TXb/BUEQhNrAVwk4fPgwr7zyCqZppj0fGRnJq+FbbrmF\n888/n3379rFnzx7Gxsa47bbb6OzsDKzztc4UVtT/YawI+hPxz6OfMgx2TU6yc2KCMV0npigc09hI\nfyxGTyyGVqByFlNVFjU18YHGRl47coRXjxzh4x0ddMUKLzZ8GBjHil0QFVEQBKF28FUCLrzwQt58\n881Zzz/1qU/lbPSRRx6hpcUyZr/++uvcd999vPrqqzz55JNcd911QfS7pklg1c8fwqqcly3t73Ai\nwY6JCfZMTmICAw0NnNraSm8shhqAVUZTFFa0t/Ovhw/z63ic8+bPL8jaY2K5MeZRG8GLgiAIQgpf\nJeDGG29MPt+5cyeJRAJFUTjxxBOzNvjiiy/S1tbGsmXLMAwjOfPv7+9naGgooG7XJgkswe9chT4s\n07+3hK5hmuyzTfWHZ2ZoUlVOaWnhuKYmGtTgl9tRFYVTW1v5f0dGGE4k6C3AGjCKtSTwsYH3ShAE\nQSg3vkrAr371KzZs2MA//MM/cOONN7J06VJ27NjBJZdcwuWXX+7b4HPPPce8efN49913AZIWgcHB\nQXp7ewPufm0wgTXzP4Q12+/BUgCinv2mDYP3JibYMTHBpGHQFY1yVns7/T6zfsM0OZpIEJ+ZIaHr\n6KZJTNNo0jQ6GhoKshR0R6M0qyr7pqYKUgKGsVwYUhBIEASh9vBVAjZu3Mg999wDQEdHB+vXr2ds\nbIxrr702qxLwd3/3dwA8/fTTNDQ0cODAAe644w5GR0e58847A+5+eNGxfOUHsCLno1hBcz2kX3TT\nNDk0M8N7tskfYGFjIyc0NdERTVcTRqen2RWPMzg+zv7JSQ5PTWH4ZGtEVZWB5mZO6ehgcXt7ToVA\nURQ6o1EOJxJ5f8Yp4AiWFUBiAQRBEGoPXyVA1/WkKf/SSy8FoK2tjVies0TnmHrCxFrg5xCWAmBg\n+cmPBzpIj/ifNAx2T07y/uQko7bJ/4O2yb/RNvnrhsHuo0d5b2yMnfE4R6anAehqaKCvqYkPdXTQ\nHovRFosRU1VURWFa1zk6M8Pg+Djvx+O8sHs3rw0NccHChfQ3Z8/eb9Y0DhSgBDgxDRLqKQiCUJv4\nKgGGYXD06FFaWlr47Gc/C0A8HscwjIp1rlaYxBL8B7Hq5ceAXqxSv+6ku4RhMDg9ze7JSYZsgd7f\n0MCHWlroi8VQFIUpXef3IyPsGBvjvbExEoZBayTCcW1tnN3Xx8KWFhqz5fRHo3QCH2ht5czeXvaP\nj/Pyvn088+67fGbRIo5p8a8+oCoK+VaB0LGsHD3IssCCIAi1iq80+cpXvpI0/S9atIihoSEeffRR\nie63MUiZ++NYs/z5WFH+raTM447g32MLfgPoiERY2trKwsZGGlSV0elpth46xPbRUfYcPYoBdDU2\nsqyrixPnzaO7sbHo+gx9zc1cevzxPPvuu/x0927+r8WLifoEF04bBpE8z3PAvgY9RfVKEARBCAO+\nSsA555zD8ccfz/PPP89rr71GR0cHn/jEJ/jHf/xHzj777Er2MVRMYZnBD2LNhluxlsrtIDUjnjYM\n9k1NsXdqiqHpaUwswb+ktZUFDQ00qCqD4+P8x9AQO8fGODQ1hQIsaGnh4wMDHN/Wxjzb7TIxM8Pu\nsTGGxscZmZxkdGqKKV3HsIMAOxob6W1u5oOdnTT4WAiiqsp/W7iQTe+8w7YjR1gyf37G/eK6TouW\ne15vYAU6zifd0iEIgiDUFllrxR577LF8/OMf59lnn+XZZ5/lggsu4Etf+lKl+hYqxrHy4UewhH23\n/Wi0358xTXZNTSVN/SbQGY1yamsrAw0N6LrOe2NjvDg8zO6jR0kYBk2axnFtbZzV28sHWluZ0XV2\njY2xZc8e9sbj7I3HOWwHCwI0RyLMa2igQdPQVJXJmRm2Dg8zPjNDUyTC2QsW8N8WLSKSYabf2dBA\nT2Mju+LxjEqAYZocSiQ4scmvXFGKA1jpjlIdUBAEobbxVQIeeOABXn75ZU444QQuvPBC3nvvPVat\nWlXJvoWCcayFcY5g+fqPxQqE07Ai+w8kErxvl/CdMU3mRyKc2tpKfyzGyOQk7x05wpZ4PDnb729u\nZnl3NwPNzSQSCUvo79rFU2NjHLIFflMkwoLWVpb29DDQ0kJvSwu9zc2+sQAHxsf5tz17ePn999kT\nj/Ol007L6D5oiUaZ9Fk0aGh6mhnTZCBH6eAZLGWoE//qhoIgCEJt4KsE/PznP2dgYICPfexjLF++\nnMcff7yS/ao601glfQ9hCf9FWIJPAXTT5L3JSXaMjzOq6zSpKic2NbGgoYHDk5NsO3yYl0ZHmdT1\n5Gz/tPnz0XWdvWNjvLZrF3vGxtBNk4iqsqC1lSXd3XygrY1j582jq6mpoBiA7uZm/mjxYo7v6OCJ\nrVv59dAQy/r6Zu03nkjQ1diYoQXYMTHBPE2jPcdCQnux3AEL8u6dIAiCEFZ8R/wnnniCffv28ZOf\n/ISrr76a/7+9Ow+PujwXPv6d+c2aWTJZJpnsEJLIFsgBBEVElNqKFvf2tVVffSnWpS69rKevy3Ud\nFa2evlXPUc4pUilaLe5Wq2DVioWK4oIIYQuQQPZ9mcyS2ef3/vEbIghW7XFQmftzXbmIIZPnNzPE\n5/49z/3cd1tbG6tXr2bevHnY7cduaRgVbb+7Cy3Zrwxt2V8PxJNJ9odCNIZCRJJJClMd+JRkkp1e\nL++0tRFKJHAajYx3ucjS6+kNBNjZ1cWbgQAq4DCZGJudTa3bTZaikEgk6AsG6fP52NPdzXA4TCAa\nJRSLjdYAcJhMZFssjM3Npa6oiMmFhUc891/rdlPmcLCjv/+wICAUj9MXDh9xK2AgGqU3GmW60/kP\ng48AWnGgErTASAghxLfbP7ztKyoqYvHixSxevJjm5mZWr17NJZdcwksvvXS0ru+oGgFaUn+6gWK0\nFyipquwLhdgdDBJVVcosFqqtVnpDId7u6KBzZASLolDtdGLV6WgdHmZtUxMjsRhWg4GqnBzGOJ3E\nYjG6/X62tLbyqt8/OsmbFQW3zUZeVhbFDgd2sxmrwTA60QeiUQZDId5rbeXV3bs5Lj+f6048kfwj\nHPdzWSz4U8cPD9aQavxU6Ty00W9SVakPBHAaDJT+g62AGLAPrb3x4WsMQgghvo2+cBP5MWPGcO21\n1x7SU+BYoaJl/HegZbuPR5vsQLtL3uL3408kKDWbGW+z0RkM8ufmZoYiETxWK7MLCuj2+XinpYXh\nSIRci4XxOTkk4nHavF7ebGggEo9j0Ospd7k4Lj+fkysqsBqNo5O9ipbFbzObKXE6cR1hS0BVVeq7\nu1n+wQfc/be/8ZsFCzB+Kpt/KBzG/amiQJFEgs39/dS4XNg/VYWwIRhkOB5n7j9oHJRECwBUoBKp\nDiiEEMeKLxwEHKsSQDNa1r8bKCW19K+qbA8EaA6FcBkMnJKTQygaZXVzM33hMOV2O1NdLup7e3mu\nrQ2jXs+EvDwSsRi7enp4qaUFRaejKi+PE0pKSCaTDASDtAwN8cG+fYQ+pzJftsXC/Opqzp40iWq3\ndhpfp9MxtaiIW045hf/7+uusbWrijJqa0cf4IxE6/H5mFRcf8rM29vQQTSQ44VO9GzojEfaMjDDB\nZiPX+OlOBho19foEgWpkG0AIIY4lGR0ExIC9aGf/K9HOvQMMx+N8ODzMSCJBrd1OicnEOz097Bwa\nwm2x8J2iIrb09PDH/fvJNps5oaiI1oEBXt2xA1VVmVRYyOySEjp9Pt5raiIQjaLo9VTl5VGZl8ep\nVVUU2Gy4srJw22xkpRoExZNJhsNhOoeH2dnTw2sNDfxp2zZ+PG0a18yePXqnXuZyUZmbS+PAwCHP\n58OuLhS9nsnuT0r4tAUCbBscZI7HM1p7AMAbi/GRz0eRyUTNZ5QTPhAADKGVPpZWwUIIcWzJ2CAg\nCuxBW+o+DjgwDXaGw3zk82FTFE7NzSUQjfJ0UxPhRIKTPR68wSCrduzApNczt6SEht5env74Y3Kt\nVuaUlWnL/7t2EYnHGV9QwOk1NehUlcFgkMa+Pv7S2UmPz0c0dVTPoNeTZ7NRXVDA7LFjOXfqVE6r\nrua06mquOvFEnvr4Yx7euJGKnBy+P3Hi6PWbFYXYQSWco4kEG9rb+ZfCQmypu/qReJy/trdTkpVF\nXV7e6Pf643He9XqxK8pnJgMmgf1oKyRjkf4AQghxLMrIIODTAcCBdLjmUIgtfj/FZjPTnE72eL38\nrbOTAouF04qLWb13Ly3DwxxfVEQ4HObJLVvIsVj4XlUVm1paeGLTJoqcThZOmIBvZIS3m5r46/bt\nAFTk5jLR42FKcTGFTic2kwmDohCIROjz+9ne1cXS9et5aP16/m3BAi6eMQODonDpjBns7e9n5fvv\nc9aECaMTdm8wSLnLNfqc3mlvZyQe57SKCkBL+HutrY2kqvLdsrLRx40kErzr9WLW65ntch2xsFAc\naELbAhiHVg1RCCHEsSctQUBzczP3338/+fn51NbWMjg4SEdHB36/n1tvvXW0O+HXIQk0cngA0JIK\nAMZYLEx1OPiov5+NPT1MzMmh0mbj0a1bMej1XFBTw/PbttHh83H6uHE09/ezYuNGxuXl8ZPjj+ft\nxkb+8623sBqNfG/8eK6eMweX1Urb4CBNfX0M+v30Dg8zJi+PycXFnDVpElmpZXp/OMxdr73GrS+/\njEGv56Lp0wGYX13N2r176QsGKbDb6Q8G6QsGqc7PB7Tz/+taWzm+qIi8VMW/D3t76QgGOXfMmNFk\nwFAiwTupUwKzXS7MRwgAwqnXJw7UoJVFFkIIcWxKSxDg9/v55S9/icfj4corr8RkMvHwww/z3nvv\n8eyzz36tTYja0Ca68XwSAPREInzs91ORCgC2DAywsaeHGW43bqORFVu3UmS3c6LHw3+99x5Os5nL\n6+pYumED0Xica086iY1NTdyxZg0Vubncs3AheVYrT334IYseewxfqhJgUXY2NrMZvU5H88AA0Xic\nPJuNZ664gvkTJuCwWPh/557LSDTKv7/xBhfW1WFQFEypEwCJ1PL/+21tKHo9UzweAN5sbiahqpw+\nZgwArYEAH/T1MdPtpixV0yGaTPKu10tCVZnjcmE9Qo+AAFoAYEi9PkcuKySEEOJYkZYgoLa2lp6e\nHq688kpmzpxJa2srAB6Ph97e3nQM+YV40erel/FJDkA4meQjn48Ck4k6h4OWQIAN3d38S14eY2w2\nfrt5M+VOJ7OLivjN229TnZfHrJIS7nnzTardbn5cV8fNf/4zgUiEe84+m3G5udz0wgu829REVUEB\n1592GmdMmkRtSQnOg+ryxxMJdnV3c+Nzz3HGQw/x0jXXcFZtLQBn19by8rZt9AeDeJxO9g8OYkrV\nEkiqKmv37WN6cTF2k4nuQIB3Ozo4fcwYnGYzwViM19vaKLXZOD51GiChqrw/PEw4meTknBzsR6gK\n6EU7BpgFVJGh+0RCCJFhjtxT9n9o165dmEwmVq5cyY4dOxgaGgKgu7ubgk8dUztakmirAA4ObX+7\nze9HBaY5nYQTCd5sb6fcbmeG282qHTvIsVhYOG4cSzdupDI3lzNrarh37VpOHDOG/zNjBlc9/TT5\ndjuv/exnDAcCzL3vPgKRCH++5hp233knd51zDidVVR0SAAAYFIXakhJeve46JhYX8+i7747+3YGV\ngwO9AtY3NVFXUoJBUfigvZ1On48FNTWoqsqLe/aQY7Ewt6wMVVV5s6MDHfC9sjKt/oCq8pHPx1As\nxqzsbJxHCAAG0XIAstG2ACQAEEKIzJCW/9/HYjFuv/12XC4XpaWleDwe7rjjDnw+H3feeWc6hvxc\nQ2gJgeP4pNiNNxajIxKhzuHAotezobeXuKoyv6SEDe3tDIRC3HD88Tz58ccoOh1Xz5rFz154gRq3\nmxvnzuXMZcuYUFjIHy+7jGc2beLap5/mZ/Pm8R8//OFhRXw+i1FRcFmtjBxU5e8vO3dSU1CAKyuL\nLR0dbO/u5q4zziCaSPDkli3UFhYyoaCADzo72T88zE+mTMGoKGzu76c1EGBhRQVZqcl+z8gInZEI\nxzud5JsOP+U/iHYKIBetP4IUAhJCiMyRliBgypQpPPTQQ+n40f+0QbQkt4NPxO8LhbDq9ZRbLMST\nSbYPDlKbm4tFUXi7rY1ZxcVEYzE+aG/nqpkzWdfYSG8gwP1nn80f3n+f4VCIFxYvJpZIcPWTT3L5\niSey9KKLvlTz/m8j5QAAE7hJREFUn/V79vB2YyPLL74YQDtR0NDAfeedRzSR4D/+/neq8vOZV1XF\n0/X1DIyM8K9z5zIQCrG6sZFphYUcl5dH98gIG7u7qcvLY4xDO9HfHYmwKxikJiuLkiM0DhpGAgAh\nhMhkadkO+KZJAn605e4DVFWlOxKh1GJBr9PRHgwSSyY5zuWiaWiIUDzOzOJi3m9rI8to5KSKCtY1\nNjKrvJyKnBxe3bGDMydNoiwnh3eamojG49x8xhlfKgD4sLmZC5cv5+SqKi6fPZvmgQF+/vzzzK6s\n5PypU7l/3TqaBwe5df58tnR18cquXVw4eTIeu50/bt9OltHIOdXVhONxXm9rI99qZXaqcVAgHmeT\nz0ehycSEI/QYCKMFAE4kABBCiEyVEUFACK363cHH3cLJJFFVJSd1fK4/HMao15NnNtMTDGLQ6ymy\n2ejy+ynLzsaoKPQEAlSmjjcGIhGKUs143KkM/L1fMOkxEA5z15o1zPnNbxibn89zP/0p2zo7uWDF\nCuxmM/95wQUse/ddVu/cyU3z5qHX63nw3XepKy5m4fjxPNvQQM/ICBdPmoTJYOC1tjYiySRnlJWh\n6PXEVZUPfT5MOh0zjlAMKIGWBGhAKwQkAYAQQmSmjAgCDlTpP7hHXuxAB7/UBBlJJLAoCjqdjoSq\nYtDr0el02qSaOpqXbbHQHwwCML6wkDd37yaRTDKtvJwZFRX84He/Y9n69fhCocOvIZHgw+Zm/vX5\n5xl7223ctWYN186bx+vXX8+TH33EBStWUOJy8dill7J0wwae3rKF608+mYq8PO5et47y7GyuO+EE\n/rRnD/W9vfyvCRModTh4q6ODjmCQM8rKyDaZRhMBA/E4M7OzMR6hFkA72kpAJZIEKIQQmSyj5gD1\noM8PpO0lUsGA1WAgFI+TUFVcFgvheJzhSIQxLhcbW1vxRSLMLC/nhfp6rvD7uWbuXH64ciW3vPwy\n9559Nn+/6SauefLJ0Y/xHg+lOTnEEgkGg0EauruJJRLkZGVx8cyZXHXKKWxqa+O7//3f9AeD/HT2\nbE6qrubGl1/GH4lw1xln4I/F+Pf165lUUMB1s2fzTEMDDQMD/GD8eGrdbt7q6KDB6+X0khLKU6sR\nOwIBuiIRZjqduI7QFOhIxySFEEJkpowIAg7kxEcP+tyqKOjRmgUVmM14rFbiqkpXMEhNTg56nY5N\nXV3MGTOGp+vreX77di6dPp3XGhr45Suv8MA553Dfuedy00svsXH/fq6aM4cHL7qIf/v+9/nrzp18\n3NZGr9+PUVGoKShg8Zw5jM3PJ5pI8PfGRs5fsYJwPM7CyZNZMGkSf9m9m1vWrGF6aSn/+/jjebmh\ngT39/Zw9YQInjx3LI1u3MhgKcVltLVU5Obza2sp+v5/5JSWMz8lBVVUagkEaQyEm2+0UHyERMILW\nEMjJocckhRBCZCadqqrq539b+rW3tzN//nzWrl1LaWnpV/qzVWALUAgc3GR3o9dLOJlkXo7WP/CJ\nvXvJMZv5fnk5f967l03d3dwwYwab2tv5w+bN/GjKFCa53fzilVfQAYtmzaLU4eDhDRt4bdcu9Dod\nY3JzR4/3KXo9wUiE/mCQff39dA4PA1DtdnPaccfhdjjY2NrKnr4+xubmcuHUqXT4/WxobcVjt3P5\ntGn0hMP8raWF/KwsfjxxIgZF4Y32dvyxGN8tLaXS6SSpqtSn2h5PsNmoyco6LA8gDuxOvRbjyZDo\nTwDp/d0SQny7ZcRcoEM7GTAEFPFJIlyl1crG4WG6IhGKLRZOKCjg9fZ2Grxevjd2LHsGB/n91q38\nZMoUvKEQT9XXM7u8nHvPOosnNm3i12+9hcfh4LTqas6qraXb56NlYIDWoSE6u7uJJxLYzGZcViun\n1tTgsFhQFIXGgQFe3bMHRadjZnk5V82eTXcwyDPbt+M0m7l46lRy7HZe2bePYCzG3LIyTqmoYOvA\nAJv7+sgxm/lBZSV5FgvhRIJNPh8DsRhTHQ7GfqooEWiJgE1ouRHHkSFvuhBCiM+VMfNBPrAXbU88\nJ/W1ApOJApOJLX4/OUYj1dnZNPv9vNXZyZllZSyeOpXfbdnCf23ezIXjx1PscPDEli182N7O/Koq\nvjd+PBv27eMvu3YxlEoGtJlMuKxWXA4HSVUlEImw1+ulYXAQgNysLCYWFvKjadNIAtt6elizdy+l\nTic/rqvDaDLxQVcXga4uprjdnD52LP2RCM80NjKSSDDN7eZ4txtFp6MtHKbe70eP1hDIfYRiQBG0\nACACVAOHhwhCCCEyVcYEAc7URyvaUUEjoNPpmOZ08rfBQTZ6vczJyWF+SQnRZJLVra2cUFDAddOn\n80xDA09s387Y7Gx+cfLJbO/u5rW9e3ktGiU/K4vvTpxItslENJHAHw4TjceJpU4UGBUFRa/HoCjE\nkkl6AgFa/X5aAgEKbDZOrKjA43TSEQyyoasLRa9nWmEhs4qL6YtG+Utq6X+c08nswkJcZjMDsRg7\nAgEGYzGKzWamOhyHdQRU0QoktaIlQY5HAgAhhBCHypggAKAC2IV2Z1yDdj7SotdzksvF20NDvD00\nxKzsbM4sL+f93l7e6+1ln9/PdysrObG4mFf37ePR7dtxZ2Xxw7o6dMkkbV4v+wYH+dDrHZ34j8Rq\nMOBxOBiXl8e00lKMRiP94TC7h4dp8PmocDo5p7qafJuN5kCA1W1tJFWVquxszsrPJ99ioS8W412v\nl95oFKeiMDs7mwKz+bCxRtCOAfrRVj3KybA3WgghxBeSUXODCa13wB60YjmVaIGA02Bgbk4O7w0P\ns25oiMl2OycUFFBut/N2VxcvNjdTarPx/ZoaEvE4W3p6+HtbG7FkEkWnw5Oby6SSEgw6HTpATSZJ\nolUlVHU64qpKIBplIBymORSCUIgso5Gx2dksrKoi22qlLxJhp89HyOsl22RiutvNxJwcTIpCWzjM\ntsFBfIkETkVhutNJqdl8WPJfCOhGWwEwp56r6+i9vEIIIb5lMioIAG0roBItCNiT+twEOAwGTsnJ\nYVsgwBa/n5ZQiIl2Oz+srKTR52PrwABvtLdjVhQqnE4u8nhQk0m8oRDdwSB9IyP4o1FG4vHR4kIG\nvR6rwYDdaCTXamWMy0W2xYLJYCCUSNAdCrFleBh1eBin0ch4l4uq7GzyLRZ6YzF2jozQHYmgAoUm\nE5MdDtxG4yGTv4p2x9+L1gvACJSiHQHMiEpQQggh/mkZFwSAdnd8HNq2wE60bQIXYNLrme50Um6x\nsD0Q4B2vF5fBwFirlfMqK/FGIuwdHqbZ72fv8DAqYNTrcRqNlOfnY1UUTIoyevogoaqEEwlC8TiB\nWIzmcJhEKoHQbjTisVoZ73JRZrdjVhR6YzFaolE+DARIAE5FYbzNRpnFgvVTXQkjaHf8/Wj1Dyxo\ny/55yOQvhBDii0lLELB582Yef/xxsrKyKC4uZmRkhGg0SiAQYMmSJZiOkMV+tNmAiWjFc/ahJQ2W\noU2mbpOJeTk5dEej7BsZ4WO/n3q/nwKTiSKnk8l5eSiqSn84TF84jC8axReLMRiJEE0mOVB6QdHp\nMCsKFoOBCosFh9FIntlMrtlMUq/HG4sxGIuxORDAn0gAkGMwUGOzUWQ24zQc+vbE0I45DgEBtKOO\nOWgnH+xIDwAhhBBfTlqCAJ/Px913343dbmfRokWUlpayZMkSXnjhBV5//XUWLlyYjmG/NAPavrkX\naAN2oN1JFwJWnY4is5kis5lgPE5HJEJXJMIWvx8Ao06Hy2DAYbFQarNh1esx6nQoOp22XK+qJIBY\nqlFRKJFgJJFgXyzG1lCIROoa7IpCntFIjc1Ggcl0SJa/inbHP5y6xkDq6w60zn8uPil/LIQQQnxZ\naQkC5s2bh6qqLFu2jGnTpo3uYXs8HhoaGtIx5D/twN10Ntq+ei8wgDbRulNftxkM1KTu0KPJJIOx\nGEOxGL54nN5olFAiMTqpfxaLXo9Vr8dpMFBiNuMyGsk2GDB96mhfAm2y96FN/pHUNTr4ZNsiI/dw\nhBBCfOXSMp8EAgHuueceFi5cyJgxY1i2bBkA3d3dFBQUpGPI/zE94AEK0Pba+9C2CfRoE2822kRs\n0uvxmM14Djqap6oqMVUlnvo4QEFLDjTqdOh1R16sTwBBtOQ+P9rxPhXtjclGS/JzIHf8Qgghvnpp\nCQJ+9atf0dLSwgsvvICiKBQWFnL33XcTCAS466670jHkV0aPtseejzYhe9H24AdTf29B675nTX1Y\n0LYGTDodn5XpoKLV7o+i3dmH0Y7zhVKfgzbJO4AStPwEC7LHL4QQIr3SEgTce++96fixR11W6qMY\nbQL3oy3VHwgODi4NZECbyPV8Mnkn0e70E5/6XgVtkrej5R/YkElfCCHE0Sfby1+QCS1pMC/13ypa\nYBBO/Rnjk0n/AB3ahK+kHm9Em+wNyIQvhBDi6ydBwD9Jh1aV7/CivUIIIcS3g9SVEUIIITKUBAFC\nCCFEhpIgQAghhMhQEgQIIYQQGUqCACGEECJDSRAghBBCZCgJAoQQQogMJUGAEEIIkaEkCBBCCCEy\nlAQBQgghRIaSIEAIIYTIUGkLAlpaWjj33HMBWLFiBXfeeSc33XQTg4ODn/NIIYQQQhwNaQkC+vr6\neO6557BarUQiETZt2sTtt9/OhRdeyLPPPpuOIYUQQgjxJaUlCHC73dx0001kZWXh9XrJzc0FwOPx\n0Nvbm44hhRBCCPElpT0nIC8vD6/XC0B3dzcFBQXpHlIIIYQQX4Ah7QMYDMyaNYs77rgDn8/HnXfe\nme4hhRBCCPEFpDUI+P3vfw/AZZdd9rnfm0gkAG21QAjx1TnwO3Xgd0wIIQ5I+0rAF9XX1wfAxRdf\n/DVfiRDHpr6+PioqKr7uyxBCfIPoVFVVv+6LAAiHw2zfvh23242iKF/35QhxzEgkEvT19TF58mQs\nFsvXfTlCiG+Qb0wQIIQQQoijSyoGCiGEEBlKggAhhBAiQ0kQIIQQQmSob8zpgHTbvHkzjz/+OFlZ\nWRQXFzMyMkI0GiUQCLBkyRJMJtNXPmZzczP3338/+fn51NbWMjg4SEdHB36/n1tvvXW0kuJX7Re/\n+AWnnXYaXV1daR+vs7OTq6++mgkTJuB2u0kkEml/Xdvb2/ntb39LXl4eNpsNn8+X9jFXrVrFtm3b\niMVibN68mQULFqR9zO7ubh588EGys7NRVRW3231U/v0IITKHcscdd9zxdV/E0bB7924uueQSFixY\nwMMPP4zFYuH2229neHiY5uZmjjvuuK98zLa2NubPn8+CBQt44IEH6Onp4b777sPpdLJ27VpmzJjx\nlY/56KOPEgwGKS0tZd26dWkfb+3atbS3t2Oz2aioqKCnpyftr+uDDz5Ifn4+PT09jBs3jvb29rSP\nOWXKFL7zne9QX1/PDTfcwMcff5z2Mevr63niiSewWq2Ul5ezefPmtL+fQojMkjErAfPmzUNVVZYt\nW8a0adPQ6XSA1s+goaEhLWPW1tbS09PDlVdeycyZM2ltbR0dMx09FN566y0cDgd1dXUkk8mj0rNh\nypQpzJ49m/z8fC6//HJmzZo1Oma6XteWlhZuvPFGqqurWbRoESeccELaxwRoamrC7/cTiUQoLCxM\n+5gej4c//OEPlJaWsmjRIjwez+jXpQeHEOKrkDE5AYFAgNtuu426ujouuOACenp6gPT2M9i1axcm\nk4mVK1eyY8cOhoaG0jrmyy+/TH19PS+++CLPPvvsaNvmdD/HWCyGXq9HVVXa29vTPqbb7cZut2M0\nGgGOynsJ8NRTT7F48WKKioqOypirVq3C7/ej0+lwOBx0dHSkfUwhRGbJmDoBt9xyCy0tLRQXF6Mo\nCoWFhYyMjBAIBLjrrrtGJ5SvUn19PStWrMDlcmGz2fB4POzfv3+0h4LD4fjKxwT405/+hNlspr+/\nP+3jbd++nUceeYTc3Fxqamro6upK++va1NTEQw89RF5eHnV1dTQ2NqZ9TIArrriCRx55BIAHHngg\n7WPu2LGDpUuXUlRURElJCUaj8aj8+xFCZI6MCQKEEEIIcaiM2Q4QQgghxKEkCBBCCCEylAQBQggh\nRIaSIEAIIYTIUBlTJ0B8cZdeeiknnXQSV111FQDr169n+fLl6HQ6FEXh5z//OdOmTWPp0qW88cYb\nuFyu0cc+9thj3HbbbSxatIiamhoAli5dyuTJkzn11FO/lucjhBDiyCQIEIfo7OykoKCAdevWcdVV\nV9HS0sLy5ctZvnw5DoeD/v5+rr/+elatWgXAjTfeKJO7EEJ8S8l2gDjEmjVrOOWUU6isrGTr1q2s\nXr2aH/3oR6Nn0vPz81m1atVoxUUhhBDfXrISIA6xdu3a0QJHL730EolEgrlz5wJaEaIXX3yRoaEh\nli5dCmhFc1auXAnAuHHjONCK4pZbbiErKwuAjo4OJk+efPSfjBBCiH9IggAxav/+/bS2tnLDDTeQ\nTCZpbGzkvPPOo6+vD4Dzzz+f888/n5tvvplYLAZ89nbAvffee0hOgBBCiG8eCQLEqDVr1nDzzTdz\n9tlnA7BkyRIcDgePPvooM2fOxG634/f7aWpqku0AIYQ4BkgQIEa98cYbowl/AGeeeSYrV67kyiuv\n5Oqrr0an0xGNRjn33HOpqqoCDt0OAPj1r3991K9bCCHEP0d6BwghhBAZSk4HCCGEEBlKggAhhBAi\nQ0kQIIQQQmQoCQKEEEKIDCVBgBBCCJGhJAgQQgghMpQEAUIIIUSGkiBACCGEyFD/H/IJCc1b7D2s\nAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["import seaborn as sns\n", "\n", "sns.set_style('white')\n", "sns.set_context('paper')\n", "#il faut cr\u00e9\u00e9er la matrice AGEH x AGEF\n", "df['nb']=1\n", "df[['AGEH','AGEF']]\n", "df[\"nb\"] = 1\n", "\n", "#pour utiliser heatmap, il faut mettre df au frmat wide (au lieu de long) => df.pivot(...)\n", "matrice = df[['nb','AGEH','AGEF']].groupby(['AGEH','AGEF'],as_index=False).count()\n", "matrice=matrice.pivot('AGEH','AGEF','nb')\n", "matrice=matrice.sort_index(axis=0,ascending=False)\n", "\n", "fig = plt.figure(figsize(8.5,5))\n", "\n", "ax1 = fig.add_subplot(2,2,1)\n", "ax2 = fig.add_subplot(2,2,2)\n", "ax3 = fig.add_subplot(2,2,3)\n", "\n", "df.plot.hexbin(x='AGEH', y='AGEF', gridsize=100, ax=ax1)\n", "\n", "cmap=sns.blend_palette([\"#CCFFFF\", \"#006666\"], as_cmap=True)\n", "#Dans tous les graphes qui pr\u00e9voient une fonction cmap vous pourrez int\u00e9grer votre propre palette de couleur\n", "\n", "sns.heatmap(matrice,annot=False, xticklabels=10,yticklabels=10,cmap=cmap,ax=ax2)\n", "\n", "sample = df.sample(100)\n", "sns.kdeplot(sample['AGEH'],sample['AGEF'],cmap=cmap,ax=ax3)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Seaborn est bien pens\u00e9 pour les [couleurs](https://seaborn.pydata.org/tutorial/color_palettes.html). Vous pouvez int\u00e9grer des palettes convergentes, divergentes. Essayez de faire un cama\u00efeu entre deux couleurs au fur et \u00e0 mesure de l'age, pour faire ressortir les contrastes."]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Exercice 2 : repr\u00e9sentez la r\u00e9partition de la diff\u00e9rence d'\u00e2ge de couples mari\u00e9s"]}, {"cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " differenceHF | \n", " nb | \n", "
\n", " \n", " \n", " \n", " 95 | \n", " 46 | \n", " 1 | \n", "
\n", " \n", " 96 | \n", " 48 | \n", " 3 | \n", "
\n", " \n", " 97 | \n", " 50 | \n", " 1 | \n", "
\n", " \n", " 98 | \n", " 56 | \n", " 1 | \n", "
\n", " \n", " 99 | \n", " 59 | \n", " 1 | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" differenceHF nb\n", "95 46 1\n", "96 48 3\n", "97 50 1\n", "98 56 1\n", "99 59 1"]}, "execution_count": 29, "metadata": {}, "output_type": "execute_result"}], "source": ["df[\"differenceHF\"] = df[\"ANAISH\"] - df[\"ANAISF\"]\n", "df[\"nb\"] = 1\n", "dist = df[[\"nb\",\"differenceHF\"]].groupby(\"differenceHF\", as_index=False).count()\n", "dist.tail()"]}, {"cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [{"data": {"text/plain": ["Text(0.5,1,'Graphique avec seaborn')"]}, "execution_count": 30, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6cAAAF+CAYAAAB+smy+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl4lOW9//HPbNkXCIRkKIpWAkYJ\ni0tQj7ZqKxUXQHugKiKtuOLp1bpUXCg/NiXS0lorLUdRWupCqQpCUWu1oKKFI8g5pRAEgbCEJBBC\nZrJNZibz/P4IGQlkmyWZZOb9uq5el5l55nm+9wx08uF7P/dtMgzDEAAAAAAAEWSOdAEAAAAAABBO\nAQAAAAARRzgFAAAAAEQc4RQAAAAAEHGEUwAAAABAxBFOAQAAAAARRzhFxPl8Pr3++uv6wQ9+oIsv\nvljDhg3TjTfeqMWLF6u+vr7Trz958mQ9+eSTrT7/1ltv6bzzzuv0OtC20tJSDRkyRJs2bYp0KQAQ\nlfg+xqmuvvpq/e53v4t0GYgh1kgXgNjm9Xp17733aseOHXrggQd06aWXKj4+Xlu3btWzzz6rjRs3\naunSpTKZTBGr8brrrtO3vvWtiF0fAIDOxvcxgO6AcIqIevnll7Vp0ya9+eabGjJkiP/xAQMGaPjw\n4RozZow++ugjXXnllRGrMSEhQQkJCRG7PgAAnY3vYwDdAdN6ETGGYei1117T+PHjm30RNjnzzDP1\nzjvv6Nvf/rakxuk83/ve9zRr1ixdeOGFevTRRyVJr7/+um644Qbl5eVp5MiRuvPOO7V//35J0qFD\nhzRkyBCtWbNGY8aM0fDhwzV58mR9+eWXza5VXV2tRx99VCNHjtSoUaP01FNPqaGhwX/dk6cRHT58\nWPfdd59Gjhyp73znO3r//feVl5fnn2762GOP6Yc//GGz85/62K5duzR16lQNHz5c3/rWtzRz5kw5\nnc5W36vKyko9/vjjuvzyy3X++efr8ssv1zPPPCOfz6eDBw/q3HPPPW266913361HHnlEkuRwOPT4\n449r1KhRys/P19133629e/c2O37VqlW68cYbNWzYMF177bVauXJlq/UMGTJEy5cv180336xhw4bp\n5ptv1ueff+5/vr6+XvPnz9dVV12loUOH6pJLLtHjjz+uuro6/3t67bXX6s9//rOuvvpqjRw5Unfc\ncYf27NnjP0dxcbHuuece//v8ySefNKuhvWvU1tbq8ccf12WXXaa8vDxNnDhR//znP1sdEwDEKr6P\ne+738VtvvaUxY8Zo6NChuuqqq/Tcc8/J5/P5n//ggw80duxY5eXl6dprr9VLL73U7PlNmzbp9ttv\n18iRIzV06FCNGzdOH3/8cbNrlJWV6Uc/+pHy8vL0ve99T+vWrWv2/Icffqibb75Zw4cP15VXXqnf\n/va38nq9/vPn5eXpd7/7nfLz8zV58mT/Yx988IGuvfZajRgxQhMnTtTmzZtbHSdiB+EUEXPo0CGV\nlJTokksuafWYgQMHNptCVFRUpOrqaq1atUr33nuv3nvvPc2fP1/Tpk3Te++9p//+7/9WcXGxnnnm\nmWbnKSgo0E9/+lO98cYbSk1N1Y9+9CNVVVX5n3/vvfc0cOBArV69Wo899pj+9Kc/ac2aNafV43a7\nNXXqVFVVVem1117T3Llz9ctf/lIej6fD4y4rK9PkyZM1ePBgrVy5Us8995y++uor/dd//Verr5k+\nfbr27Nmj3//+93rvvfd0//33a+nSpfrHP/6hM844QxdeeKHWrl3rP76iokKfffaZbrrpJhmGoXvu\nuUdHjhzRkiVL9Nprr6l///667bbbdPz4cUnSO++8oyeffFL/+Z//qTVr1mjq1KmaMWOGNmzY0GpN\nCxYs0C233KKVK1dq6NChmjp1qg4ePChJeuaZZ7Ru3Tr94he/0HvvvaeZM2dq7dq1+vOf/+x//aFD\nh7RmzRo999xzevnll3X48GHNnTtXkuTxeHTXXXeprq5Or7/+up566im98MILza7f3jWa3teXXnpJ\n77zzjnJzc/XAAw+otra2w58VAMQCvo975vfxzp07NXPmTD344IN6//339cQTT+ill17S6tWrJUkf\nffSRHnnkEd1xxx1au3atfvazn2nZsmX+e0hLSkp0991368ILL9Tq1av1xhtvyG63a/r06XK73f7r\nrFixQldccYVWr16t8ePH6/7779e//vUvSdL777+vH//4xxozZoxWrVqlRx99VH/60580f/78Zp/V\npk2b9Je//EUzZsyQ1Pg9//zzz2vevHl67bXXJElPPPGEDMPo8OeHKGUAEfLFF18YgwcPNjZs2NDs\n8RtvvNEYMWKE/38///nPDcMwjDfffNMYPHiwsWfPHv+xmzZtMtasWdPs9b/5zW+M73znO4ZhGMbB\ngweNwYMHG8uWLfM/73Q6jREjRhivv/66YRiGcfvttxs/+MEPTqth7ty5/uvm5uYahmEY69evNwYP\nHmwcPHjQf2zTYxs3bjQMwzCmT59uTJkypdn5Tn7sV7/6lXHzzTc3e760tNQYPHiw8cUXX7T4Xv3p\nT38ydu3a1eyxK6+80nj++ecNwzCMFStWGPn5+Ybb7TYMwzBeeeUV44orrjAaGhqMTz/91MjNzTWq\nqqqavX706NHG4sWLDcMwjIkTJxrTp09v9vzSpUuNjz76qMV6Bg8ebMyfP9//s9frNa6++mrjl7/8\npWEYhrFq1Spj8+bNzV4zadIk4/HHHzcM4+vP8quvvmp2veHDhxuG0fieDhkyxCguLvY/f+r73N41\n7rvvPmPKlCmG0+k0DMMwampqjE8//dRwuVwtjgkAYhXfx1/rSd/H77//vjF06FBj27Zt/se2bNni\n/+685ZZbjIKCgmavefvtt41hw4YZDQ0Nxv79+40lS5YYPp/P//w///lPY/Dgwcbhw4cNwzCMq666\nyvjpT3/a7By333678fDDDxuGYRjf//73jYceeqjZ86+++qpx3nnnGU6n09i4caMxePBg4+OPP/Y/\n3/TY+vXr/Y/9/e9/NwYPHmwcO3bstHEitnDPKSKmV69ekhqnuJxs8eLF/n/5PPVf70wmkwYMGOD/\nOT8/X7t27dLzzz+vvXv3at++fdq1a5eysrKanfPiiy/2/3dqaqrOOecc7dq1y//Y2Wef3ez49PR0\nuVyu02revXu3MjIymtVw8rk7orCwUIWFhRo5cuRpz+3Zs6fFx2+99VZ9+OGH+stf/qKioiJ9+eWX\nKi0t9U/NGTNmjObNm6dPP/1UV155pdasWaOxY8fKbDZrx44damho0BVXXNHsnPX19f5ptLt27dLY\nsWObPX/qVKhTnTxui8WioUOH+t/TcePGacOGDVqwYIGKior01Vdf6cCBA83eN5PJpIEDB/p/TktL\n83/uu3fvVu/evdW/f3//88OHD292/fauMXXqVE2bNk2XXnqpRo4cqSuuuELjxo1TfHx8m+MCgFjD\n93HP/D6+4oorNHz4cH3/+9/XwIEDdfnll+u6667zf3cWFhZq27ZtWr58uf81Pp9PLpdLxcXFOvPM\nMzV+/Hj98Y9/1Jdffqn9+/ersLBQkvxTqSWd9j7k5eXp008/ldT4Odx0003Nnr/44ovl9XqbTVc+\n44wzTqv/5M86NTVVkgLqfCM6EU4RMWeeeab69u2rzZs367rrrvM/fnIgOXXhA7PZrLi4OP/Pb7/9\ntp588kmNHTtWF110kW6//XZ9/PHH/iktTWw2W7OffT6fzOavZ7Wf/N9NjBamliQmJp72uNVqbXf1\nwqZ7L5pq+Y//+A//1JaTZWRktFjHPffco3379unGG2/UuHHjNGzYME2ZMsV/TEpKir773e/qr3/9\nq8455xxt3bpV8+bN81+vV69eWrFixWnnTkpK8o8hUKe+xufz+d+HGTNm6IMPPtBNN92k0aNH68EH\nH9ScOXOaHW82m087R9N7azKZTnufT/0M27vGRRddpI8++kgbNmzQhg0b9Oqrr+rll1/WK6+8okGD\nBgU8XgCIVnwf98zv44SEBL3yyivatm2bPv74Y33yySd67bXX9PDDD+vuu++WzWbTXXfdpRtvvPG0\n12ZlZWn37t267bbbNHz4cF166aW67rrr5PV6dd999zU71mKxnPY+NH32LS1Q1RRsTx5LS8ed/Ofn\n5HMjtnHPKSLGYrFo0qRJeuutt5othNPE7XaroqKizXMsW7ZMt9xyi55++mnddtttuuCCC3TgwIHT\n/s/t3//+t/+/HQ6H9u3bp9zc3IBrHjx4sI4fP66ioiL/Y9u3b292PZvNpurq6mava1oQQpIGDRqk\nPXv2qH///ho4cKAGDhwos9msp59+WiUlJadd86uvvtKGDRv029/+Vg8++KCuv/569e7dW0ePHm12\n3Ztuuknr1q3TmjVrNHToUH8Ay8nJUWVlpST5rzdgwAA9++yz/kWMzjnnnGbvkSQ9+uij/i/Ulmzf\nvt3/316vV9u3b9d5552n6upqvfnmm5ozZ46mT5+u8ePH6+yzz9bBgwc7/KWTm5t72vt8cn0ducbz\nzz+vL774Qtdcc41mz56t999/Xz6f77SFHAAg1vF93DO/jz/99FMtWrRIeXl5euCBB7R8+XL/WhBN\n4ysqKvJfa+DAgdq1a5d+/etfS2pcTMlut2vJkiWaOnWqrrjiCpWVlUlqHhJ37NjR7Lpbt271j+mc\nc87Rli1bmj2/ZcsW2Ww2nXnmmafVDLSHcIqIuueee3TppZfq1ltv1dKlS7V7924dPHhQa9as0fe/\n/33t3btXF154Yauvz8jI0JYtW7Rz504VFRXp+eef1zvvvNNs6pEk/epXv9KGDRu0a9cuPfroo+rd\nu7fGjBkTcL0XX3yx8vPz9cgjj+hf//qXtm7dqpkzZzY7ZsSIEdqxY4fWrl2rgwcP6vnnn282Zen2\n22+X0+nUY489pi+//FLbtm3TQw89pKKiIp111lmnXTMtLU1Wq1XvvvuuDh06pK1bt2ratGlyu93N\nxnnZZZcpOTlZS5Ys0fjx4/2PX3rppRoxYoR++tOfavPmzdq3b59mzJihdevWafDgwZKku+66S2vW\nrNHrr7+uAwcOaMWKFVq7dq2uvvrqVt+Ll19+We+++6727NmjmTNnyuFw6Ac/+IHi4+OVlJSkDz/8\nUAcOHNCOHTv08MMPq6Sk5LTPpTWjRo3S+eefr5/97Gfatm2bvvjii2ZfzB25RnFxsWbPnq1Nmzap\nuLhYq1evVlVV1WnTgwEAfB/3xO9jm82mRYsWadmyZTp48KC2bt2qTZs2+b/n7r//fq1du1YvvPCC\nioqKtH79es2cOVMJCQmKi4tTRkaGiouL9emnn6q4uFhvv/22P7iePJ63335br7zyivbu3auFCxdq\n27Ztuuuuu/zXePfdd/Xiiy+qqKhI7777rp577jlNmDDBP1UXCAThFBFltVr1u9/9Tk888YTWrVun\n22+/Xdddd52ef/555efn669//asmTJjQ6ut//vOfKzU1VbfccotuvfVWbdu2TXPmzNGxY8d0+PBh\n/3ETJ07UnDlzNHHiRBmGoT/+8Y/+KTSB+s1vfqMzzjhDU6ZM0U9+8hPdcMMNzZ4fO3asbrvtNs2e\nPVvjxo1TSUlJsyk/mZmZWrp0qcrLyzVx4kTdddddstvtWrp0aYtTXLKysvT000/rvffe05gxY/Sz\nn/1Mw4cP19ixY7Vt2zb/cWazWWPHjpXb7db111/vf9xkMmnRokUaNGiQpk2bpptuuklFRUVasmSJ\n/18+v/vd72rmzJn6wx/+oOuvv15//OMftWDBAl122WWtvg8TJ07U4sWLddNNN+nAgQNatmyZsrKy\nZLPZ9Oyzz2r79u264YYbNG3aNKWnp+vOO+887V+DW2OxWPTiiy/Kbrfrjjvu0E9+8pNm99x05Boz\nZszQJZdcoocffljf+9739Ic//EHz589Xfn5+h2oAgFjC93HP+z7Oz8/X008/rRUrVuj666/XAw88\noIsvvlhPPvmkJOlb3/qWFixYoDVr1uiGG27QzJkzNX78eP8tMHfccYeuueYaPfjggxo7dqxeffVV\nzZ49W0lJSc3GM3XqVL3zzjsaO3as1q9fr8WLF+ucc86R1Hjf6zPPPKNVq1bphhtu0C9+8Qvdcccd\n/hqAQJkMJncjih06dEjf+c539Oqrr+qiiy7qlGuUlpbq29/+tpYtW6ZRo0Z1yjW6myFDhmjBggUa\nN25cpEsBAPQAfB8D6Ag6pwAAAACAiCOcAgAAAAAijmm9AAAAAICIo3MKAAAAAIg4wikAAAAAIOKs\nkS7gZKdu4gsAQKja2psR7eO7GQAQbq19N3ercCqF9ktEYWGhcnNzw1hNzxCr45Zid+yxOm4pdsce\nq+OWQhs7wSo8whXwY/HPcSyOWYrNccfimKXYHHcsjlkK37jb+m5mWi8AAAAAIOK6XecUAAAEp6ys\nTAUFBUpPT1dOTo4mTZrkf+7jjz/WG2+8oeeee04VFRWaM2eO0tLSVFdXp6eeekpxcXERrBwAADqn\nAABEjeXLl2vy5MmaNWuW1q9fL4/HI0nauHGjDhw4oJqaGknSsWPHdN999/kD6qFDhyJZNgAAkuic\nAgAQNcrLy2W32yVJaWlpqqqqUkZGhi655BJdcsklWrdunSQpJydHkvTRRx/JZDLpm9/8ZpvnLSws\nDEt9LpcrbOfqKWJxzFJsjjsWxyzF5rhjccxS14ybcAoAQJSw2+0qLS2V3W6Xw+FQWlpaq8cuWrRI\nKSkpmjFjRrvnDdfCH7G4iEgsjlmKzXHH4pil2Bx3LI5ZYkEkAAAQgAkTJuiVV17RzJkzNXr0aM2f\nP19ut/u041atWqXVq1dr27ZteuSRR7Rv374IVAsAQHN0TgEAiBKZmZlauHBhq8+/9NJLkqTx48dr\n/PjxXVUWAAAdQucUAAAAABBxhFMAAAAAQMQRTgEAAAAAEUc4BQAAAABEHOEUAAAAABBxhFMAAAAg\nSC5PgwzDiHQZQFQgnAIAAABBcHkadPkz67Rya3GkSwGiAvucAt3UWY+tbeeIva0+U1RwfXiLAQAA\np1n/5RGVV9frcGWdchMjXQ3Q89E5BQAAAILw13+VSJJq3A0RrgSIDoRTAAAAIEC1bq8+LDwiSaoj\nnAJhQTgFAAAAAvSPnUdU52lQ35Q41dR7I10OEBW45xQAAAAI0F//r0Tn2dPUK8mmWjqnQFjQOQUA\nAAACUF3v1bovj+iG4XYlxVlV46ZzCoQD4RQAAAAIwIeFZar3+nRDXn8lx1vonAJhQjgFAAAAAvDX\nf5Vo+IB0ndknSUlxVtXSOQXCgnAKAAAABOB/D1bqipxMSVJSnEW19XROgXAgnAIAAAAd5PMZqqhx\nKystXpKUHGfhnlMgTAinAAAAQAdV1nnU4DPUJ6UxnCbFW+mcAmFCOAUAAAA66Fh1vSSpT3KcpMbO\naa2nQYZhRLIsICoQTgEAAIAOOnoinPZNbeycJsZZ1eAz5PERToFQEU4BAACADjpW7ZYk9U3++p5T\nSarzEE6BUBFOAQAAgA46Vl0vm8WktESrpMZ7TiXJ5fVFsiwgKhBOAQAAgA4qr3arT3K8TCaTpK87\npy46p0DICKcAAABABx2rqVeflDj/z4lN03rpnAIhI5wCAAAAHXS0yq2+J7aRkaTkuMZpvXVeOqdA\nqAinAAAAQAed2jlNim+a1kvnFAgV4RQAAADooGPVLXdOXXROgZARTgEAAIAOKq+uV9+T7zm1cc8p\nEC6EUwAAAKADat1e1bob1Cf5686p2WxSos3CtF4gDAinAAAAQAccq3ZLkvqmxjd7PDnewoJIQBgQ\nTgEAAIAOKK+ulyT1SY5r9nhSnFUupvUCISOcAgAAAB3g75ymNO+cJsVZ5PLQOQVCRTgFAAAAOqCp\nc5pxWufUwoJIQBgQTgEAAIAOOFbjVnqiTXHW5r9CJ8dbWRAJCANrewccPnxY999/v3Jzc5WZmamG\nhga53W5VV1drzpw52rt3r1544QUlJCToqquu0jXXXKMFCxa0ewwAAADQk5y6jUyTpDiLymuY1guE\nqt1w+j//8z/q27evJKlv377as2eP5syZozfffFN/+9vf9Mknn2j69OnKysrSnXfeqXPPPdcfSls7\nhnAKAACAnqa82q0+p9xvKjUuiMS0XiB07YbTYcOG6bLLLlPfvn31wx/+UKNGjZIkZWdna+fOnaqo\nqFBWVpYkyWQy6ejRo/6fWzumLYWFhUEPxuVyhfT6nipWxy3F9tjbEs3vSax+5rE6bim2xw6geznW\nRueUBZGA0LUbTgsLCzVixAiZzWYZhqFDhw5JkkpLS9WvXz9lZWXpyJEj6tevnwzDkN1uV1lZWZvH\ntCU3NzfowRQWFob0+p4qVsctRfvY9wb9yuh9T6L9M29drI5bCm3sW7ZsCXM1AGJZeXW9BvVLOe3x\n5Hg6p0A4tBtOBw4cqAULFigjI0PXXXedSkpKNG/ePFVXV2vu3LnKzc3VM888I5vNpsmTJ8tut6tX\nr15tHgMAAAD0NMeq3eqT3NK0XotcXjqnQKjaDadDhw7Vb37zm1afHzRokBYuXNjssYceeqjdYwAA\nAICeosFnqKLWrb6prU3rpXMKhIqtZAAAAIB2VNS4ZRhqpXNqlctryOejewqEgnAKAAAAtONYTb0k\ntbggUnK8RYYkl7ehi6sCogvhFAAAAGhHeZVbktS3la1kJKnWTTgFQkE4BQAAANrR1Dnt08pWMpJU\nW084BUJBOAUAAADaUV7tVrzVrJT409cTbeqc1ri9XV0WEFUIpwAAAEA7yqvr1TclXiaT6bTnkuNP\ndE4Jp0BICKcAAABAO45V17c4pVeSkps6p0zrBUJCOAUAAADaUV7tbnExJOmke05ZEAkIyemT5gEA\nQI9UVlamgoICpaenKycnR5MmTfI/9/HHH+uNN97Qc889J5/Pp5///OdKTk6W2+3WrFmzIlc00EMc\nq3Erp19Ki899vVov03qBUNA5BQAgSixfvlyTJ0/WrFmztH79enk8HknSxo0bdeDAAdXU1EiSNm3a\npDPOOENPPPGEMjIy9MUXX0SybKBHqKrzKD3R1uJzCTazTJJq6JwCIaFzCgBAlCgvL5fdbpckpaWl\nqaqqShkZGbrkkkt0ySWXaN26df7jsrOzJUnZ2dk6cuRIm+ctLCwMS30ulyts5+opYnHMUnSO+1h1\nneqrK1sdV4LVpKKDh1WYXtvFlUVWNH7W7YnFMUtdM27CKQAAUcJut6u0tFR2u10Oh0NpaWmtHrdl\nyxZJUmlpqQYNGtTmeXNzc8NSX2FhYdjO1VPE4pil6Bu3YRiq9ezToDPsys09u8VjEm37ldKrj3Jz\nB3dxdZEVbZ91R8TimKXwjbvp+6clTOsFACBKTJgwQa+88opmzpyp0aNHa/78+XK73acdd+GFF6q4\nuFjz5s2T0+nUBRdcEIFqgZ7D5fHJ02AorZVpvVJj55R7ToHQ0DkFACBKZGZmauHCha0+/9JLL0mS\nTCaT5syZ01VlAT2eo67x/u20hDbCqc3MPadAiOicAgAAAG1wuhrDaXpS6+E00WpWbT2dUyAUhFMA\nAACgDc4OdE4TbSb2OQVCRDgFAAAA2tA0rbe1rWQkKd5qJpwCISKcAgAAAG1omtabltj6ci2JVpNq\nWBAJCAnhFAAAAGiDo9Yjq9mkRJul1WMa7zmlcwqEgnAKAAAAtMHp8io90SaTydTqMQk2k2o9dE6B\nUBBOAQAAgDY46zxt7nEqSQl0ToGQEU4BAACANjjqPEpLaP1+U4l7ToFwIJwCAAAAbXC6OtA5tZnl\n8vjU4DO6qCog+rT9T0AAAABAjHPWeZWREqfXNh1o9Zgvy+slScs+K1L8KQsn3TbqzE6tD4gWdE4B\nAACANjRO6227c2o98Vt1fYOvCyoCohPhFAAAAGiD0+VRejvTem2WxpV83V7CKRAswikAAADQBked\nR2mJbd8NZzMTToFQEU4BAACAVvh8hqrrve1O642jcwqEjHAKAAAAtKKq3ivDULvTeq1N4ZR7ToGg\nEU4BAACAVjjrPJLU7lYyTdN66+mcAkEjnAIAAACtcJwIp+12Tk+EUy+dUyBohFMAAACgFU7Xic5p\nQtsLIllO/FbtbTA6uyQgahFOAQAAgFZ0dFqv2WSSxWSS10fnFAgW4RQAAABohbPOK0ntrtYrNS6K\n5PXROQWCRTgFAAAAWuGo8yjRZlGctf1fmy1mkzxM6wWCRjgFAAAAWuF0eZSW2Pb9pk1sFjPTeoEQ\nEE4BAACAVjjrPO2u1NvEajapgc4pEDTCKQAAANAKR52nQ/ebSo33nHq45xQIGuEUAAAAaIXT5W13\npd4mVrOZfU6BEBBOAQAAgFYEOq2X1XqB4BFOAQAAgFY0Tuvt2IJIbCUDhIZwCgAAALTC6Qqkc8q0\nXiAUhFMAAACgFY46T8fvOaVzCoSEcAoAAAC0oN7bIJfH1/HVes0mOqdACAinAAAAQAuqXF5JCqBz\naqZzCoSAcAoAAAC0wFHnkSSlJXZwQSSzSd4GwikQLMIpAAAA0AJnUzgNZFqvj2m9QLAIpwAAAEAL\nnCem9XZ4tV6Lmc4pEALCKQAAANCCr6f1slov0BUIpwAAAEALnHUemUxSanxH7zk1M60XCEGH/qY9\n/PDDuvrqq1VSUqLi4mJVVVXpiSeekMfjUUFBgdLT05WTk6NJkyZpyZIl7R4DAAAAdHeOOo9S460y\nm00dOp4FkYDQtBtOly5dquTkZEnS5s2btXjxYm3cuFErVqxQfX29Jk+erAsuuEB33323xo0b1+4x\nEydOlM3WsakRAAAAQKQ4XZ4OT+mVvp7WaxiGTKaOBVoAX2sznP7jH/9QamqqRowYIZ/Pp4yMDElS\ndna2jhw5Io/HI7vdLklKS0uT0+ls95iqqir/MQAAAEB35azzdnilXkmymRvvmGvwGbJaCKdAoNoM\np6tXr1ZaWpr27dsnSf4Oamlpqfr16yefz6fS0lLZ7XY5HA7169dPlZWVbR6TlpbWZkGFhYVBD8bl\ncoX0+p4qVsctxfbY2xLN70msfuaxOm4ptscOILKcdZ4O73EqSZYTgdTrM2S1dFZVQPRq82/bs88+\nK0l66623FB8fr/Lycs2aNUs7XdpQAAAgAElEQVROp1OzZ8+Wy+VSQUGBVq5cqdGjR8tqtWrUqFHt\nHtOW3NzcoAdTWFgY0ut7qlgdtxTtY98b9Cuj9z2J9s+8dbE6bim0sW/ZsiXM1QCIJY46j3olxnX4\neNuJe1M9DT4l2EinQKA69E9BN998c4uPp6amauHChc0emzJlSrvHAAAAAN2do86jb/RK7PDxVkvj\ntF62kwGC0/F5CgDC6qzH1ka6BAAA0IbKOrfSkwJYEOlE57SBFXuBoLDPKQAAANACR61H6YGs1ts0\nrZe9ToGgEE4BAACAUzT4DFXVewMLp03TeumcAkEhnAIAAACnqHJ5ZBhSryCm9XLPKRAcwikAAABw\nCkedR5KC65wyrRcICgsiAQAQJcrKylRQUKD09HTl5ORo0qRJkqTPPvtMq1atkmEYuvXWWzVixAjN\nnTtXCQkJOnz4sBYsWKD4+PgIVw90L0GF06bOKdN6gaDQOQUAIEosX75ckydP1qxZs7R+/Xp5PI2/\nXC9dulTz5s3T3Llz9eKLL6qurk7vvPOOKisrZTabCaZACyprG//+BLLPqdXCtF4gFHROAQCIEuXl\n5bLb7ZKktLQ0VVVVKSMjQ4ZhKC6u8Rdst9stwzC0aNEiXXTRRVq4cKE+//xzXXzxxa2et7CwMCz1\nuVyusJ2rp4jFMUvRMe4d+6olSaUH96rmiEWSVFLqbPV4r8ej8qNHJEnlFRUqsdT6nyssrOnESiMr\nGj7rQMXimKWuGTfhFACAKGG321VaWiq73S6Hw6G0tDRJUnx8vNxut3w+n+Li4vTpp5+qpKREF110\nkTIzM1VdXd3meXNzc8NSX2FhYdjO1VPE4pil6Bj3Zsd+mUxHdNGw82U+MV13q/NAq8eXlJYoKytb\n0jGlpKbLnp3hfy4398zOLjdiouGzDlQsjlkK37i3bNnS6nOEUwAAosSECRNUUFCglStXavTo0Zo/\nf76mT5+uKVOmaMaMGfJ6vZo2bZrOOussPfbYYzp06JBcLpduu+22SJcOdDvOOo/SEmz+YNoRZpNJ\nZpPkbWBBJCAYhFMAAKJEZmamFi5ceNrj+fn5ys/Pb/bYokWLuqosoEdy1HkCWgypidVi5p5TIEgs\niAQAAACcorLWHdAep02sZpM8rNYLBIVwCgAAAJwi2M6pzWJWA/ucAkEhnAIAAACncNR5lBZEOLWY\nTexzCgSJcAoAAACcorLWo17B3HNqNsnDPadAUAinAAAAwCmcIUzrZbVeIDiEUwAAAOAUjjpP0Asi\nNdA5BYJCOAUAAABO4mnwqcbdEFTn1GJhWi8QLMIpAAAAcBJHnUeSgpvWa2ZaLxAswikAAABwkq/D\naVzAr7VaTPLSOQWCQjgFAAAATlJZG3zn1MpWMkDQCKcAAADASZxNndOgFkQyy+tjWi8QDMIpAAAA\ncJLKOrckBbfPqYXOKRAswikAAABwEketR1azSUlxloBfazWb6JwCQSKcAgAAACdx1HnVK8kmk8kU\n8GutFjMLIgFBIpwCAAAAJ6mscystiCm9EgsiAaEgnAIAAAAncdR5glqpV2rqnDKtFwgG4RQAAAA4\nibPOE9RiSBKdUyAUhFMAAADgJJW1oXROTfL6DBkGARUIFOEUAAAAOElI03rNjb9eN7AoEhAwwikA\nAABwEkedR+lJcUG91mppXOGXFXuBwBFOAQAAgJNUhtA5tZkbw6mngUWRgEARTgEAAIATXJ4Gub2+\n4BdEsjCtFwiWNdIFANHsrMfWRroEAAAQgMpajyQF3Tm1nOicsmIvEDg6pwAAAMAJjroT4TQpxGm9\n7HUKBIxwCgAAAJzQFE6Z1gt0PcIpAAAAcEJlrVtS8NN6rf4FkQinQKAIpwAAAMAJTZ3TtBA7p16m\n9QIBI5wCAAAAJzjqPEqwmZVgswT1eisLIgFBI5wCAAAAJzhC2ONUkqyWE+GUe06BgLGVDAAAAHDC\n50UVMgzptU0Hgnq91XxiWm8D03qBQNE5BQAAAE6oqW9Qcnzw/Rs6p0DwCKcAAADACbVur5Ljgrvf\nVJLMJpPMJjqnQDAIpwAAAMAJNfUNSgqhcyo1rthL5xQIHOEUAAAAOCHUzqnUuGIv4RQIHOEUAAAA\nkGQYhmrcod1zKp0Ip0zrBQJGOAUAAAAkVdd71eAzlBQXhmm97HMKBIxwCgAAAEg6XuORJKb1AhFC\nOAUAAAAkVdS6JSnkab02i1leH9N6gUARTgEAAABJFTX1kqSkEDunFrOJab1AENr9Z6GioiItXLhQ\nffv2VV5enioqKlRcXKyqqio98cQT8ng8KigoUHp6unJycjRp0iQtWbKk3WMAAACA7qSiaVpvyFvJ\nmORhWi8QsHb/5lVVVenRRx9Vdna27r33XsXFxWnx4sXauHGjVqxYofr6ek2ePFkXXHCB7r77bo0b\nN06bN29u85iJEyfKZrN1xfgAAACADjle41acxSybJbTJhTazWQ2s1gsErN2/eXl5eYqLi9O9996r\n/Px8ZWRkSJKys7N15MgRlZeXy263S5LS0tLkdDrbPaaqqqqzxgMAAAAEpaLWraT40Kb0Siem9dI5\nBQLWbue0sLBQ2dnZevnll/XjH/9YXq9XklRaWqp+/frJ5/OptLRUdrtdDodD/fr1U2VlZZvHpKWl\ntXm9YLlcrpBe31PF6ril2B57W6L5PYnVzzxWxy3F9tgBdK2KareSQ9xGRmqc1lvrJpwCgWr3b5/H\n49H/+3//T7169dKAAQOUnZ2tWbNmyel0avbs2XK5XCooKNDKlSs1evRoWa1WjRo1qt1jWpObmxv0\nYAoLC0N6fU8Vq+OWesLY90bkqt37PQlN9//MO0esjlsKbexbtmwJczUAollFrTvkxZCkxmm9rNYL\nBK7dcDps2DA999xzrT6fmpqqhQsXNntsypQp7R4DAAAAdCfHa9whL4YkNXZOG5jWCwSMrWQAAAAA\nSRU1biWHoXNqNZvkYSsZIGCEUwAAAEBNCyKFo3PKtF4gGKH/7QMAAN1CWVlZi/uKf/bZZ1q1apUM\nw9Ctt96qYcOGad68eUpJSVF1dbWefPJJtnhDzPM2+OSo84RnQSSzSV46p0DACKcAAESJ5cuXt7iv\n+NKlS7Vo0SL5fD49+OCDGjdunOrr6yVJ55xzDsEUkFRZ55FhKCwLItE5BYLDtF4AAKJEa/uKG4ah\nuLg4JSQkyO1268CBAxoyZIhmzZqlf//73zpw4EAkywa6heM1bkkKz4JIdE6BoNA5BQAgStjt9hb3\nFY+Pj5fb7ZbP51NcXJwyMzP9+5b37t1bhtH2L9Hh2mc2FvesjcUxSz1z3NtK6yRJtc4KlXidAb/e\n6/GopLREklRTXSevz9DhksMymUwqLKwJa63dSU/8rEMVi2OWumbchFMAAKLEhAkTmu0rPn/+fE2f\nPl1TpkzRjBkz5PV6NW3aNOXk5OjJJ5/U7t27lZCQoIEDB7Z53nDtsRuL+/XG4pilnjnuIm+JpBIN\n/IZdKUF0T0tKS2TPbpy5cLj+uLSvRv36ZctqMSs398wwV9t99MTPOlSxOGYpfONuaw9ywikAAFEi\nMzOzxX3F8/PzlZ+f3+wx9h8HmquodctkkhJt4bjn1CRJ8voMWUM/HRAzuOcUAAAAMe94jVvpiTZZ\nzKaQz2U1fx1OAXQc4RQAAAAxr6LGo4zkuLCcy2pu/BXb28CKvUAgCKcAAACIeRU19cpIClM4bZrW\ny4q9QEC45xQAAAAx47VNLW+dtP2wU1ZLePo2Nqb1AkGhcwoAAICYV+tuUHJceFYvspwIuV4f03qB\nQBBOAQAAEPNq6r1KDmILmZY0LYjkYVovEBDCKQAAAGJejdurpDB1TuOtjb9iu70NYTkfECsIpwAA\nAIhpbq9PngZDyXHh6ZwmnNgr1eVlWi8QCMIpAAAAYlqt2ytJSo4PT+c07kTntN5DOAUCQTgFAABA\nTKtxN06/TQpT59RsMineapbLw7ReIBCEUwAAAMS02vqmzmn4dlmMt5pVzz2nQEAIpwAAAIhpNU3T\nesO0IJIkxdss3HMKBIhwCgAAgJhWU98gi9nkv1c0HBKsZtUzrRcICOEUAAAAMa263qvkOItMJlPY\nzplgs8jFgkhAQAinAAAAiGmOOo/SE21hPSf3nAKBI5wCAAAgpjnqPEpPigvrOePpnAIBI5wCAAAg\npjnqPOoV5s5pAp1TIGCEUwAAAMQsn2F0zrRem0X1dE6BgBBOAQAAELNq3Q1q8BlhD6cJVrNcdE6B\ngBBOAQAAELMctR5JCn84tVnkaTDU4DPCel4gmhFOAQAAELMcdW5J4Q+n8TaLJHHfKRAAwikAAABi\nVmWdR2aTlJJgDet5462Nv2azYi/QcYRTAAAAxCxHnUdpiTaZTaawnjeBzikQMMIpAAAAYlZnrNQr\n0TkFgkE4BQAAQMzqrHDq75x66JwCHUU4BQAAQMxy1HnUqzPCaVPn1EvnFOgowikAAABiks8w5Dxx\nz2m42axmmcQ9p0AgCKcAAACISdUur3yGOqVzajaZFGc1c88pEADCKQAAAGKSo84jSUpPjOuU8yfY\nLNxzCgSAcAoAAICYVNkUTpPC3zmVGlfs5Z5ToOMIpwAAAIhJjjqPrGaTkuMsnXJ+OqdAYAinAAAA\niElNiyGZTKZOOT+dUyAwhFMAAADEpMpO2uO0CZ1TIDCEUwAAAMQkR627U8NpY+eUcAp0FOEUAAAA\nMcnRJZ1TpvUCHUU4BQAAQMxp8Bmqcnk7t3Nq455TIBCEUwAAAMScKpdHhqRendk5tXLPKRAIwikA\nAABijqOT9ziVGu859foM1XPfKdAhhFMAAADEHH847eR7TiWppp5wCnQE4RQAAAAxx1Hnkc1iUuKJ\nANkZ4m2Nv2pXuTyddg0gmhBOAQAAEHOa9jg1mUyddo0Ea2PwrXJ5O+0aQDQhnAIAACDmOGo7dxsZ\n6evOaXU94RToCMIpAAAAYk7jHqdxnXoNOqdAYKztHfDFF19o2bJlSkpKUv/+/VVbWyu3263q6mrN\nmTNHe/fu1QsvvKCEhARdddVVuuaaa7RgwYJ2jwEAAAAixVnn0eCs1E69xtedU+45BTqi3XDqdDo1\nb948paSk6M4779SAAQM0Z84cvfnmm/rb3/6mTz75RNOnT1dWVpbuvPNOnXvuuf5Q2toxhFMAAABE\nitfnU3W9t1P3OJWkOItZJknVdE6BDmk3nF555ZUyDEO///3vdcEFF/hvGs/OztbOnTtVUVGhrKws\nSZLJZNLRo0f9P7d2TFsKCwuDHozL5Qrp9T1VrI5biu2xtyWa35NY/cxjddxSbI8dQOdw1nllSErr\n5HBqMpkUbzPLSTgFOqTdcFpdXa2nn35aN954o8466yz9/ve/lySVlpaqX79+ysrK0pEjR9SvXz8Z\nhiG73a6ysrI2j2lLbm5u0IMpLCwM6fU9VayOW+oJY98bkat27/ckNN3/M+8csTpuKbSxb9myJczV\nAIgG/j1Okzo3nEqN952yIBLQMe2G06eeekr79+/Xm2++KYvFoqysLM2bN0/V1dWaO3eucnNz9cwz\nz8hms2ny5Mmy2+3q1atXm8cAAAAAkeKoc0tSp0/rlaQEm4VpvUAHtRtO58+f3+bzgwYN0sKFC5s9\n9tBDD7V7DAAACK+ysjIVFBQoPT1dOTk5mjRpkiTps88+06pVq2QYhm699VZdcMEFkqQVK1Zo+/bt\nmj17diTLBrqco9ajeKtZCTZLp18r3mpWlYsFkYCOYCsZAACixPLlyzV58mTNmjVL69evl8fT+Avx\n0qVLNW/ePM2dO1cvvviiJOnzzz/Xvn372r3dBohGDlfn73HaJN5mZlov0EHtdk4BAEDPUF5eLrvd\nLklKS0tTVVWVMjIyZBiG4uIa93N0u906dOiQ/v73v+uOO+7QCy+80O55w7UgVSwubhWLY5a697hL\nSp0qO16tBLOhktKSsJ3X6/G0eD7D61ZZhbfbvh+h6s6fdWeJxTFLXTNuwikAAFHCbrertLRUdrtd\nDodDaWlpkqT4+Hi53W75fD7FxcVpzZo1cjqd+vWvf62dO3dq69atGjlyZKvnDddiXLG4sFcsjlnq\n3uPe6jyg+h3V6t8rUfZse9jOW1Ja0uL5epX4VFPv7bbvR6i682fdWWJxzFL4xt3WYoWEUwAAosSE\nCRNUUFCglStXavTo0Zo/f76mT5+uKVOmaMaMGfJ6vZo2bZry8vIkSYcOHdILL7zQZjAFolFlnUe5\n9rQuuVaC1awyJ9N6gY4gnAIAECUyMzNbXIAwPz9f+fn5pz0+YMAAzZkzpytKA7oNT4NPte4G7jkF\nuiEWRAIAAEDM6Mo9TiW2kgECQTgFAABAzPCH067qnFotcjf45PI0dMn1gJ6McAoAAICY0fXhtPHX\nbab2Au0jnAIAACBmOOo8SrCZFW+1dMn1EmyN13GeCMUAWkc4BQAAQMxw1HrUKzGuy66XHN8YTitq\n3F12TaCnIpwCAAAgZjjqPF02pVeSUhMar1VeXd9l1wR6KsIpAAAAYkZXh9OkOIvMJuloFeEUaA/h\nFAAAADGjss7dZdvISJLZZFKflHjCKdABhFMAAADEhJp6r1weX5d2TiWpb0q8jlZzzynQHsIpAAAA\nYkKJwyWp67aRaZKZSucU6AjCKQAAAGLC4co6SREIpynxLIgEdADhFAAAADFhV1mVLGaTeid13VYy\nktQ3NY7OKdABhFMAAADEhMKSKmWlxctiNnXpdTNT4nW0ul6GYXTpdYGehnAKAACAmLCjxCl7emKX\nXzczNV5ur09V9d4uvzbQkxBOAQAAEPXcXp++OlIle3pCl187MyVeEnudAu0hnAIAACDqfXWkWp4G\nI2KdU0kqJ5wCbSKcAgAAIOrtKHFKUkQ6p32bOqes2Au0iXAKAACAqFdY4tSA3olKsFm6/NrpiTbZ\nLCam9QLtIJwCAAAg6u047NR59rSIXNtsNqkve50C7SKcAgAAIKoZhqEdJU7lRiicSo1Te+mcAm0j\nnAIAACCqlThcctR5dF7/yIXTzNR4lVe7I3Z9oCcgnAIAACCq7TjcuBhSpKb1SlLflDg6p0A7CKcA\nAACIaoUlTqUmWDWgd9dvI9MkM5VpvUB7CKcAAACIak33m5pMpojVkJkSr2M19fL5jIjVAHR3hFMA\nAABEtR0lkVupt0nf1Hh5Ggw56jwRrQPozginAAAAiFrV9V7tP1Yb8XCamRIvSWwnA7SBcAoAAICo\ntbPkxGJIEVypV2rsnErivlOgDYRTAAAARK0dJU5ZzCYN6pcS0Toym8IpnVOgVYRTAAAARK3CEqcG\nZaYowWaJaB2p8VbFW810ToE2EE4BAAAQtXYcdkZ8Sq8kmUwm9U2Jp3MKtIFwCgAAgKjkbfBpZ2mV\ncu2pkS5FEnudAu0hnAIAACAqFR2rUb3Xp/Ps6ZEuRZLUNyVe5dXuSJcBdFuEUwAAAESl7YcbV+ql\ncwr0DIRTAAAARKXCkiplpcWrz4k9RiMtMzWefU6BNlgjXQDQ05312NpIlwAAAFqwo8Sp8+yRXwyp\nSWZKnI5V16vBZ8hiNkW6HKDboXMKAACAqNRdVuptkp2eKJ8hlTpdkS4F6JYIpwAAAIg6R6pcKq+u\nV2436pzm9EuRJO0qq4pwJUD3xLReIAq1NdW4qOD6LqwEAIDIKCxpDIDdaVrvGRlJirea9VVZta4a\n0i/S5QDdDp1TAAAARJ3CEqcSbRYN7JMc6VL8LGaTBvVLoXMKtIJwCgAAgKiz47BT59pTu93CQzn9\nUrTrSHWkywC6JcIpAAAAok53W6m3SU5Wqr4qq5JhGJEuBeh2CKcAAACIKi5Pg/Yere5WiyE1GZyV\nqhp3gw47WLEXOBXhFAAAAFFlW7FDPkMaNiA90qWcZnAWK/YCrSGcAgAAIKp8XlShRJulW3ZOB/Ru\nXLF3N+EUOA3hFAAAAFFlS9FxjTyzl2yW7verbtOKvbvLWBQJOFWH9jndv3+/fvKTn2jVqlVasmSJ\niouLVVVVpSeeeEIej0cFBQVKT09XTk6OJk2a1KFjAAAAgHDz+Qxt3n9cUy4dGOlSWjU4K5UVe4EW\ntBtOjx49qr/85S9KTExUfX29Nm/erMWLF2vjxo1asWKF6uvrNXnyZF1wwQW6++67NW7cuHaPmThx\nomw2W1eMDwAAADFkz9FqOeo8qnJ59dqmA5Eup0U5WSl6f3upDMOQydS9troBIqndcJqZmalHHnlE\nU6dOVWVlpTIyMiRJ2dnZOnLkiDwej+x2uyQpLS1NTqez3WOqqqr8x5yqsLAw6MG4XK6QXt9Txeq4\npdgee7B6+vsVq595rI5biu2xB6qsrKzFmUqfffaZVq1aJcMwdOutt+qss87SnDlzlJaWprq6Oj31\n1FOKi4uLcPVAeHxedFwmSWdkJEW6lFbl9Pt6xd5v9EqMdDlAt9Ghab1N+vTpo8rKSklSaWmp+vXr\nJ5/Pp9LSUtntdjkcDvXr16/dY9LSWr85PTc3N+jBFBYWhvT6nipWxy11l7HvjfD1AxP59ys03eMz\n73qxOm4ptLFv2bIlzNV0b8uXL29xptLSpUu1aNEi+Xw+Pfjgg3rooYd033336dxzz9XcuXN16NAh\nffOb34x0+UBYbN5foez0BCXYLJEupVUnr9hLOAW+FlA4tVqtGjVqlGbNmiWn06nZs2fL5XKpoKBA\nK1eu1OjRozt8DAAACK/y8vIWZyoZhuHvjLrdbuXk5EiSPvroI5lMJoIposrmouMa2Cc50mU0c+r0\nYp9hyGYxacXnB1VS6dJto86MUGVA99LhlPjSSy9JkqZMmdLs8dTUVC1cuLDZYx05BgAAhJfdbm9x\nplJ8fLzcbrd8Pp8/pC5atEgpKSmaMWNGu+cN17TqWJyiHYtjliI37oparw5U1Cq3j0UlpSVdem2v\nxxPQNXslmFVUdlyDUr0qLKzpxMo6Vyz+GY/FMUtdM25amAAARIkJEyY0m6k0f/58TZ8+XVOmTNGM\nGTPk9Xo1bdo0rVq1SqtXr1ZeXp4eeeQRPfDAAzr77LNbPW+4ppTH4vT0WByzFLlxv7OtRNIBjTjn\nG0pP7NrFN0tKS2TPtnf4+G8c8qq8ul72bLtyc3tu5zQW/4zH4pil8I27rVtuCKcAAESJzMzMFmcq\n5efnKz8/3/9zXl6exo8f35WlAV1ic9FxfaNXYpcH02BkpSVox2GnfIYR6VKAbqP77UwMAAAABGHz\n/gpddFbvSJfRIf17Jcjd4NPRqvpIlwJ0G4RTAAAA9HiOWo+2H3bqorNa3q6wuxnQq3Grm+LjdRGu\nBOg+CKcAAADo8T4oLFODz9B3zu0X6VI6JDHOoj7JcTp4vDbSpQDdBuEUAAAAPd4720o08sxe6t+D\n9g09IyNJxZV0ToEmLIgExJizHlvb6nNFBdd3YSUAAISH0+XRJ7vL9bPvDYl0KQH5Rq9EbTvkUL23\nQfFWS6TLASKOcAq0o60wBwAAIu8fhUfkbvBpTF52pEsJyBm9E9VgGNpZUqXhZ/SKdDlAxDGtFwAA\nAD3aO9tKNHxAugb0Top0KQGx90qU2ST936HKSJcCdAuEUwAAAPRY1fVerd91VGPy7JEuJWA2i1nZ\naQn634OEU0AinAIAAKAHW7fziNxen8YM7VlTepsM6J2kfx1yRLoMoFsgnAIAAKDHevffJTq/f5oG\n9kmOdClBGdA7UXuOVqvK5Yl0KUDEsSASIBY9AgCgJ3K6PPrHziP68dU5kS4laAN6J8kwpG3FDl12\nTt9IlwNEFJ1TAAAA9Ehr/1Wieq9PN438RqRLCVpmarwSbRb930Gm9gKEUwAAAPRIb2w5pMsH9VX/\nXomRLiVoFrNJed9I1/+xKBLAtF4AAAD0PL/5YLe27D+uiRedodc2HYh0OSGJt5q14atyvbJxv8wm\nU7Pnbht1ZoSqAroenVMAAAD0OF8cOK54q1nn90+LdCkhG5Kdqup6rw5V1Ea6FCCiCKcAAADoURp8\nhrYeOK5hA3rJZun5v84O7JOspDiLth92RroUIKJ6/t9mAAAAxJRPdh+V0+XVhQN7R7qUsLCYTTrP\nnqbtJU4ZhhHpcoCI4Z5TAAAAdEut3Uv62v8cUN+UeJ3Ru+cuhHSq8/unafP+4yp1umRPj55xAYGg\ncwoAAIAe42BFrbYXO3TpNzNkOmXxoJ7snMwUxVvNTO1FTCOcAgAAoEfwGYbe/t9iZacnKP/sPpEu\nJ6ysFrOGZKdqB+EUMYxwCgAAgB5h095jOuxwadzw/rKYo6dr2uT8/ukqdbpUXl0f6VKAiCCcAgAA\noNurcnn0/o4yXTSwt87skxzpcjrF4KwUWc0muqeIWYRTAAAAdHvv/btUFrNJ156fHelSOk281aKc\nfin6v0OVrNqLmEQ4BQAAQLdW4qjT/x6s1Hdzs5QUH92bTYz6Zh+VOFzac7Qm0qUAXY5wCgAAgG7t\n/e1l6p0cp4vPyoh0KZ0up1+K7OkJ+nj30UiXAnQ5wikAAAC6rX3lNfqyrErX5GZF5SJIpzKZTLoi\nJ1NfHanW4cq6SJcDdCnCKQAAALolwzD0t+2lsqcnKG9AeqTL6TJ530hXryQb3VPEHMIpAAAAuqWd\npVU6UFGr0edly2yK/q5pE4vZpMsH9dW2Qw4drKiNdDlAlyGcAgAAoNtxeRq0dluJzu6brMFZKZEu\np8tdNDBDCTaL/vvjPZEuBegyhFMAAAB0O89+sFuOOo/GDu8vUwx1TZvEWc26Iqevlv/PQe05Wh3p\ncoAuQTgFAABAt/LvYode/GSvrhySqay0hEiX8//bu/vgqOp7j+Pv3c0mSx6WkMdNgJBgEOiNAgEF\n0SvYsdJrh/GiLVQRnxDkKo4THW6AAAGLSGfq2KEI2kqDYlvpVUx7qV6mXGW8iqIll4LU4DWEQDAh\nhIdsnvfp3D+i4cFEsE32JHs+r5nMJLtnz35/e07yzWfP2fMzzfW5KaQlxPD0m+VmlyISFgqnIiIi\nItJnBIIhFm/bzxWpcf9F9A0AAA+TSURBVEy5MtXsckzldNgp/JdR7Pz0BLs/rze7HJFep3AqIiIi\nIn2CYRg88+fPOPiFl6dvv5oou/5VnX51JmOGJrL6T58SDBlmlyPSq/QbLyIiIiKmMwyDtW+Vs3FX\nBYumjWT8sEFml9Qn2O02lv9gNH+r8bL142NmlyPSqxRORURERMRUoZDBij8c5IV3D7PsB6N5eGqu\n2SX1KROyk7g9fzBPbj/IwS8azC5HpNdEmV2ASLhkL/6T2SWIiIjIRYIhg8LX9/N6WTVPzchj9sRh\nZpfUJz31r1fxaU0jD23Zy38uvIFBcdFmlyTS4xRORaTTpQL8kbU/CFMlIiJiBf5giIKt+3jzQA3P\n/GgMt+cPMbukPmtAtINfzhnP9PXvsfB3Zbx0/7VEOXQSpEQW7dEiIiIiEnZt/iD/9koZ//VJLb+4\nM1/B9DIMTYpl/Z35fFBxin9/fT+BYMjskkR6lI6cioiIiEhY/fXYWZ74j79ypL6Zu67NoqHVz2/3\nHDW7rD6pq9fljvwhvF5WTUOLn/V35TMg2mFCZSI9T0dORURERCQsWn1BfrbjELdv3E1MlJ2Hp+Yy\nKsNtdln9zrisQcyZNIz3K+qZs2kPDS1+s0sS6RE6cioRQxc8EhER6Zsa2/xs+bCKTf9TydlWP4/c\nlMvCm3J5bW+12aX1WyM9bn7z4CQe2Pwxd/7qQ7bMvZbk+BizyxL5hyicSr/SdQA9HPY6RERE5NKC\nIYPffnSUn+04RIsvwB35Q1gw5QqyU+LMLi0ijB82iN/Nm8ScTXv48S8/5DcPTiTN7TK7LJG/m8Kp\niFy2bzo6rSv5iojI+fZXn2V56Sf8tbqB/KxEbh6dTmJsNLsrTrG74pTZ5UWM72S62frQJO761R5m\nvvABT9wykqkjU0lwOc0uTeRbUzgVkR6h4CoiYl1fXbSnsc3PgeMNfFRxkrrmw6S7Y5j3z8PJ0ZHS\nXnH+xZLmTBrGqx8f49Hf/S8Om40bRqRw3+Rspo5MxWazmVilyOVTOBURERGRv0tdYxvvflbP63ur\nqTrdTH2TD7sNshKd/Pg7Q/mnzIE47ApG4ZAcH8MjN+VyutnHpzVe9h07y/2bPyZjoIsbr0xltMdN\ndNS5a6HeNTHLxGpFuqZwKiIiIiKXJRgy2F99lnfK63jn0EkOHG8AIN0dw/CUeG4aGcuI9AQaz5wk\nw5NocrXWlBQXzfW5KUy+IpmKk828c6iOrR8fI8puIzctnlEeN9nJsRiGoSOq0uconEqfoivuioiI\nmK89EKSxLUBTW4DqM60cON7AgeNn+fDwaU43+0hwRXHjiFTunZzNlCtT+fPfTlzw+EaT6pZzbLaO\nMJqbFk+dt41Paxspr/Hyh33HMYDNHxxhwrBBjB+WxITsQVw1eCAup+ZLFXMpnIqIiIhYkD8YovpM\nK01tAZp9AWoaWvmo8jQfHj5NZX3zBcsOcDpIc8eQl+lmpMdNVlIsDrsNXyD0tWAqfU+a20Wa28WU\nK1Np8wc5eroFtyuKj4+cYd1//x+t/iDRDjtXDRnIhGGDuHpIIrlp8WSnxBITpcAq4RO2cHrixAnW\nrl3LwIEDGTFiBLNnzw7XU4sJdARUznep/UEXTBLpGd312t27d1NaWophGNx5552MHTuW5cuXExcX\nh8/nY+XKleYWLt+KYRgEQgb+YAh/0CAQDNHiC+Jt89PYFvjyy4+31U9NQxvVZ1qpaWjF5XTgbfUT\n5bBT19jGCW87wZBxwbpT4mMYnhrHuKGJuJwOXE4HCa4oUhNisOsU0Ijgcjq4Mj0BgOljBnDrVRnU\nNLRSdaqFqlPN/HbPUV54t2OaPofdhsftIt0dg2egi5goByHDIGSA+8v9Itjk5bP24wz4cn8xgEAw\nhM0GQwfFkpWsgCuXL2zh9NVXX2XOnDnk5+czb948Zs6cidOpS1z3ZQqYEi7ffl87N7etgq3IOd31\n2pKSEp577jlCoRAFBQXcc889DB06lAULFrBu3TrKysrIz8/v1dq27/+C3QdPk1L92YV3GEaXy3d9\na9eLG90s3c2qv9W6v2n9Xd1s0HFEsj0Qot0foqHhLMkH/djtEAieC5S+YOjL7zt+9gdDnfd/FTwv\n/vmr2wKh7kZwIbsNBg5wkhgbzcABTrytflr9QXytfjxuF+OGDiLd7cLltBMdZSc2Oor4GJ1UZzUO\nu40hg2IZMiiW63NTMAyDpvYAJxvbqWts52yLH2+bn/KaRoKhjs+p2mzQ6gvS2Oan2ReED+u7Xb/d\nBh63ixinA6fDht3WccS9PdARYN0uJ4mxTlxOB4FQx5stDruNAU4HsdEdYbfdH6I9ECTKYSc2uuP2\nS71Z8tXdNmwX/fzV/bZvufy5x506dYqUyk8vWOCSj+vmfvrJmz4up51rBgV7/XnC9heovr6ejIwM\nANxuN42NjSQlJX1tub179/5Dz/OPPr6/6o1xv/4jT4+vU6SnWel33kpjvZiVx/5tdNdrDcMgOjoa\nAJ/PR319PR5Px994j8dDXV3dN663J17/DOCOK11Y79OI8YC/i9ttgOPLL7MYQGuvrHnkkCjgZK+s\nu6+KqDE76dh1M+DcfuoK05Of/zsR6uL20EW3myB9ANBibg1mCPR+Pw5bOM3IyKC2tpaMjAwaGhpw\nu91fW2b8+PHhKkdERCTidNdrY2Ji8Pl8hEIhoqOjycjI6PwHo7a2ltzc3G7Xqd4sIiLhYjOM7k5i\n6VknT55k7dq1xMXFkZeXx8yZM8PxtCIiIpZxca89dOgQhYWF7Nu3j9dee41AIMD9999PXl4excXF\nnUdTly1bZnLlIiIiYQynIiIiIiIiIt2xm12AiIiIiIiIiMKpiIiIiIiImK7fXy/8jTfe4ODBgwQC\nAW677TYyMzMtNZ9qTU0Ns2fP5u2336a5uZni4mISExNJSEjgscceM7u8XrF+/Xpqa2s5e/Ys8+bN\nw+PxWGabW22+4LKyMl5++WViY2PJzMykpaUFn89HU1MTTz75ZOfn5SLZE088wXe/+11qamo4fvw4\njY2NLF26tMurnUeK6upqNmzYQHJyMnFxcXi9Xstt90hi5T5ttR5t1f5spd5s9b5stZ5sRj/u10dO\nQ6EQpaWlOJ1OgsEgV1xxReccbytXrmTXrl34/V1dvj0ytLa2snHjRgYPHgzAW2+9xZQpU1i2bBk1\nNTWcOHHC5Ap7nmEY5OTksHr1ahYsWMDOnTsttc2tNFYAr9fL6tWrWbNmDWVlZTQ1NbFs2TKuueYa\nduzYYXZ5va6kpIS4uDgA/vKXv1BcXMwPf/hDfv/735tcWe8qKSnB4/Fw8uRJkpOTLbfdI4mV+7TV\nerSV+7NVxgnW7stW7Mlm9ON+d+R069atbN++HeiYz62yspJf//rXfPTRR5SUlFz2fKr90fljNwyD\n+Ph4Vq5cSVFREdDxekyYMAGA9PR06urqSE9PN63ennL+uAGWLl1KfX09L774IkuWLGH9+vURu80v\nFsn7d1emTp2KYRhs3LiR/Pz8zgmzPR4P5eXlJlfXu95++20SEhIYO3YsoVCocztfzpyU/V1VVRWP\nP/44I0aM4IEHHmDSpEmANbZ7JLBqn7Zij1Z/7hCp+3RXrNqXrdqTzejH/S6czpo1i1mzZgEdE4nP\nnz8fh8NBUlISoVDosuZT7a/OH3t5eTk///nP2bBhAxUVFZSUlHSOHTpOMUlLSzOz3B5z/rihY/Lf\nZ555hhUrVpCUlBTR2/xiVhorQFNTE2vWrGH69OlkZ2ezceNGoGNexkjZv7vzxz/+EbfbTWVlJUDn\nu7VWGHtqairx8fE4nU6AziNMVhh7JLBqn7Zij1Z/7mCVcYJ1+7JVe7IZ/bjfTyWzZcsWDh06RCAQ\noKCgALvdbrn5VOfOncumTZtoa2tj+fLlJCQkkJKSwsMPP2x2aT2usbGRadOmcd1112Gz2Zg4cSJT\np061zDa32nzBS5YsoaqqiszMTBwOB+np6bS0tNDU1MRPfvKTzj+WkWzbtm3ExMR0HoHyer2sWrWK\nhIQEs0vrNRUVFaxbt47k5GTGjh3L559/brntHkms3qet0qOt3J+t1Jut3pet1pPN6Mf9PpyKiIiI\niIhI/9evL4gkIiIiIiIikUHhVEREREREREyncCoiIiIiIiKmUzgVERERERER0/W7qWRERERERP5e\nP/3pTxkxYgQ5OTkkJSWxcOFCZs2aRXV1Nfv27ePFF18kPj4+LLVs27aNlpYW7r77bgD27NnDrl27\nKCwsZNy4ceTl5XUuu2rVKoYPHx6WukTMonAqIiIiIpYyePBgxo0bR2lpKXfccQd33303M2bM4I03\n3jC7tE45OTls2bLF7DJEwkrhVEREREQi2rFjx1i0aBEul4v29nY++eQTWlpaeP755wmFQrS0tHDk\nyBGKioooKChgyZIltLW1MXr0aJYuXcrixYtpaGggLS2N++67j+LiYvx+PzfffDNz585l7ty5ZGdn\ns3//fiZPnkxBQQHvvfcezz77LKFQiAULFnDjjTdSWFjImTNn8Hg8PP3002a/LCJ9jsKpiIiIiES0\nzZs389hjj3Hdddfx4IMP0t7eDsD8+fM7T6vduXMnTz31FGvWrOHee+/lhhtuYPXq1ezduxeAGTNm\ncMstt7Bw4UJWrVpFTk4Ojz76KF988QU+n4/p06dTVFTEtGnTKCgoYMOGDWzatIno6GhKSkqora3l\n+uuvZ9asWWzevJk333wTgJdffpkdO3YA4PV6mTx5MgCVlZXMmTMHgFGjRlFUVBTul00k7BRORURE\nRCSiVVdXM2rUKADy8vI6A2dXDh8+zIEDB3jhhRdobm5mzJgxAGRlZQFQVVXFihUrgI4wefz4cQBy\nc3Ox2+0kJCQA4Pf7SUxMBOCRRx6huLiYAwcOsH37dtrb2/ne975HcnIy99xzz9c+cwo6rVesSeFU\nRERERCLa8OHD2b9/P1OmTKG8vPwbl83KyuK2225jzJgxlJaWMmrUKN5//33s9o5JLoYMGcLKlStJ\nT0/npZdeYtiwYQDYbLYL1mOz2fB6vbhcLgoLC8nLy2PixInceuut7Nq1i/j4eI4ePdo7AxbppxRO\nRURERCSizZ8/n4ULF7Jp06ZLLvvQQw9RVFREU1MTycnJfP/737/g/oKCAhYtWkRraysjR47sPPX2\nYgUFBcybNw/DMJg/fz6TJk1i8eLFvPLKKzidTp599lmFU5GL2AzDMMwuQkRERERERKzNbnYBIiIi\nIiIiIgqnIiIiIiIiYjqFUxERERERETGdwqmIiIiIiIiYTuFURERERERETKdwKiIiIiIiIqZTOBUR\nERERERHTKZyKiIiIiIiI6f4fZj7GBxlt0x8AAAAASUVORK5CYII=\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["#version pandas\n", "import seaborn as sns\n", "\n", "sns.set_style('whitegrid')\n", "sns.set_context('paper')\n", "\n", "fig = plt.figure(figsize(8.5,5))\n", "\n", "ax1 = fig.add_subplot(1,2,1)\n", "ax2 = fig.add_subplot(1,2,2)\n", "\n", "df[\"differenceHF\"].hist(figsize=(16,6), bins=50, ax=ax1)\n", "ax1.set_title('Graphique avec pandas', fontsize=15)\n", "\n", "sns.distplot(df[\"differenceHF\"], kde=True,ax=ax2)\n", "#regardez ce que donne l'option kde\n", "ax2.set_title('Graphique avec seaborn', fontsize=15)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Exercice 3 : analyser le nombre de mariages par d\u00e9partement "]}, {"cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [{"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAABBYAAAGMCAYAAABu5yEoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8TPf+x/F3SAhiKYpUb1FMhFiS\nWNteLcrvVusqbf2UorXUeq3tpVqtrYRSYmlRtfRSS0t0sVy9dkpuRW1Fi7RurFVLlqaJkO/vj/4y\nN5PMxMkRkujr+Xh4PGTmM9/zOefMmcy88z1nvIwxRgAAAAAAADYUyO0GAAAAAABA/kWwAAAAAAAA\nbCNYAAAAAAAAthEsAAAAAAAA2wgWAAAAAACAbQQLAAAA+UB+/CKv/NgzACD7CBYAAPlOQECAPvzw\nw1xb/unTpxUQEKANGzbkWg/ZNXPmTAUHB+d2G/nGiBEj9NRTT7m9b/z48QoODtYPP/xwx/rZu3ev\nBg4ceMeWd6vi4uI0bNgwfffdd7ndCgDgDiBYAADgD+C5557T4sWLc7uNfO/y5cv69NNPNXHiRDkc\njju23E8//VQ//vjjHVverTp69Ki+/PJLZiwAwB+Ed243AAAAbr8KFSqoQoUKud1Gvle4cGF98cUX\n+tOf/pTbrQAAkGcwYwEAYEtAQIBWr16tIUOGKDg4WI0aNdLbb7+t69evO2t+/fVXTZo0Sc2bN1ed\nOnX07LPPaufOnc77IyMjFRAQoD179ui5555TnTp19NRTT2nv3r3au3evnn76adWtW1edOnXSqVOn\nXJZ/5coV9evXT3Xq1FHz5s21aNEi531ppyosXrxYzZs318MPP6x9+/ZJknbt2uVcVtOmTRUeHq4b\nN25kua4HDhzQ888/r7p166pNmzY6cuRIpppTp06pX79+Cg4OVv369fXqq6/q8uXLHsdM6/Ff//qX\nXnzxRdWtW1ctWrTQxo0bdeLECXXq1El169bV008/rYMHDzofl5KSohkzZuh//ud/FBQUpAYNGmjA\ngAE6d+6cs6Z58+aaMmWKOnTooPr162vRokWZToVISEjQ+PHj1axZMwUFBalx48YaPny44uLinDXJ\nyckaP368mjRpopCQEL3++ut699131bx5c5d1+eijj9SqVSsFBQXpySef1Lp161zu37Ztm9q3b6+6\ndeuqSZMmeu2113T16lWP22bEiBHq3bu3FixYoIceekj169fXsGHDXB5jjNHixYvVpk0b1a5dW8HB\nwXrppZf0/fffO2u6dOmiUaNGqUePHgoJCdGkSZPcLu/69euaMmWKHn74YYWEhGjixIlunxMfffSR\n2rVrpyeeeCLTeqbtz/Xr1+uFF15QnTp11Lp160zbIjo6WgMHDlTjxo0VFBSk5s2ba/bs2c6/7Kcd\nE8uXL9cjjzyiRx99VCNGjFBERISOHz+ugIAARUZGSpIuXbqkv//972rYsKGCg4PVp08fxcTEOJc1\nc+ZMtW/fXmvWrFHLli1Vp04dvfjii/r555+1fPlyPfbYYwoNDdUrr7yi3377zfm4xMREjRs3Tg89\n9JDq1KmjLl26uDznV69erUaNGmn37t1q27atgoKC1Lp1a23atMm5Dl27dpUkPfvssxoxYoSk34+j\nzp07Kzg4WA0bNtTAgQN15swZj88DAEA+YgAAsMHhcJjQ0FAzduxY8/XXX5vw8HDjcDjM0qVLjTHG\n3Lhxw3Ts2NE0bNjQLFu2zGzdutX87W9/M4GBgWb79u3GGGP27NljHA6HeeSRR8zy5cvNtm3bzBNP\nPGEefvhh07JlSxMREWG+/PJL07BhQ9O9e3eXZQcGBppXX33VbN++3YSFhRmHw2FWrlxpjDEmJibG\nOBwOExwcbNauXWsiIiJMcnKy+frrr01gYKAZPHiw2bZtm1m0aJGpW7euGT16tMf1jImJMfXq1TPd\nunUzW7duNQsXLjQhISHG4XCY9evXG2OMuXjxonnooYdM27ZtzcaNG82XX35pHn/8cfP000+b5ORk\nj+M6HA7TsGFDM2/ePLNr1y7TqVMnU69ePdOqVSuzZMkS89VXX5kWLVqYVq1aOR83ZswY06BBA/PJ\nJ5+YyMhIs2TJEhMSEmIGDBjgrGnWrJmpWbOmmTlzptm8ebM5efKkmTFjhqlXr56z5uWXXzbNmjUz\nX3zxhdmzZ4+ZO3euqVmzppk4caKzZujQoSY4ONgsWbLEbN682bzwwgsmKCjINGvWzFkzc+ZMU7Nm\nTTNt2jSzY8cOM378eBMQEGDWrVtnjDHm9OnTJigoyIwbN87s2bPHREREmEaNGpkhQ4Z43ObDhw83\noaGhpkWLFmbdunUmIiLCNG7c2HTs2NFZM3/+fBMUFGQWLVpkIiMjzapVq8wjjzxi2rVr56x54YUX\nTM2aNc2bb75pduzYYQ4cOOB2eWPGjDF16tQxCxcuNFu2bDFdu3Y1tWrVMk8++aTl9Uzbn6GhoWbc\nuHFm27Zt5pVXXjEBAQFmx44dxhhjEhISzMMPP2y6dOlitm7danbu3GlGjBhhHA6H2bRpkzHmv8fE\nn//8Z7Np0yYTERFhTp06ZXr16mVatGhhvv32WxMfH29+++0307p1a9O8eXPz2WefmY0bN5pnnnnG\nNG3a1Fy9etUYY5z7vHXr1mbjxo3ms88+cz6/nn32WbN582Yzd+5cExAQYObMmWOMMSY1NdV07drV\nNGrUyKxYscJs3rzZdO/e3YSEhJhTp04ZY4xZtWqVqVWrlnnsscfMihUrzM6dO02nTp1M7dq1zZUr\nV0x8fLxZsmSJcTgcZtWqVebUqVMmMTHRNGzY0AwZMsR8/fXXZsOGDaZFixamQ4cOHp8HAID8g2AB\nAGCLw+EwPXv2dLnt6aefNr179zbGGLNp0ybjcDicIUKaDh06OD/8pX2Imjt3rvP+ZcuWGYfDYSIi\nIpy3TZs2zYSGhrosu1OnTi7jDho0yLRo0cIY898PeWPGjMm07PQfTo0xJiIiwtSoUcPExMS4Xc8J\nEyaYhg0bmsTEROdtCxYscAkWpkyZYkJDQ82lS5ecNf/5z39MYGCgy3qkl9bjm2++6bxt+/btxuFw\nmJkzZzpvW7lypXE4HCY2Nta5np988onLWOPGjTMNGzZ0/tysWTOXD8XGGJdgISkpybz00ktm27Zt\nLjV9+vRx7pvo6GjnB8M0iYmJpkmTJs5gITY21tSuXdu8++67LuO89tprzn2xbt0643A4zIULF5z3\nb9y40SxcuNDtdjHm92AhICDAHD9+3Hnbli1bjMPhMJGRkc51fu+991wet3DhQuNwOExCQoIx5vdg\noUGDBubatWsel3XlyhUTGBjo8hxMSkoyTZo0cW5DK+uZtj8HDx7sUvPMM8+YF154wRhjzKFDh8zz\nzz/v8jy5ceOGqV+/vgkLCzPG/PeYmD9/fqZtkn6fLlu2zAQGBpoTJ044b4uPjzf169d3Pn9mzJhh\nHA6H2b9/v7NmyJAhxuFwmNOnTztve/75503fvn2NMf99Du7atct5f0pKimnVqpUZMWKEMeb3YMHh\ncJi1a9c6a44ePWocDofZsGGDy3ocPHjQGGPMgQMHjMPhMPv27XM+JjIy0oSHh5sbN24YAED+xqkQ\nAADb6tat6/Jz+fLllZiYKEn65ptvVKxYMf35z392qWndurW+++47JSQkOG+rU6eO8/9ly5aVJAUF\nBTlvK1WqlOLj413GadmypcvPzZo1U0xMjK5cueK8rWrVqs7///bbbzp48KCaNWum69evO/81bdpU\nqampzunlGe3bt08NGjRQkSJFnLe1atXKpSYyMlL16tVTiRIlnOP6+/uratWq2r17t9txs1r32rVr\nO2+75557JMl5isL06dP17LPP6sKFC9q9e7eWLl2qffv26dq1ay7jpl/3jAoXLqwFCxaoadOmOn36\ntHbu3KmFCxfq5MmTSklJkfT7/pOkxx9/3Pm4IkWK6NFHH3X+vH//fiUnJ+uxxx7LtE1jYmIUExOj\noKAgFSpUSM8995wmTZqkyMhINW/eXC+++GKW2yUgIEDVqlVz/vzoo4/Kx8dHe/fulSS98cYb6tu3\nry5fvqy9e/dq5cqV2rx5syS5bIsHHnhAPj4+Hpdz4MAB3bhxQ02bNnXZPtldzzRPPvmky/jNmzfX\nt99+q9TUVAUFBenjjz9W8eLFdeLECf3rX//SrFmzdP369Uz7L/26uxMZGalKlSqpUqVKzn58fX0V\nGhqqPXv2OOu8vLxcjqUyZcqodOnSqlixovO29MdXZGSkihQpogYNGjjHlaRHHnnEZVxJqlevnvP/\nadfvSH9KRXoPPvigSpUqpT59+mjs2LHatm2b6tWrp4EDB6pAAd6OAkB+x8UbAQC2pf+wLUkFChRw\nniseFxfn/KCcXtptv/76q/O2YsWKZarz9fXNctkZxy5durQk6eeff3aOV6ZMGef9cXFxSk1N1dSp\nUzV16tRM4128eNHtcuLi4lSjRg2X2+69916Xn69evaoDBw6oVq1amR6fsTaj7K77vn37NHr0aH3/\n/fcqXry4AgMDVbhw4Ux16dfdnU2bNmnixImKiYnRPffco6CgIPn6+io1NVXS79ew8PHxUYkSJVwe\nl367p13zoGPHjm6XcfHiRYWEhGjRokWaN2+elixZogULFujee+/VW2+9lSkcSi/jdvPy8lKpUqUU\nGxsrSTp58qRGjRqlqKgoFSlSRDVq1HBuS5Pumwhuth3SApu0AMfuepYrV85t36VLl1ZKSooSExPl\n5+enOXPmaP78+YqPj1fFihUVHBwsb2/vTN+ekPZ89uTq1auKjo52+5yrXLmy8/9FihRRwYIFXe7P\neNxmHPe3335zCSPSZAxo0j9P08KBtOdPRn5+flqyZIlmz56tiIgILV26VCVKlNCQIUPUqVMnj/0A\nAPIHggUAwG1RsmRJ/fLLL5luT/sAX6pUqVsaP+0DZppLly45x037q3t6aR86+/btqxYtWmS6P+2D\nYUalSpVyjp0m/awI6fcPTU2bNtXAgQM9LjcnxMfHq0+fPgoJCdHMmTNVqVIlSdLkyZN17Ngxy+P8\n9NNPGjRokNq1a6clS5Y4/9o8aNAgnTx5UtLv2yMlJUVxcXEu4UL6C1IWL15ckjR79myVL18+03Kq\nVKkiSQoNDdXcuXP122+/affu3Zo/f74GDRqkLVu2uH2cpEwXd0xNTdWVK1dUpkwZpaamqm/fvipV\nqpS++OILVatWTQUKFNDSpUtdLg5qRdrz8PLlyy69pF++lfVMq8/Y96VLl1S4cGEVK1ZMa9as0fTp\n0/XWW2/pqaeeco7bpEmTbPWc1lONGjU0fvz4TPcVKlQo2+OlH7dMmTKaO3eu7TE8qV69uqZPn65r\n164pKipKixcv1pgxY1SrVq1Ms58AAPkLc88AALdFaGiofv31V+3YscPl9vXr16tWrVpu/8qeHRnH\n/ec//6nKlSt7/KDq5+enGjVqKCYmRrVr13b+8/Hx0bvvvqvz58+7fVyjRo0UGRnp8m0J27dvd6kJ\nDQ1VdHS0AgICnOM6HA7NmjVLUVFRt7Se6UVHRys2NlbdunVzhgqpqan6+uuvM/3FOytHjhxRSkqK\nXn75ZWeokJiYqKioKOc4ISEhKlCggPP0Aun3UwzSb/e6devKx8dHly5dctmmx48f1+zZsyVJn3zy\niVq0aKGUlBQVKVJEzZs31+DBg3Xjxg1duHDBY4/Hjh1z2Sdbt27V9evX1ahRI12+fFmnTp1Shw4d\n5HA4nH8tz/icsCI4OFiFChXSxo0bnbddv35du3btytZ6ptmyZYvLz5s2bVLDhg3l5eWlb7/9VhUq\nVNDzzz/vDBW+++47Xb58+ab7L+PpAiEhITp9+rQqVqzo7CcoKEiLFi3S1q1bs70d0oSGhury5csq\nWrSoy7p+8cUX+vzzzy2Pk3GWxPbt29WkSRNdvnxZhQoVUpMmTTRq1ChJ0tmzZ233CwDIG5ixAAC4\nLR577DHVrVtXr776qoYMGSJ/f3+tXr1aBw4c0Jw5c255/N27d2vSpElq2rSpvvrqK23evFnTpk3L\n8jEDBw5U//795efnp5YtW+rKlSuaPn26ChQoIIfD4fYx3bp104oVK9SrVy/16dNH58+f16xZs1xq\nXnrpJX322Wfq2bOnunbtKh8fHy1YsED79+/X4MGDb3ld0zz44IMqVqyY3nvvPaWmpiopKUkff/yx\njh07Ji8vLxlj5OXlddNxAgMDVbBgQb3zzjt6/vnndeXKFS1YsEC//PKL86/dlSpVUps2bTR+/Hgl\nJiaqYsWK+uijj3Tx4kXdd999kn6frt+lSxeFhYUpNjZWderU0bFjxzRt2jS1aNFCfn5+ql+/vi5e\nvKhBgwapU6dOSklJ0fvvv6/7779fgYGBHnu8fv26+vTpowEDBig2NlZTpkxxPqck6b777tPixYtV\ntmxZFShQQGvWrHF+oPZ0nr87fn5+6tGjhz744AMVLlxYNWvW1LJly/TLL7/ogQcesLyeaTMVPvnk\nE5UuXVrBwcFas2aNvv/+ey1ZskTS79fOWL58uWbNmqWGDRvq5MmTmj17try8vJSUlJRlnyVKlND5\n8+e1a9cuBQUF6dlnn9U//vEPde/eXS+//LJKlSqlFStWaOPGjfrrX/9qef0zatasmWrXrq2XX35Z\nAwYMkL+/vzZu3KilS5dqzJgxlsdJC062bdumokWLqk6dOjLGaMCAAerVq5d8fHy0ePFilShRQo0a\nNbLdLwAgbyBYAADcFgULFtT8+fM1ZcoUTZs2Tb/99psCAwM1b948lwvl2TVkyBDt2LFDS5Yskb+/\nv6ZMmaLWrVtn+ZgWLVrovffe0+zZs7V69Wr5+fnpoYce0iuvvOLxvPMyZcpoyZIlevvttzV48GBV\nqFBBY8aMUf/+/Z019913nz7++GO98847evXVV+Xl5aVatWpp4cKFWX54zq7ixYtr5syZmjx5svr2\n7at77rlH9evXV3h4uAYOHKgDBw64XFDPkypVqmjSpEmaNWuWXn75Zd17771q2rSpnnnmGY0dO1YX\nLlxQ+fLlNXr0aPn6+mr69Om6fv26nnrqKf3lL3/RiRMnnGO9+uqrKl26tFauXKkZM2aoXLly6tat\nmwYMGOBc1pw5czRjxgznqSKNGjXSlClTsryoYrVq1fTEE09o5MiR8vLyUps2bfTKK6847585c6bG\njx+vwYMHy8/PT7Vr19bChQv14osvav/+/S4XJ7yZQYMGydfXVx9//LHi4uLUqlUrdejQweVihTdb\nzzSDBw/WV199pfnz58vhcGj+/PkKDg6WJLVv314//vijli9frvnz56tixYrq0aOHTp48edOZLf/7\nv/+rLVu2qHfv3po8ebJat26tpUuXavLkyRo9erSuXbum6tWr67333nO58GR2FSxYUB9++KGmTJmi\nd955RwkJCapUqZImTpyo9u3bWx6nevXqatu2rebOnavDhw87ry0xdepU/f3vf1dKSorq1KmjhQsX\n3vR6EgCAvM/LZGfuJAAA+EO4fPmydu3apWbNmsnPz895e8eOHVW2bNlMszZy0ogRI3T48GF9+eWX\nt20ZOe306dNq0aKFwsPD9Ze//CW32wEA4I5ixgIAAMjE19dXY8aM0YYNG9SxY0d5e3tr/fr12r9/\nvxYuXJjb7QEAgDyEizcCAIBMihYtqgULFigxMVFDhw5V37599f3332vOnDm2vsUAAADcvTgVAgAA\nAAAA2MaMBQAAAAAAYFueusZCTn7XNwAAAAAAyFmhoaGZbzR5yN69ezPdduTIEUuPzcm63Fim1Tp6\ns1dHb/bq6M1eHb3Zq6M3e3V5uTerdfRmr47e7NXRm706erNXR2/26ujNXt2dWKa7z+zGGMOpEAAA\nAAAAwDaCBQAAAAAAYBvBAgAAAAAAsI1gAQAAAAAA2EawAAAAAAAAbCNYAAAAAAAAthEsAAAAAAAA\n2wgWAAAAAACAbQQLAAAAAADANoIFAAAAAABgG8ECAAAAAACwjWABAAAAAADYRrAAAAAAAABsI1gA\nAAAAAAC2eed2A55UHrE23U/RkqSfwp7MnWYAAAAAAIBbzFgAAAAAAAC2ESwAAAAAAADbCBYAAAAA\nAIBtBAsAAAAAAMA2ggUAAAAAAGAbwQIAAAAAALCNYAEAAAAAANhGsAAAAAAAAGwjWAAAAAAAALYR\nLAAAAAAAANsIFgAAAAAAgG0ECwAAAAAAwDaCBQAAAAAAYBvBAgAAAAAAsI1gAQAAAAAA2EawAAAA\nAAAAbCNYAAAAAAAAthEsAAAAAAAA2wgWAAAAAACAbQQLAAAAAADANoIFAAAAAABgG8ECAAAAAACw\njWABAAAAAADYRrAAAAAAAABs87ZSdOrUKQ0aNEhr1qzR/PnzdebMGcXHx2vkyJFKSUlRWFiYSpYs\nqerVq6tz586WagAAAAAAQP5302Dh4sWL+uSTT1SkSBElJydr7969mjNnjvbs2aOVK1cqOTlZXbp0\nUUhIiHr16qW2bdvetKZDhw7y8fG5E+sHAAAAAABuIy9jjLFS2KNHD02YMEHh4eGaMGGCfvrpJ330\n0UdKSUlRv3795O/vr2HDhmnYsGGaNWtWljWvv/66SpcunWkZUVFRKlq0qCTpicXRme5f3+1Bj/0l\nJSXJ19f3puthpS4nx6K3vFFHb/RGb/RGb3m3jt7ojd7ojd7oLbeXSW/W6hITExUaGpq52FjUvXt3\nk5KSYvr27WuMMWb37t3m/fffN7Nnzzb79u0zxhjTo0cPyzXu7N271/n/SsO/zPQvK0eOHLG0Hlbq\ncnKsnK6jN3t19Gavjt7s1dGbvTp6s1eXl3uzWkdv9urozV4dvdmrozd7dfRmr47e7NXdiWWm/8ye\nnqVrLKTx9vZWo0aNNHr0aMXFxWnMmDFKSkpSWFiYIiIi1KpVK8s1AAAAAAAg/7P8Cf/DDz+UJHXr\n1s3l9uLFi2vq1Kkut1mpAQAAAAAA+R9fNwkAAAAAAGwjWAAAAAAAALYRLAAAAAAAANsIFgAAAAAA\ngG0ECwAAAAAAwDaCBQAAAAAAYBvBAgAAAAAAsI1gAQAAAAAA2EawAAAAAAAAbCNYAAAAAAAAthEs\nAAAAAAAA2wgWAAAAAACAbQQLAAAAAADANoIFAAAAAABgG8ECAAAAAACwjWABAAAAAADYRrAAAAAA\nAABsI1gAAAAAAAC2ESwAAAAAAADbCBYAAAAAAIBtBAsAAAAAAMA2ggUAAAAAAGCbd243cCsqj1ib\n4ZZo/RT2ZK70AgAAAADAHxEzFgAAAAAAgG0ECwAAAAAAwDaCBQAAAAAAYBvBAgAAAAAAsI1gAQAA\nAAAA2EawAAAAAAAAbCNYAAAAAAAAthEsAAAAAAAA2wgWAAAAAACAbQQLAAAAAADANoIFAAAAAABg\nG8ECAAAAAACwjWABAAAAAADYRrAAAAAAAABsI1gAAAAAAAC2ESwAAAAAAADbCBYAAAAAAIBtBAsA\nAAAAAMA2ggUAAAAAAGAbwQIAAAAAALCNYAEAAAAAANhGsAAAAAAAAGwjWAAAAAAAALYRLAAAAAAA\nANsIFgAAAAAAgG0ECwAAAAAAwDaCBQAAAAAAYBvBAgAAAAAAsM07uw84f/68wsPDVbJkSRljdO+9\n9+rMmTOKj4/XyJEjlZKSorCwMJUsWVLVq1dX586dNX/+fJea0qVL3451AQAAAAAAd5iXMcZk5wFf\nf/213njjDQUFBalmzZrav3+/5syZoz179mj//v1KTk7Wn//8Z4WEhKhXr16aNm2aXnnlFZeaPn36\nuB07KipKRYsWlSQ9sTg60/3ruz3o8rOVmoySkpLk6+t7yzW5VUdv9EZv9EZv9Jbby8zpOnqjN3qj\nN3qjt9xeJr1Zq0tMTFRoaGjmYpNNJ0+eNP/5z39MamqqefHFF82IESOMMcb8+OOPZsyYMeaNN94w\nZ8+eNcYYM3ToUHPmzBnz2muvudR4snfvXuf/Kw3/MtO/jKzUZHTkyJEcqcmtOnqzV0dv9urozV4d\nvdmrozd7dXm5N6t19Gavjt7s1dGbvTp6s1dHb/bq6M1e3Z1YZvrP7Oll+xoLS5cuVXx8vLy8vFS8\neHGdOXNG0u+nSJQrV07+/v46f/68JCk2NlblypXT1atXXWoAAAAAAMDdIdvXWGjfvr1mzJghf39/\n1alTRz4+Pho9erTi4uI0ZswYJSUlKSwsTBEREWrVqpW8vb3VqFEjlxoAAAAAAHB3yHawUKtWLc2Z\nM8fj/cWLF9fUqVNdbuvWrVv2OwMAAAAAAHkeXzcJAAAAAABsI1gAAAAAAAC2ESwAAAAAAADbsn2N\nhfyo8oi1GW6J1k9hT+ZKLwAAAAAA3E2YsQAAAAAAAGwjWAAAAAAAALYRLAAAAAAAANsIFgAAAAAA\ngG0ECwAAAAAAwDaCBQAAAAAAYBvBAgAAAAAAsI1gAQAAAAAA2EawAAAAAAAAbCNYAAAAAAAAthEs\nAAAAAAAA2wgWAAAAAACAbQQLAAAAAADANoIFAAAAAABgG8ECAAAAAACwjWABAAAAAADYRrAAAAAA\nAABsI1gAAAAAAAC2ESwAAAAAAADbCBYAAAAAAIBtBAsAAAAAAMA2ggUAAAAAAGAbwQIAAAAAALCN\nYAEAAAAAANhGsAAAAAAAAGzzzu0G8pLKI9am+ylakvRT2JO50wwAAAAAAPkAMxYAAAAAAIBtBAsA\nAAAAAMA2ggUAAAAAAGAbwQIAAAAAALCNYAEAAAAAANhGsAAAAAAAAGwjWAAAAAAAALYRLAAAAAAA\nANsIFgAAAAAAgG0ECwAAAAAAwDaCBQAAAAAAYBvBAgAAAAAAsI1gAQAAAAAA2EawAAAAAAAAbCNY\nAAAAAAAAthEsAAAAAAAA2wgWAAAAAACAbQQLAAAAAADANoIFAAAAAABgG8ECAAAAAACwzTu7Dzh9\n+rTee+89lSlTRsWKFVNcXJyuXbumhIQEjR07VtHR0Zo3b558fX3VrFkztWzZUpMnT3apKVSo0O1Y\nlzum8oi16X6KliT9FPZk7jQDAAAAAEAuyvaMhYULF6pChQq6ePGiypQpo4SEBL3xxhtq0KCB/vnP\nf2rBggUaPny4JkyYoGXLlik+ssgBAAAgAElEQVQmJiZTDQAAAAAAuDt4GWNMdh7Qs2dPDR06VNWr\nV1f37t3VuHFj9e/fX7t27dKxY8e0e/duzZ8/X5LUo0cP9e/fX7t373ap6dGjh9uxo6KiVLRoUUnS\nE4ujM92/vtuDLj9bqcnNujRJSUny9fX1eH926nJyLHrLG3X0Rm/0Rm93a29W6+iN3uiN3uiN3nJ7\nmfRmrS4xMVGhoaGZi002jRgxwpw6dcoYY8wLL7xgRo0aZYwx5tNPPzWff/65GTlypLlw4YIxxpiX\nXnrJnD17NlONJ3v37nX+v9LwLzP9y8hKTW7WpTly5EiW92enLifHyuk6erNXR2/26ujNXh292auj\nt9tbR2/26ujNXh292aujN3t19Gavjt7s1d2JZab/zJ5etq+x0LNnT02dOlVlypTRc889pxMnTmj8\n+PFKSEjQuHHjFBgYqEmTJsnHx0ddunSRv7+/SpUq5VIDAAAAAADuDtkOFqpWrarw8HCP91erVk1T\np051uW3o0KHZ7wwAAAAAAOR5fN0kAAAAAACwjWABAAAAAADYRrAAAAAAAABsI1gAAAAAAAC2ESwA\nAAAAAADbsv2tELCm8oi1GW6J1k9hT+ZKLwAAAAAA3C4EC7mMAAIAAAAAkJ9xKgQAAAAAALCNYAEA\nAAAAANhGsAAAAAAAAGzjGgv5hOu1GKIliWsxAAAAAAByHTMWAAAAAACAbQQLAAAAAADANoIFAAAA\nAABgG8ECAAAAAACwjWABAAAAAADYRrAAAAAAAABsI1gAAAAAAAC2eed2A8hZlUesTfdTtCTpp7An\nc6cZAAAAAMBdjxkLAAAAAADANoIFAAAAAABgG8ECAAAAAACwjWABAAAAAADYRrAAAAAAAABsI1gA\nAAAAAAC2ESwAAAAAAADbvHO7AeSOyiPWpvspWj+FPXmTGs91AAAAAIA/LmYsAAAAAAAA25ixgFuW\ncfaDJGY2AAAAAMAfBDMWAAAAAACAbQQLAAAAAADANk6FwB3DKRMAAAAAcPdhxgIAAAAAALCNYAEA\nAAAAANhGsAAAAAAAAGwjWAAAAAAAALZx8UbkORkv8sgFHgEAAAAg72LGAgAAAAAAsI1gAQAAAAAA\n2EawAAAAAAAAbOMaC8iXXK/DIHEtBgAAAADIHcxYAAAAAAAAtjFjAXe1jN8wIYmZDQAAAACQgwgW\nAFkPIPgqTAAAAABwxakQAAAAAADANoIFAAAAAABgG6dCADmMb6wAAAAA8EdCsADkEi4sCQAAAOBu\nwKkQAAAAAADANmYsAHkcMxsAAAAA5GXMWAAAAAAAALbZnrEwbNgwNW/eXOfOndOZM2cUHx+vkSNH\nKiUlRWFhYSpZsqSqV6+uzp07a/78+S41pUuXzsl1AAAAAAAAucRWsLBw4UIVK1ZMkrR3717NmTNH\ne/bs0cqVK5WcnKwuXbooJCREvXr1Utu2bTPV9OnTJ0dXAgAAAAAA5I5sBwubN29W8eLFVa9ePaWm\npjpnH1SoUEE///yzUlJS5O/vL0kqUaKE4uLiMtVk5ejRo7buy05NbtXRm706esteXVJSkqVxrNTl\n5Fj0ljfq6I3e8mIdvdEbvdEbvdFbbi+T3uzXSTaChc8//1wlSpTQjz/+KEnOmQvnz59XuXLllJqa\nqvPnz8vf31+xsbEqV66crl696lKTlcDAwP//X3QW9ykbNblVl5d7y1xHb/m/N9eLPN78Ao9Hjx71\nsLzs1eRWHb3RG73l/d6s1tEbvdEbvdEbveX2MunNWl1UVJTb2mwHC9OnT5ckrV69WoULF9Yvv/yi\n0aNHKy4uTmPGjFFSUpLCwsIUERGhVq1aydvbW40aNXKpAQAAAAAAdwfbF29s376929uLFy+uqVOn\nutzWrVs3u4sBAAAAAAB5GF83CQAAAAAAbCNYAAAAAAAAthEsAAAAAAAA2wgWAAAAAACAbQQLAAAA\nAADANoIFAAAAAABgG8ECAAAAAACwjWABAAAAAADYRrAAAAAAAABsI1gAAAAAAAC2ESwAAAAAAADb\nCBYAAAAAAIBtBAsAAAAAAMA2ggUAAAAAAGAbwQIAAAAAALCNYAEAAAAAANhGsAAAAAAAAGzzzu0G\nANw5lUeszXBLtH4Ke/ImddGS5LYOAAAAAJixAAAAAAAAbCNYAAAAAAAAtnEqBADbOGUCAAAAADMW\nAAAAAACAbcxYAHDbZZzZwKwGAAAA4O7BjAUAAAAAAGAbMxYA5Al8FSYAAACQPxEsALgrEUAAAAAA\ndwanQgAAAAAAANsIFgAAAAAAgG0ECwAAAAAAwDausQDgD42vwgQAAABuDcECANwE31gBAAAAeEaw\nAAB3GAEEAAAA7iZcYwEAAAAAANhGsAAAAAAAAGwjWAAAAAAAALZxjQUAyKOsfGOF1QtLAgAAALcL\nMxYAAAAAAIBtzFgAgD8AvokCAAAAtwszFgAAAAAAgG3MWAAAODGzAQAAANnFjAUAAAAAAGAbMxYA\nANnGN1YAAAAgDcECACBXcfoFAABA/sapEAAAAAAAwDaCBQAAAAAAYBvBAgAAAAAAsI1gAQAAAAAA\n2MbFGwEA+YLVizzm5DdWcGFJAACAm2PGAgAAAAAAsI0ZCwAA3KLcmE0BAACQVxAsAACQD9kNM6zW\nEWYAAACrsh0s7Nu3Tx999JGKFi2q++67T4mJibp27ZoSEhI0duxYRUdHa968efL19VWzZs3UsmVL\nTZ482aWmUKFCt2NdAAAAAADAHZbtYCEuLk7jx4+Xn5+funfvrvvvv19jx47VqlWr9M9//lM7duzQ\n8OHDVb58eXXv3l01atRwBgppNW3atLkd6wIAAAAAAO6wbAcLjz32mIwxev/99xUSEiIvLy9JUoUK\nFXTs2DFdvnxZ5cuXlyR5eXnp4sWLzp/TarJy9OhRW/dlpya36ujNXh292aujN3t19Gavjt7s1eXn\n3pKSkiyNY6UuJ8eit7xRR2/0Rm/0Rm9/nN4kG8FCQkKCJkyYoDZt2qhy5cp6//33JUnnz59XuXLl\nVL58ef38888qV66cjDHy9/fXhQsXXGqyEhgY+P//i87iPmWjJrfq8nJvmevojd7ojd7ojd5uVpP5\nwpI3//rNo0ePelhe9mpyq47e6I3e6I3e6C23l5mXeouKinJbm+1g4e2339apU6e0atUqFSxYUOXL\nl9f48eOVkJCgcePGKTAwUJMmTZKPj4+6dOkif39/lSpVyqUGAADcvfhmCwAA/liyHSxMnDgxy/ur\nVaumqVOnutw2dOjQ7C4GAAAAAADkA3zdJAAAyBVWvwoTAADkbQVyuwEAAAAAAJB/ESwAAAAAAADb\nCBYAAAAAAIBtBAsAAAAAAMA2Lt4IAADytIwXeeQCjwAA5C0ECwAAIN9zDR8kAggAAO4cggUAAPCH\nQQABAEDO4xoLAAAAAADANmYsAAAAZJDxug6SmNkAAIAHBAsAAAA2cWFJAAA4FQIAAAAAANwCZiwA\nAADcRlwwEgBwtyNYAAAAyAMIIAAA+RXBAgAAQD7ChSUBAHkNwQIAAMBdyMqFJZklAQDICQQLAAAA\nyJLVAILZFADwx0SwAAAAgDuK2RQAcHchWAAAAEC+xWwKAMh9BAsAAADA/8vJ2RTMugDwR0GwAAAA\nAOQiq7MpCD0A5FUECwAAAADc4hQSAFYUyO0GAAAAAABA/kWwAAAAAAAAbONUCAAAAAC3xMr1HwDc\nvQgWAAAAANx2XFgSuHtxKgQAAAAAALCNYAEAAAAAANjGqRAAAAAA8h2+ChPIO5ixAAAAAAAAbGPG\nAgAAAIC7Ft9YAdx+BAsAAAAA/tBy+hsrrJ6mYSX04FsykB9wKgQAAAAAALCNGQsAAAAAkM/l9GwK\nIDsIFgAAAAAALnLyNA1O57j7ESwAAAAAAHIdsynyL66xAAAAAAAAbGPGAgAAAAAg3+A0jbyHYAEA\nAAAAgCxwmkbWCBYAAAAAAMgBf9QAgmssAAAAAAAA2wgWAAAAAACAbZwKAQAAAADAHXI3XjCSGQsA\nAAAAAMA2ggUAAAAAAGAbp0IAAAAAAJDH5KdTJpixAAAAAAAAbCNYAAAAAAAAthEsAAAAAAAA27jG\nAgAAAAAA+ZTrtRiiJemOX4uBGQsAAAAAAMC2OzZj4cKFCwoLC1PJkiVVvXp1de7c+U4tGgAAAACA\nP7TbObPhjgULy5cvV5cuXRQSEqJevXqpQ4cO8vHxuVOLBwAAAAAAWbD7FZdexhhze1pyNWrUKPXr\n10/+/v4aNmyYXn/9dZUuXdqlJioq6k60AgAAAAAAbAgNDc102x2bseDv76/z58/L399fsbGxKlGi\nRKYadw0CAAAAAIC8647NWLh48aLCwsJUrFgxBQUFqUOHDndisQAAAAAA4Da6Y8ECAAAAAAC4+/B1\nkwAAAAAAwDaCBQAAAAAAYBvBAnAb3LhxQykpKbndBgAAAADcdgQLQA6aNm2atm7dqu7du2vQoEFa\nsWJFbrcE5JobN27o6tWrSk1Nze1WAOQz8+bN07///W917dpV/fr105dffnnblzl79mz16NFDa9as\nkSS99tprtzxmcnKyLl68qOvXr9/SOM2bN9exY8duuR8gv4iPj8+RcZKTk/Xrr79aqo2Njc2RZf5R\nFRw9evTo3G4io2vXrikiIkI7d+7UuXPnVK1aNXl5ebnUxMTEqESJElq3bp2OHDmiKlWqyNvb/bdn\nnj59Whs2bFCVKlXk4+OjzZs3q0qVKtleZlxcnPbu3av7779fXl5e2r9/vypUqGBreZKUkJCgb7/9\nVr6+vgoPD1fZsmV177332q7bvXu3/vSnP7ndBmliY2Pl6+uryMhIxcTEqGLFipnWM6M1a9aoRo0a\nWdbcrO7ixYsqXLiwPv/8c0VFRalq1aoqVKiQS80PP/wgHx8fzZ8/X1u3blXVqlXl5+d30+V6cvDg\nQZUoUUILFizQnj17VK1aNRUpUsT2eGmyWs/PP/9cJ0+e1MyZM/XUU08pIiJCjz76aKY6K/vUyv7M\nTl1627ZtU+XKld3eZ2W7paSkaMOGDdq1a5fOnj2rqlWrqkCBzDllXFyc5syZo3Xr1umHH35QrVq1\n5OPjY3sdrIxn5bkmSVeuXNFHH32kDRs26NixYwoICHBbl15W2y0nj3urx6nV57iV18vsHC8xMTEq\nVqyYIiIidOTIEVWuXDnTfli6dKlmz56tyMhIrVq1SklJSapVq5bb8dJ4OrasPt/Sy2pfWWX1NT+7\nsupt1apVqlmz5k3HSE1N1ZkzZ+Tt7a1ly5apXLlyKl68uK1+rB4LVpdp9bi3sl+tHgtW95XVdbCy\nXCvHQRor29jK78DsvG7l5O9Aq+tq9b2UlefHtm3bFBUVpfDwcLVp00YrV65U06ZNM9VZPWas+Pzz\nzxUeHq6tW7fq+vXrOnLkiFq2bGl7vLVr1+qDDz7Qxo0btW7dOkmSw+HIVGdlHQ4dOqSzZ89q48aN\nqlq1qkqWLOm2LqdfQ3Jy++bka4Nk7feu1c8LVp/jVt+rWnkvYvX9vdV1sLo9cupYzs72sPoaHRER\noZkzZ+rMmTNavny5Dh8+rIcffjjb21aSJk2apBMnTuj999/Xjh07dO7cOQUHB2eqW7dunY4fP67j\nx49r+vTp8vHxUfXq1TPVpefp/Yqd95ZZsbp9Z8+erblz58oYoxo1aui1117T448/bnu50u9/HIqL\ni1OhQoVu+lkxTZ6csTBz5kyVLl1a8fHxSklJkbvs47333tPUqVN19epV+fj4aPz48R7HmzRpkkqV\nKqXXX39dycnJ2rBhg61ljho1Sj/88INGjhyp1NRUffzxx7aXJ0kTJkzQ4cOH1bt3b7Vv314ffPDB\nLdWNGjVK06ZN02+//eZhS0hTp07VzJkzFRkZqZMnT2rChAlu69q3b6+ePXuqZ8+eCg8PV69evW6p\nbvz48erbt6+uXbsmf39/jRs3LlPNnDlzNGDAANWrV09t27bVu+++63as+fPn64MPPnD5586yZcs0\ndepUBQQE6JFHHtE777xjezyr63n06FFdvHhRly5d0tmzZ3Xp0iW3dVb2qZX9mZ26Pn36qFevXurZ\ns6fGjBnjcR2sbLc333xTycnJCggIUHJyst544w23Y82aNUt/+ctfVLFiRQUHB+vNN9+8pXWwMp6V\n55okTZw4UfXq1VOXLl1Ut25dvfXWW27rrG63nDzurR6nVp/jVl4vrY4lSR988IHz/jJlymjixImZ\nak6ePKl58+ZpypQpmjdvng4fPux2LCvHltXnm9V9tW7dukz/3LH6mt+uXTt17tzZuWx3y7Xa26JF\ni/Tmm2/q3Llzbu9PM3bsWC1YsEC9e/fW/fff73F/WVlXq8eC1WVaPe6t7Ferx4LVfWV1Haws18px\nkMbKNrbyO9DqvpKsHdNWf59aXVcr76WsPj8uXbqkihUr6sSJE4qJidEvv/zits7qMWNlXX/99Vcl\nJiaqT58++uKLL3T27Fm3Y1l9Dfn222/17rvvqkqVKpozZ452795tex18fHz0yiuvqGvXrlq8eLF6\n9+5teyzJ+rGQk9s3J18bJGu/d61+XrD6HLf6XtXKexGr7++troOV7ZGTx7JkfXtYfY0+fPiwZsyY\nocjISM2YMcPtrAWr7/Mkaf/+/frwww8VHh6uM2fOuK3ZvHmzIiMjlZycrJSUFF27ds1tnZX3K1Zf\no62+hljdvufOndOHH36o8+fPa8+ePbpx44bbOquWLl2qvn37avz48erTp48++eQTS49z/yf+XBYf\nH6/mzZtr586dateunQ4cOOC2LiEhQZ07d5Ykj29aJal06dJq1aqVatSo4fGF08oyS5UqpZdeekmH\nDh3SzJkzb2l5klS4cGH16NFDxYoVU0BAgMf02WpdgwYN9Pjjj2vIkCGqWbOm6tatm+mv5SVKlFBc\nXJxef/11SVJYWJjbsd5++22tWrVKQ4YM0eTJkzVmzJhbqrv//vt16dIldejQQZL09ddfZ6qpUKGC\njDHOZNLX19ftWKmpqUpKSlLjxo3d3p/GGKPU1FQ99thjkn7/y4Hd8ayu5/vvv69///vfio+P19Gj\nRz1+eLCyT63sz+zUderUSfv371f//v01duxYj+tgZbv5+fmpffv2zp+PHj3qdqykpCQFBARo6dKl\n6t27t8eprFbXwcp4GZ9ru3btcrtMPz8/NWrUSJJUqVIlj0GA1e1m9bj39fW96b7PeJx6+sVv9Tku\nub5eHjp06JbGKlasmG7cuKFnnnlGkrRz585MNVevXtX+/fvl7++v8+fPKyEhwe1YVo4tq883q/sq\nKipKBQoUuOlf4ay+5k+fPl2ffvqphg0b5rHGam9BQUHq3bu3wsPDVaBAAdWqVcu539Lz9vbWG2+8\noVmzZjl/d9ldV6vHgtVlWj3urexXq8eC1X1VsGBBjRo16qbrYGW5Vo6DNFa2sZXfgVb3lWTtmLb6\n+9Tqulp5L2X1+dGvXz8tXLhQU6dO1b333qu//e1vbuusHjNW1rVr16765ptv9Oijj2rkyJF6++23\n3dZZfQ05d+6cvv/+e8XGxur06dOKi4uzvQ5BQUGSpAcffNDjB22rY0nWj+ec3L45+dogWf+9e7Pf\nf5L157jV96pW3otYfX9vdR2sbI+cPJYl69vD6mv0xYsXdeHCBU2YMEFXr17V1atXM9VYfZ8XGxur\nQ4cO6fTp04qPj/cYLEyZMkWLFi1SamqqHnzwQT399NNu66y+X7HyGm31NcTq9k0fir7++useQ9F2\n7dqpaNGiKlq0qIwx8vLychtopf1xKM1bb72l5557LstepTwaLPz6668KCwtTiRIltH79ehUsWDBT\nzZUrV3T69GkdPHhQp0+f1pUrVzyO5+3trW3btunRRx9V48aNNWrUKI/LLF26tMdlJicnKyoqSqGh\noTpy5IhWr17tcXlbtmxRUFCQQkNDPSZppUqV0meffaYWLVpo7969bpeZVvfVV1+pY8eOWdZJUu3a\ntTVnzhwdOXJE+/fvd1uTdsD6+fkpMTHRbU1gYKD69eunsLAw/ec///G4vMDAQPXo0UOTJk3Kch8U\nLFhQ33zzjXbv3q3Nmze7PYepbNmyOnDggHbu3Klly5bJ39/f7Vg9e/bUypUr1bBhQ8XHx3uc/lug\nQAEdOnRIa9euzbK3nj17avny5apSpYruuecet9PL0m+P06dPexzL399fbdu2lSS30+DTlCpVShs3\nblS7du2y3Kfp96enF/W0ulmzZunIkSP67rvv3NY0bdpU999/v8aMGeNxv0v/3W7ffPON9u3b57am\nUKFCeuutt1ShQgVduHDB4y9Db29v/e1vf1Pjxo21aNEilS9fPst1uNm6po0XGBiolStXuh0v/XNt\ny5YtHt/IVaxYUX379lWZMmV05coVj2+G0rbbqFGjlJyc7LH/9K8zDRs29JjulyxZUhs3bnQez56m\n9F+4cEHjxo2Tn5+fx5kcaftq+/btWR6nGV8v3R1/VvZ7mrJly2rPnj3q37+/ihcv7nY/DB8+XCtW\nrNAvv/yi++67z+O5ymnHVlavIVafb1af48OHD9fChQv117/+VampqR6nr1+7ds35mv/dd995fM2v\nVKmSunXr5nF52elN+v25GRYWpkuXLnk8nq9fv67t27drwIAB+u677zw+R9LWtV27dlkur2/fvrrn\nnnt09uxZtWjRwuMyd+zYoQEDBujw4cMel5n+uF+9erXKlSvnti79fo2JiXE7BVhy/Z3laZnJycna\nt2+fQkJCstxXqampzu12+PDhLPfFzZabdhykfTDI6jW/YsWK6tOnj8qWLaurV68633hmHO/AgQPa\nvn27PvzwQ7dTcdO/bl26dEkPPfSQx2V6eXnp4MGD+uabb3T8+HEZYzLV9OzZUytWrFDDhg0VGxvr\n8dgqW7astm/frh49euiee+5RxYoV3dalfy+1bt06t69vac+PRo0a6R//+IfH3wsVK1bM8gN0xtq0\nY8bTH5rS1rVu3bq6fv26ihUrlqkm/TTpYsWKeZwhY+W4kqSXX35Zn376qfr3769z587p73//e5br\nMHr0aF25ckXHjx/PdL+7D/OelC1bVkOHDpW3t7fHD6FpryF9+/bVwYMHs5wxmLZ9L1++7HG89M8l\nT9K/NixevNjjvs/Oe4xt27apcePGCgoK0uTJkzPVpP3+O3TokGJiYjyeQ1+2bFlFRkaqf//+Sk1N\ndXvKSlrd/v37tXPnTn388ce677773Nalfy+yceNGt+F62nvBjh076ptvvvH4XjD97/Do6GiP65Dx\n8467GSHpf39ntZ4Zj2VPvaWNt3btWn322Wd64IEH3NalfYaqV69elp+hhg0bpqtXr6pWrVo6duyY\nevbsmakm42cKT+/zBg0apOjoaKWkpGjVqlUaOHCg2zpJevHFF7Vly5Ysr7GQ/rOAp7qKFSuqR48e\nKl++vC5duqRHHnnEbd3w4cO1aNGim76GpP9stHTpUo+vvVZDUSt/CJFc/zh07tw5j38cyihPBgv+\n/v7y9fXVnj17dOjQIbVq1SpTzQ8//KDw8HA5HA6VKVPGbU2aUaNGOV8wH3/8cbcHUaVKleTn56fN\nmzfr22+/dbujq1SpojNnzig8PFzFihVzJmUZhYSEKCIiQitWrJAxxuMvg2rVqmnTpk1av369jDFq\n06aN27oHHnhAq1ev1o8//qjDhw97PBd906ZNOnbsmGrUqKGaNWu6TcHWrVun8PBw55u4Bv/X3r2H\nRXHdfQD/goHEBTe4CkisghLjBRBYEKpRiNiUVK132jSNPIngJdQHtAZbUi8YSTViTLkLCiyLaav1\nHkAFIyhWAtEFIgRCLNKCiq4XRDbcnfcPnp0s7sxyQN6I5vd5Hp8HmcOZc505c3bO2SlTBOPSvpLj\n5uaGI0eOICsrC7Nnz9YLl5mZiS+++AJNTU04f/48MjMzMWfOHL1wGRkZiIuLw4QJEyCVSjF+/Hi9\nMEOHDoVUKsU333yDBw8eiK5BPnbsGM6ePYvGxka+PEJDQ/XCvfrqq2hpacHx48fR3NwsWl8nT57E\nxYsXce7cOQDA3LlzMXfu3G5hjhw5gpycHDg4OCA7OxuRkZGC52TV3NyM69evIygoCGZmZnBxcdEL\nM3LkSBQVFSE2Nhbm5uaC5Q90zSrn5eUhNTUVZmZmgp/0A10bP8XHx+P999/H6dOnRdM2ZcoU3Lt3\nDyqVCpcvX4atra1eGKlUijFjxuD48eMAIFq27u7u/IzooUOH+BlyobwGBARg3rx5mD9/PtLT0/G7\n3/1OL5ybmxsOHz6Mr7/+WrTPaAeDcXFxkEgkeOONNwTPKZPJ0NbWhtGjR6OxsRH19fWC4T799FO4\nurqitrYW5eXl2L9/P377298Kpq2xsRFZWVk4dOgQ/P39BeMLCQnhf3Z1dYW7u7teGGNjY0yYMAHR\n0dHw8PAQrXupVIo5c+YgLS0NEolEcO0g0DVp09zcjOrqakyZMgW5ubl6YaZPn47p06fj1q1buHDh\ngmAetQICArBgwQJcu3YNlpaWgpOA1tbWBm/iWh9//DGsra1RU1ODqqoqpKSkYNmyZd3CSCQSVFZW\nwsrKCqtWrUJUVJRgXElJSXBxccHVq1dRXl6OjIwMvb4MdK1FdHV1xbJly/g+I5Tfc+fO8W32zTff\nhL29vWg+hg8fbjCfcXFxUKlU+PWvf42HDx8iLCxM8FNwW1tbBAUFwcXFhb++Ca0rt7GxAcdx8Pf3\nh7m5ueg98I033kBcXJzBtKnVari4uKCwsBBSqVT0G20sLS2hUChw9+5d+Pj4iL4uumnTJjQ2NkIq\nlRo876BBg2Bvb48vvvgCHMfB2dlZL8zgwYNx//59+Pj4YOTIkaKD0VGjRiEqKgqLFi3Cm2++Kfpa\n6dmzZ/nJX1tbW9GJ/yFDhsDZ2RmRkZHw8PAQvMap1Wp4eHggPz8fDQ0NBj9tDAgIwNKlS3H//n0M\nGzZM8IH71q1beP311z94n54AABMtSURBVJGWlgaO4wQfWGxsbPg2dODAAQwbNkz0nLrta9KkSYIP\n0idPnsSLL77IX7cWL14seL3RfmpmbGyMW7du8W9BPKqgoABJSUmYNGkSWlpaBOMyNTWFXC5Hbm6u\n6P2vN6ZNm8bXt6H7TGRkJKytrREUFARzc3M4OzvrXWtYKRQKuLq68v1v9uzZgtcaZ2dnvl2LPRDo\nxpmfn8+nTajfs5g2bRrCwsL4STOhdAFd94+Ojg7+Oig2SbV27Vr+Z5lMJjrGMDY2Frxv63JycsKp\nU6eg0WgMjmdPnDiBuLg4tLS0wMbGRnRvGxMTE5SXl0OpVMLMzEzwIdTV1RVvv/02IiMjYWZmBl9f\nX8G4ZDIZOI7DxIkTUVRUJLrZ5rJly/h24+joCAsLC9H8btiwAQkJCZBIJJgxY4be8XHjxqGjowNZ\nWVmiYwuga18OPz8/fPLJJ5BIJKIPq46OjkhJScG3336LsrIyuLm56YWxsbHBnDlzUFdXh6KiIsHx\nONB1fVSpVJg3bx58fHyQn58vGM7a2hp2dnb4/PPPwXGcaH9+8cUXce3aNURHR0MikYiOG3XHnGL7\nmT3//POws7PDzZs3sWDBAigUCtG0aSevWCYpZ86ciZkzZxoMI5PJsGnTJhQWFgoeHzFiBJ/XF154\nAUOHDhUMt2fPHqhUKlhbW2P+/PmiY4IRI0bg97//PRobG9Ha2gq5XC4Yn52dHQ4cOID8/HxYWVnh\ngw8+EAxna2uLd955x2AeAfYPhx41IPdYUKvVqK2thVKpRHJyMqqqqvTCyOVyZGdnY9u2bXj48KHo\nxo1A12sf2nWvgYGBggOJtrY2fPvtt0hNTUVycrLgp/0ajQYFBQVISUlBQkKC6KdrxcXFiI6Oxpgx\nY5CYmCj6Ooru2rvExETRtXdlZWX8Ws/o6GjRWSMvLy9kZGQgPDwctbW1gmG05VZUVGRwEzLteiOO\n4yCXy0UHkNo8vPzyy/jmm28Elzhoz5uVlYUtW7ZAKpUK1pduPpVKpWg+Hy0PsV1jtWmzt7eHUqkU\nLV+VStXjGkjtmi+VSoXCwsLH3qlWu3FNcnIyoqOjBV/P0m6ck5KSgvj4eNE3UIYMGYJTp05BoVAg\nPj5esL8AXXWQkZGBXbt2iU4oAT+Ur3ZSQ6geNBoNLl26hNTUVCiVStG0nTlzBkVFRT2uW6uvr0dy\ncjJu3LhhcG1YcXExkpOTMXbsWNE+o9FocPToUaSmpmL37t2in16VlZUhMTGxx35169YtnDp1Cunp\n6VCpVKLle+bMGVy8eJHPq1j/0l2Pv3LlSsHlMtprYEVFBZRKpeCnV0D3dqTd7EjIjRs3kJaWhvr6\netTW1gpuwqPt821tbeA4TrSutHkIDg5GTEwMNm7cKLrkh1VJSQmUSiW+/PJLwTxo1w4OGjQINTU1\nou2jqakJR44cgUKhgEqlEm2X2jrtqc9MnToVeXl5/DXVUL/pie76x5deekk0D2q1utv6UrF2qdFo\ncPLkSf76INbO5XI5MjMzDd4XjIyMUFFRgZSUFNHrkW4ebty4gfLyctFPsBYuXIj33nvP4J4T2rxW\nVFQgLS0NSqVSsB50225nZ6douWnDaa8hYv1PLpfj9OnTCA8P59crC9FoNLhy5QrKyspEr3FGRkb8\nQ41SqRQtN6CrTN5991188MEHov1etz+Lxaftp9rJn576qfZaExISInhO1rXFxcXFUCqVGDdunMH7\n6c9//nOcOHEC4eHhUKvVgmGMjIxQWlpq8P7XG2fPnmXKA8C23pqF9lrT0/2ZlYWFRb+lrbS0lGlf\nB7VajZycHP46ePXqVcFwK1eu7HEPGYBtr5mysjLExsb2eH3TjhmPHTtm8Ku7jYyMUFVVZbAtaTQa\nZGZmIjU1FQkJCQbHBAkJCXxbF0ubbj7ff/99g9e37OxsKJVK7N69G9XV1XphdPufofuuWq3G6dOn\noVAokJCQIBiXNg/Jycl8+cpkMsFzFhcX8xNdhsZlKSkpqK+vR0lJicFx2a5duzB27Fjs2bNHtL01\nNjaioKCAz8Pdu3cFw7HQvZ8+ePCAeWPBx6Wt+6CgICgUCsG615aHg4ODwWc73fupoXGvbhvp6OgQ\nrS/WvR3u3buHgwcPIiIiAklJSaLt3NTUFM8//zxMTExgbGwsugTjUQPyjYWKigoMHz4ct2/fRltb\nm+AGeCYmJli3bh2qq6uRlpaG2tpaJCYmCsbH8tqHdpOg7777DmZmZoKbBOluJCQWBmBfU8ca7tH1\nRmITGtqNfQyVCWu5sa430uahoaHBYB5YzsuaT5b1V71JG0s9sJ6TFcu6L9b2pu0vd+7cEe0vAFv7\nEMqrUD2w9BeAvR2xrg1jqVPWtLG2N5brUW/yynI9Yq1T1vWDLOXLmn7WPLDSzUNTU5PowJClfbDW\nfX/3GRaseWBtl6zXB5Y89Gc7AtjbB0vfYj0nazjWOmUpX9ZyA9jKhCW+/u6nT+Je35tyY8Gah/48\nL2v/Y9WfaWMdW7JeB1n7M0u43oxnWcaqvRlL9deYoD+vb6xtl7WuWPLwJMZlvckDC9a09TeWumct\nD9Y8sNYX694O27Ztw+LFizFixAjU19dj8+bN+OSTTwTDLVmyBNbW1gbD6eEGoOvXr3NHjx7lqqur\nuczMTK6srEwvzL59+3oVp1qtNni8rq6O27p1KxcYGMiFhYVxV65c6VMYjuO4kpISLiIigqurq+O+\n+uor7n//+99jhaupqeHLoKKigistLRUMx1ImvS23M2fOcGvWrBE9zpoHlvOy5pM1XH/WA+s5WdXX\n13MXLlzgqqurua1bt3Ll5eV6YVjbG0t/4Tj2umfJK2vatHpqRyqVisvLy+M4juOampq4sLAwwXAs\ndcWaNtY6ZS1f1rxyXM/XI9ZzsrQjjmMvX9b0s+SBFUseWNP/pPoMC9Y8sLZL1ryy5OH/ox2xtA+W\nemA9J2s41jplKV/WctPqqUx6E19/99Mf817f23Jj1VMe+vO8vb0H9qQ/08ZaV725t7G2o57C9ed4\nluP6dyzVm3Fef13ftHpqu6xx9SYPP+a4rDd5YNGbe1F/66nuWcujt3noqb727t3LrVy5kvvLX/7C\n/eEPf+CUSqVguC1btnT7f3h4+GOFe5QRxwns5kMIIYQQQgghhJABr62tzeA+PgCQnJyMr776qttG\nwkuXLu1zuEfRxAIhhBBCCCGEEPIU0v0aSS2hr5EE2CYgehNOF00sEEIIIYQQQgghT6H//ve/THt/\nsE5A9GaiQhdNLBBCCCGEEEIIIU+p27dv9/jV16wTEKzhHkUTC4QQQgghhBBCyDOOZQKiN+F00cQC\nIYQQQgghhBBC+oxtJwZCCCGEEEIIIYQQATSxQAghhJDH8jS+/Pg0ppkQQggZqGhigRBCCHnKLF26\nFCtXrtT7/apVqzB9+nTcvHnzR0vL6dOnsXnz5h/tfI+rvr4eAQEBuHfv3pNOCiGEEPLMeO5JJ4AQ\nQgghj6+qqgr//ve/oVQqYW1t/aOdNy0trdtXUg10Fy5cwPnz5590MgghhJBnCk0sEEIIIc8Aa2tr\nZGdnw8bG5kknhRBCCCE/MbQUghBCCBnANBoNNmzYAA8PD3h6eiIpKanb8Y6ODkRFRWH+/Pn45S9/\niUWLFqGgoIA/XlhYiPHjx+P8+fNYuHAhJk+erBcGAL7++mssX74c7u7ucHR0hK+vL/75z3/yxw8f\nPgxPT0/s3bsXnp6e8PX1xZIlS1BUVIS8vDyMHz8edXV1ALq+AzsoKAiurq5wd3dHaGgo7t69y8f1\n5z//GcHBwUhOToaXlxdcXFwQHByMpqYmxMbGYtq0afD09ERERAQePnzI/92dO3ewfv16eHh4wNXV\nFatWrUJtbS1/PCYmBosWLUJGRgZ8fX3h5OSExYsXQ6VS8XkICwsDAEydOhUxMTEAgLNnz2LRokVw\ndnbG1KlTERYWhoaGhseqN0IIIeSnhCYWCCGEkAHsj3/8I3JycrB+/Xp89NFHyMzMRHFxMX9848aN\nSE1Nhb+/P+Li4jB27FgsX76cf5jWWrduHWbNmoWYmBjIZDIsX74cVVVVAIDr16/D398fEokEUVFR\niIuLw5gxY7B582ZUVlbycTx48ACHDx/Gzp07sXbtWmzfvh2TJk2CXC7H/v37YWVlhdu3b+Ott97C\n9evXsWPHDmzZsgUlJSUICAhAW1sbH9f58+eRk5ODrVu3IjQ0FDk5OVi8eDFKS0uxfft2LFy4EOnp\n6cjKygIAtLS0wN/fH5cuXcKGDRuwY8cO3L59G2+//Tbu37/Px1tTU4Po6GisXr0aMTExaG1tRUhI\nCDo6OvDaa6/hvffeAwDs3bsXfn5+uHbtGlavXg25XI6kpCT86U9/Qm5uLj788MP+r0xCCCHkGUVL\nIQghhJABqrKyEnl5efj0008xe/ZsAMDkyZMxa9YsAMB//vMfHD58GBEREfDz8wMAeHl5Qa1W429/\n+xuUSiUfl5+fH1avXg2g69P6X/ziF0hNTcW2bdvw3XffwcXFBTt37oSJiQkAwNnZGZ6enrh48SIm\nTJgAAOjs7ERwcDBmzJjBx2tubg6JRAIXFxcAXXsutLa2IiUlBTKZjE+zr68vsrKysGDBAgDA999/\nj+joaFhZWQEAjh8/jitXruDQoUMwNzeHl5cXTpw4gdLSUsydOxdHjx7F1atX8fnnn8Pe3p7Px8yZ\nM5Gens7nTaPRQKFQYPLkyXyag4KCUFlZCUdHR4wePRoA4ODgAJlMhhMnTqCtrQ0rVqzg02JmZoZr\n1671Uy0SQgghzz6aWCCEEEIGKO1bB15eXvzvrKys+If4oqIi/nhHRwcfxtvbG7t27er2hsCcOXP4\nn01NTTFjxgz+7729veHt7Y3W1lZUVlaipqYGly9fBoBucQDAyy+/bDDNhYWFcHFxgVQq5dNkY2MD\ne3t7FBQU8BMLNjY2/IM8AAwbNgydnZ0wNzfnf2dhYYEHDx7w8dra2sLW1paP94UXXoCbmxu+/PJL\nfmLhueeeg6OjIx/HiBEjAADNzc2C6XV0dISpqSn8/Pwwe/ZsvPbaa/Dx8cGgQYMM5pMQQgghP6CJ\nBUIIIWSAamxshImJSbeHbQCwtLSERqPh9wHQnXjQpfuVipaWlt2OyWQyfglBZ2cntm/fjv3796O9\nvR2jR4+Gu7s7AIDjOL2/M6ShoQGlpaVwcHDQO6abBjMzM73jgwcPNhhvdXW1YLx2dnb8z6ampjA2\n/mGlp/Zn3b0adI0aNQoKhQJJSUnYt28fUlJSYGlpic2bN+P1118XTQ8hhBBCfkATC4QQQsgAZWFh\ngfb2djQ2NkIqlfK/b2hogImJCYYMGQIjIyP84x//wHPP6d/Shw4dipqaGv5vhg8fzh+7c+cOP0mQ\nkJCAAwcO4OOPP4a3tzckEgmam5tx8ODBXqdZu4whODhY75jQZAKrIUOGYMKECYiIiNA7Zmpq2ud4\nAcDNzQ2JiYlobm5GQUEB9u7di5CQEOTm5v6oX91JCCGEPK1o80ZCCCFkgPLw8AAAZGdn87+7f/8+\nSkpKAHQ9EHMcB41GAycnJ/5fQUEBFApFt8mG3Nxc/ue2tjacO3cOnp6eAICSkhI4OjriV7/6FSQS\nCQAgPz8fgP4bC4/SfTtAm6bq6mqMHz+eT88rr7yC2NhYXLp0qa9FAblcjrq6OowcOZKP19HREQqF\nAnl5eczxPJref/3rX5g1axba29sxePBg+Pj4YM2aNejs7MTNmzf7nF5CCCHkp4TeWCCEEEIGqLFj\nx2LevHn461//itbWVrz00ktITEzk9xiYOHEifH19ERoaitWrV8Pe3h5FRUVISEhAYGBgt4fo+Ph4\nmJiYYMyYMVAqlfj+++8RGBgIAHBycsKePXuwb98+vPLKK7h8+TLi4uJgZGSElpYWg2mUSqWoqKhA\nYWEhnJ2d8e677+LYsWMIDAyEv78/TExMkJKSgpKSEqxZs6bPZbFkyRKkp6dj2bJlWLFiBSwsLLB/\n/35kZ2dj3rx5zPFo3/zIycnBq6++Cnd3d6jVaoSEhOCtt95Ce3s7EhIS8LOf/QwTJ07sc3oJIYSQ\nnxKaWCCEEEIGsI8++ggymQwxMTFob2/HkiVLYG1tzT/w79y5E1FRUUhKSsKdO3cwcuRIrFu3DgEB\nAd3iWb9+Pfbt24e6ujpMnjwZn332GUaNGgUAWLFiBdRqNWJjY9Ha2go7Ozts3LgRGRkZ3b7aUsg7\n77yDtWvXIjAwEGlpaZDL5fj73/+OyMhIhIaGwsjICA4ODkhNTX2sB3Vzc3N89tln2LFjB8LDw9HW\n1oZx48YhPj4e3t7ezPFMnToV06dPx9atW/Gb3/wGmzZtwu7duxEdHc0v3/D09Oz2DRmEEEIIMcyI\n6+kdR0IIIYQ8tQoLC+Hv74+DBw/CycnpSSeHEEIIIc8g2mOBEEIIIYQQQgghfUYTC4QQQgghhBBC\nCOkzWgpBCCGEEEIIIYSQPqM3FgghhBBCCCGEENJnNLFACCGEEEIIIYSQPqOJBUIIIYQQQgghhPQZ\nTSwQQgghhBBCCCGkz2higRBCCCGEEEIIIX32f6O0RJq3UGAcAAAAAElFTkSuQmCC\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"nb\"] = 1\n", "dep = df[[\"DEPMAR\",\"nb\"]].groupby(\"DEPMAR\", as_index=False).sum().sort_values(\"nb\",ascending=False)\n", "ax = dep.plot(kind = \"bar\", figsize=(18,6))\n", "ax.set_xlabel(\"d\u00e9partements\", fontsize=16)\n", "ax.set_title(\"nombre de mariages par d\u00e9partements\", fontsize=16)\n", "ax.legend().set_visible(False) # on supprime la l\u00e9gende\n", "\n", "# on change la taille de police de certains labels\n", "for i,tick in enumerate(ax.xaxis.get_major_ticks()):\n", " if i > 10 :\n", " tick.label.set_fontsize(8) "]}, {"cell_type": "markdown", "metadata": {}, "source": ["# Exercice 4 : r\u00e9partition du nombre de mariages par jour"]}, {"cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [{"data": {"text/plain": ["Text(0.5,1,'Distribution des mariages par jour de la semaine')"]}, "execution_count": 32, "metadata": {}, "output_type": "execute_result"}, {"data": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhoAAAE7CAYAAACboSgoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XlYVGX/P/D3sMwAwyYwwKiouCGK\nimDSorgvpX1brcxQyyUlH83c0jR5lBRJ3JdSkzRLfUzz8edjWFa2WS6gJogbKIk6wyb7MjPM+f2B\nTI4gm+BhhvfrurzGOXPPmc8cDnPe3Pe5z0gEQRBARERE1AAsxC6AiIiIzBeDBhERETUYBg0iIiJq\nMAwaRERE1GAYNIiIiKjBMGgQAEDMyUec+EREZL4YNExESEgIfHx8DP86d+6MoKAgTJgwAX/88YdR\n2/3798PHxwdZWVk1Wvfp06cxbdq0atv5+Pjgs88+AwCsW7cOPXr0qP0buc+VK1cwduxYw/0TJ07A\nx8cH58+ff+h115aYr91Q3n//fYwYMULsMhqle/fnxqA+flbm/vOu7WcbNQ5WYhdANRcQEIC5c+cC\nAHQ6HdLS0rB79268+eabWLFiheEDpl+/ftizZw8cHR1rtN6vv/4a165dq7bdnj170Lx587q/gUrE\nxMQYHdi7dOmCPXv2oF27dvX6Ok1VaGgoCgsLxS6jUWqI/ZkaVm0/26hxYNAwIY6OjvD39zdaNmzY\nMIwdOxZhYWHo06cPnJyc4OLiAhcXl3p//ftfuyHY29s/ktdpKlq1aiV2CY0W9zPT01CfbdSwOHRi\n4iwsLBAaGoq8vDzExMQAqNi9mJycjAkTJqBnz54ICAjA+PHjcfHiRQBlXa3ffPMNrly5Ah8fH5w4\ncQL79+9HUFAQtm7diqCgIAwdOhRFRUWVdjUfOHAA/fv3R/fu3fH2228jJSXF8Fhl3bhHjx6Fj48P\nUlNTsW7dOqxfvx6FhYXw8fHB/v37Kx2++P777/HSSy/B398fffv2xerVq6HVag2PDxgwAFu2bMGi\nRYvQq1cvQ89Pfn5+ldvu559/xvPPP49u3brhtddeQ2pqaoU28fHxGDt2LLp3747HH38cS5YsQVFR\nkeHx9PR0TJ8+HUFBQejevTtef/11nDx58oGvWf7+/vzzT4wcORLdunXDiBEjcPr0aZw+fRrPP/+8\nYT33bsv8/HyEh4ejf//+8PPzw+OPP465c+ciNzfX0MbHxweffPIJhg8fjqCgIMTExFT4GaSlpWHe\nvHno3bs3unTpgt69e+Ojjz6CRqMxtMnOzsbs2bPx2GOPISgoCB9//DHmzZuHkJAQQxudToc1a9ag\nX79+6Nq1K1588cUKQ3jffPMNhg8fjq5duyI4OBhLly5FSUnJA7dNSEgIwsLCEBkZiZ49e+Lxxx/H\n4sWLjZ6j1Wqxdu1aDB06FH5+fnjssccwdepU3L5929BmwIABWLFiBV555RX07NkTn3/+eaWvd//+\nfPHiRUyYMAG9evVCr169MHv2bGRkZBger25/Ln8PCxcuxPjx4xEQEIDly5dX+to6nQ4rVqzAU089\nhYCAACxbtgylpaUV2u3YsQNDhgyBn58fhg8fjsOHDz9w+1WmJvvN/UpLSxEZGYl+/frBz88Pzzzz\nDHbt2mXUJiUlBaGhoejRowd69uyJ2bNnGw1nvP/++5g2bRo+++wzBAcHw9/fH9OmTUN+fj7Wr1+P\nJ598EkFBQQgPD4derzc876+//sLEiRPRs2dP+Pn5YejQodi9e7fh8fs/22r6u/+w25EeDns0zECv\nXr1gaWmJM2fO4NVXX63w+DvvvANPT0+sWrUKer0ea9aswdtvv40ff/wRoaGhyMrKQnJyMlasWIH2\n7dvj5s2byMvLw/79+7FixQoUFBTA1ta2wnqLioqwYsUKzJw5E3Z2dli5ciXeeustxMTEwNrautq6\nR44cCZVKhUOHDmH79u1o1aoVrly5YtRmz549+PDDDzFq1CjMmDEDiYmJWLduHVJTU7FixQpDu08/\n/RR9+vTBypUrkZycjMjISLi5uWH27NmVvvbZs2cxZcoUDB06FO+99x7OnDmDsLAwozZXr17FG2+8\nAX9/f6xevRqZmZmIiopCamoqPv30UwDAvHnzkJmZiWXLlkEmk2Hbtm14++238dNPP8HZ2fmB7332\n7NmYOnUqlEolIiIi8O6778LOzg6hoaGwtrbG4sWLsXjxYsOBcObMmbhy5QpmzpwJhUKBc+fOYc2a\nNWjWrBnef/99w3rXr1+P+fPno1mzZujZsyeOHTtmeEyv12PChAmQSCRYtGgR7O3t8dtvv2Hr1q1o\n1aoVQkJCIAgCJk+ejNTUVHzwwQeQy+VYu3Ytrl+/btQDsHDhQnz77beYNm0a2rdvj4MHD2LixInY\nsWMHAgICcObMGcyfPx/Tpk1DYGAgrl69ioiICMhkMsycOfOB2+XQoUNo1aoVIiIioFKpEBUVhZyc\nHERFRQEAli1bhkOHDmHOnDmG/WXlypVYunQp1q1bZ1hPdHQ0pkyZgilTpqB169YPfL1yiYmJeO21\n1+Dv74+IiAjk5uZizZo1eOONN7B//37Y2dlVu45y+/fvx8svv4w333zzgV38S5cuxb59+zBjxgy0\nadMG0dHRiI2NRZs2bQxt1q9fj02bNhkOvD///DPee+89SCQSPP300zWqpab7zb0+++wz7Nu3D/Pm\nzYNSqcSPP/6IsLAwtGzZEn369EFGRgZef/11KBQKREZGQqPRYPXq1Rg/fjz27NkDqVQKAPjtt9+Q\nlpaGJUuWIDU1FeHh4bh06ZLh53v8+HFER0fD398fI0aMwK1btzBmzBj07dsXa9asgU6nw65du7Bo\n0SL4+/ujU6dOldZb3e9+fWxHejgMGmbA0tISzs7ORn99lSsPEe+88w769OkDAFAqlTh06BAKCwvR\nqlUruLi44NatW0YHktLSUkybNs3wnMoIgoCPP/4YTzzxBACgbdu2ePbZZ/G///0Pzz//fLV1e3p6\nwtPTExYWFpV2Y+v1eqxevRrDhw83hIDevXvDwcEBixYtwoQJEwwfPp6enli5ciUkEgl69+6NkydP\n4pdffnlg0Ni6dSvatGljeE5wcDDy8vLwxRdfGNps3LgRrq6u2Lx5s+HDs02bNhg9ejROnTqFxx57\nDKdPn8aUKVMwYMAAAECHDh0QHR2NoqKiKoNGSEiIIRTeunULixYtwvLlyw3b7cqVK9i5cycAoKSk\nBFqtFmFhYQgODgYABAUF4cyZMxV6T5566im8/vrrlb6mWq2Gk5MTPvjgA8N2e+KJJ/Drr7/i1KlT\nCAkJwfHjx3HmzBns2LEDQUFBAIBu3bph0KBBhvUkJSVh//79CA8Px8iRIwEAwcHBSE9Px+rVq7Fj\nxw7ExsbC1tYW48ePh1QqRa9evWBtbV1tAC0tLcXWrVsN3eMSiQSLFy/GjBkz0LJlS2RlZWHOnDl4\n+eWXAZSF7GvXruH//b//Z7Qeb29vTJ06tcrXutfGjRvh4uKCLVu2GH7Wfn5+ePbZZ7Fv3z6j3pzq\nyOVyLFiw4IHvNTs7G7t378a7776LcePGASj7OfTv39/QJjc3F5s3b8aECRPw7rvvAijb9wsKChAV\nFVWjA2Rt9pt7nT59Gn5+foZ9MSgoCDY2NoY/NrZv346SkhJs27bN8HPq1q0bhg4disOHDxueV1hY\niLVr18Ld3R0AcPDgQVy9ehX79u2Dvb09goOD8e233+LcuXMYMWIErly5An9/f6xYscKw7bp3746g\noCCcPn36gUGjqt/9+tiO9PA4dGLmnJ2d0aZNGyxcuBDz58/HkSNH0KJFC7z33ntwcHCo8rnt27ev\n8nEHBwdDyADKDrJeXl71NmsjKSkJWVlZGDZsmNHy8u7r06dPG5Z17doVEonEcN/T07PKkyDj4uLQ\np08fo+cMGTLEqM2JEyfw1FNPwcLCAjqdDjqdDv7+/rC3tzcME/To0QNr167Fe++9h//+97+QSqWY\nO3culEplle+tW7duhv+7ubkBKDuwlXN2dkZeXh4AGHpKgoODkZqait9++w3R0dFISkoyGkICUOVJ\ntEqlEl988QU6duyI69ev49ixY/jkk0+QmZlpGDo5efIkHBwcDCEDADw8PIxmGJUfpIKDgw3bRafT\noW/fvoiLi4NGo4G/vz8KCwvxf//3f1izZg3++usvvPzyy9UG0CeeeMJoDH7gwIEAgNjYWADA6tWr\n8fLLL0OtVuOPP/7Al19+aXjNmm6Hypw6dQoDBw40hAygbP/38fHBqVOnarWuVq1aVRmozp07h9LS\nUsPBHyj7Gfft29dw/+zZsygpKUG/fv2MtnFwcDBu3LiBGzduVFtHbfabe/Xo0QO//fYbQkJCsH37\ndty4cQMzZsxAz549AZT9Xvj7+8PR0dFQl1KpRLt27YyGz5RKpSFkAICrqyu8vb1hb29vWHbvft63\nb198/vnn0Ov1uHjxImJiYrBlyxYAqPDzvVdVv/v1sR3p4bFHwwyUlJQgJycHHh4eFR6zsLDA559/\njnXr1uGHH37Avn37YGNjg/Hjx+Nf//qX0S/o/ao76crV1bXS56SlpdX+TVQiJyen0text7eHTCYz\nGoe9f2hHIpFUeX2O3NxcNGvWzGhZ+QG/XHZ2Nvbs2YM9e/ZUeH56ejoAYNWqVdiwYQO+/fZb/O9/\n/4O1tTVefPFFLFiwwOigdT+5XF5hmY2NzQPb//DDD1i2bBlu3LiBZs2awc/PDzY2Nkbj20DlP5N7\n7d27F6tXr0ZGRgYUCgW6d+8OmUxm2FZ37typ9Ofu5uZmeM/Z2dkAYHSgvNedO3fQs2dPbNy4EdHR\n0di8eTM2btwILy8vLF++HIGBgQ+sT6FQGN0vr6V8X4iLi0NYWBguXboEBwcH+Pr6QiaTVVhPddvh\nfrm5uZU+x9XVtdpzfWr72uXnR1S1/5Vv49dee63SdaSnp8PLy6vaWmq639xr0qRJsLW1xddff42l\nS5di6dKl6NWrF1asWAEPDw9kZ2fj3Llz6NKlS4Xn3vvzq2wfr2wItlxpaSkiIiKwZ88eaLVatGrV\nyhBuqvpdrup3v762Iz0cBg0zcPr0aeh0ugd+gCuVSixduhR6vR5nz57F3r17sWHDBrRv3x7PPPNM\nnV+3shPKMjIy0LFjRwBlv/D3f6AVFBTUeP3lQw+ZmZkVXrekpKTKoYmarPv+9ZZ/KJWzt7fHwIED\nMWrUqArPLz9IODs744MPPsAHH3yAxMREHDx4ENHR0WjZsiUmTZpU5/rudf36dUyfPh0vvPACdu7c\nCU9PTwDA9OnTkZSUVOP1nDx5EgsXLkRoaCjeeOMNw0G8fBgCANzd3Su9RsG9yxwcHCCRSLBr1y5Y\nWVX8CCnfNgMGDMCAAQOQl5eHX375BZs2bcLbb7+N48ePPzCE3f8zKP8Zubq6Ii8vD5MnT0ZAQADW\nrVtnOPciMjLScHJzXTk5OVXYH4Cy/bm8d+Rh9+dy5fttVlaW0R8H97738t7GDRs2VPoHhLe3d7Wv\nU9f9xtLSEuPGjcO4ceNw69YtHD16FOvWrcMHH3yArVu3GoY9Krv2TmXhoqY2bdqE//znP1i+fDn6\n9u0LOzs7FBUV4euvv67zOutjO9LD49CJiRMEAZs3b4azs3OFrn+g7Ez63r17IyEhARYWFggICEB4\neDisrKxw69YtAGW9HnWRlZWFhIQEw/2EhASkpqaiV69eAMo+dDIzM40+nMu7wMtV9dre3t5o1qyZ\nYTZNufIzxgMCAupUN1A27vzTTz9Bp9MZlv38889GbQIDA5GcnAw/Pz907doVXbt2hVKpRFRUFK5c\nuYKsrCz069cP33//PQDA19cXc+fORfPmzY1mQTysCxcuQKvVYtKkSYaDRWFhIWJjY2t1VdWzZ89C\nIpFgypQphpChVqtx+fJlw3p69uyJvLw8o+GCrKwsnD171nA/MDAQgiCgoKDAsF26du2KP/74A59/\n/jmsrKywbt06vPLKKwDKPuyHDx+O8ePHIy8vr8oeghMnThjN6jl69CgsLCzQs2dPJCcnIycnB2PH\njjWEDL1ej+PHjz/01WUDAwPxww8/GHXRJyUl4fLly4b9rCb7c0306NEDUqkU3333nWGZTqfD77//\nbrjfvXt3WFtbIzMz02gbX7lyBRs2bKjR69R1v3nrrbewbNkyAEDz5s0xZswYDBo0yLBPl/9e+Pj4\nGOrq2LEj1q9fX6ftUe7s2bPw8/PD008/bTj59tdffwVQ96sH18d2pIfHHg0Tkpuba/jA1+l0UKvV\n2Lt3L06dOoUVK1YYjX2Wa9++PeRyOebOnYupU6fCyckJBw4cgEQiQb9+/QCUXZ9DpVLh999/NzpP\noDpSqRTvvfceZs2aBa1WixUrVqBTp04YOnQogLKu9S+++AL//ve/8cwzz+DPP//E0aNHjdbh6OiI\noqIiHD161Oi8BaDsL6upU6diyZIlcHJywsCBA3Hp0iWsW7cOw4YNM/Sc1MXkyZPx0ksv4Z133sHr\nr7+OS5cu4csvvzRqExoaitdeew3Tp0/HSy+9BI1Gg40bN+L27dvo3LkzXFxc0Lp1a4SHh6OgoABK\npRLHjh3DzZs3MXjw4DrXdj9fX19YWlri448/xqhRo3Dnzh1s27YNGRkZVQ7P3K9r167Q6/VYunQp\nhg0bhtu3b2PTpk3QaDSGg/vjjz+Onj17YubMmZg5cybkcjk2bdqEkpISwzCbr68vhg4dapg5065d\nO5w8eRKbNm3ChAkTYGFhgaCgIGzYsAELFizA8OHDkZOTg08++QSBgYFVDsllZ2djypQpePPNN5GS\nkoJVq1bh9ddfh4eHB+zs7CCXy7Fx40bo9XoUFxfjq6++wsWLFw3d5VUNBVZl8uTJeO211zBx4kSM\nGzcOeXl5WL16NVq0aGE4r6Qm+3NN2NvbY/z48diyZQtkMhk6d+6MXbt2ISMjw3DdExcXF4SEhCAi\nIgI5OTno1q0bLl68iFWrVmHgwIGV/q7fr677TWBgIDZt2gSFQoGuXbsiKSkJMTExhiv4vvnmm/jv\nf/+LCRMmYMyYMbC2tsa2bdtw9uxZwwmXddG1a1ds2bIFO3fuRMeOHXH+/Hls2LABEokExcXFdVpn\nfWxHengMGiYkLi7OMFPB2tra8EGwa9cudO/evdLnWFlZYcuWLVi+fDnCwsIM16z49NNPDSd7vvrq\nq/jpp5/w9ttvIzIyssb1tGjRAuPGjcO///1vFBQUoG/fvli4cKHhQyw4OBgzZszAzp07ceDAATzx\nxBOIiIjAxIkTDesYPnw4Dhw4gHfffRfTp0+vEDbeeOMN2NjYYNu2bdi7dy/c3d3x5ptvIjQ0tFbb\n7n4dOnTAtm3bEBkZiX/961/w9vbGhx9+aDRLxc/PD9u3b8fq1asxbdo0yGQyBAQEIDIy0tANu3Ll\nSkRGRmLFihXIzs6Gt7c3oqKi8OSTTz5Ufffy9vbG8uXLsX79ekyaNAkKhQLBwcF46aWXsHjxYqjV\n6kq7he/3xBNPYN68edi+fTv27dsHT09PPP3007CyssL27duh0WgglUqxdu1aLFmyBGFhYZBKpXjt\ntddgY2NjNMVzxYoVWLNmDTZv3ozMzEy0aNECM2fOxPjx4wGUzQZZuXIlNm/ejEOHDkEmkyE4OPiB\nUyrL9e7dG97e3nj33XcNB+QpU6YAKOsZWbduHSIjIzFlyhTDFN41a9Zg2rRpOHfuXJ0vwlX+s165\nciWmT58OW1tb9O3bF7NnzzYcjGqyP9fU9OnTYWNjg6+++gq5ubkYMmQIXnnlFfz555+GNrNnz4aL\niwv+85//GGZvjB07tsazaeq630yePBl6vR67du3C6tWr4ebmZvS6zZs3x1dffYWPP/4Ys2fPhkQi\nQZcuXRAdHQ1fX99ab4tykyZNQnp6OtavX4+SkhLDSeyHDh3CmTNn6rzeh92O9PAkAr/RiojuunHj\nBs6fP48hQ4YYzr8oLS3FgAEDMGzYMMybN6/BXjskJAR2dnaGa5Q0pJKSEnTr1g2LFi164HRgIqof\n7NEgIiNz5szB8ePHMXz4cGi1Wnz99dfIysoynHNh6v766y/D+TiccUDU8Bg0iMjAy8sLGzduxMaN\nG/HOO+8AKBs7/+KLL8zmi+6+/PJLfPfdd3juueeMrgNDRA2DQydERETUYDi9lYiIiBpMox86eZh5\n2URERFS9qq7Y+7AafdAAGnYDEBERNWUN/Qc9h06IiIiowTBoEBERUYNh0CAiIqIGw6BBREREDYZB\ng4iIiBoMgwYRERE1GAYNIiIiajAMGkRERNRgGDSIiIiowTBoEBER0QOlpKTg+eefN1p2/PhxzJkz\nB7Nnz0ZcXFyVzzeJS5ATEZFpK9aWYvvx6yjUlEIQBOgFQC8IEHD3VoDx8vvv4+59fQ2eB+N25Y/X\ntN396zVqV37/bjvcvX3g84TKXx8C8FR7N3wS0ri/YiM9PR179+6Fra2t0fLo6Ghs2LABer0eM2bM\nwKZNmx64DpMIGomJiWKXQETU5KmTr9T5ub+rJdhy2QLOUgESABIJym7v/t8CZXck+Of/FncfA/75\nv1RmU/Zcyb3tJGX3y9tKJP+sX3L3/j2vaXH3jgUAS8PzJLCwQDXPK78vMV4mqaxNeY0Va8HdGtq6\nNP7jm0KhwKxZszB+/Hij5YIgQCqVAgA0Gk2V6zCJoOHr6yt2CURETd7hsNl1fu5R92HwsLTDK9f2\nP1QNM/cceqjnU0V1+VI1mUwGjUYDvV5vCBwPwnM0iIioQWkkVvjb1gvtCpPFLoUe0pIlS6DRaDB2\n7FgsWLAA8+fPR2hoaJXPMYkeDSIiMl0ptq1QamGFdgXXxC6F6uizzz4DACxcuBAA0KtXL/Tq1atG\nz2WPBhERNagkeVu4ajLhrMsRuxQSAYMGERE1GJ3EEtftWqNdAYdNmqpqh07i4uKwY8cO2NnZoXnz\n5igsLIRGo0F+fj4WL16M5ORkbN68GTY2Nujfvz8GDx6MyMjIWrep7mQSIiIyPTdsWkBrIWXQaMKq\nDRq5ubkIDw+Hvb093nrrLbRs2RKLFy/Gvn37cOTIEfz666+YO3cuPDw88NZbb6FTp06G8FCbNs8+\n++yjeL9ERPQIJcnbwkmbDVdtltilkEiqHTrp168f5HI5Nm3ahICAAHh4eAAAPD09kZaWhqysLMMy\niUSC9PT0OrUhIiLzoocE1+y80a7gGiRiF0OiqTZo5Ofn44MPPoC/vz9eeuklqNVqAIBKpYK7uzs8\nPDwMQUEQBCiVyjq1ISIi83LTpjmKLW04rbWJq3bo5KOPPkJKSgr27dsHS0tLeHh4IDw8HPn5+Viy\nZAl8fX2xfPlyWFtbIyQkBEqlEs7OzrVuQ0RE5iVJ7g25Lh8eJey1bsokgiAIYhdRldjYWAQGNu5r\nwRMRNQVRr46ocVsBQLRXCNoVXEPfrN/qrQZeGbT+NfRxltNbiYio3qlkHiiwsuewCTFoEBFR/Uuy\nawub0iI0L74tdikkMgYNIiKqVwLKzs9oW3gdFmjUo/P0CDBoEBFRvcqQuiLX2okX6SIADBpERFTP\nkuzawlqvgVdRqtilUCPAoEFERPUqWe4N78IUWEIvdinUCDBoEBFRvblj5YRMqSuHTciAQYOIiOpN\nkrwtLPU6tC76W+xSqJFg0CAionqTJPdG66K/YS3oxC6FGgkGDSIiqhd5lvZIk3mgXeE1sUuhRoRB\ng4iI6kWy3BsWQinaFF4XuxRqRBg0iIioXly1a4uWRTdho9eIXQo1IgwaRET00AotbHHLRsnvNqEK\nGDSIiOihJcvbAADaFlwXtQ5qfBg0iIjooSXZtUXzktuw0xeJXQo1MgwaRET0UEospEi1bYF2BZxt\nQhUxaBAR0UO5btsaeokl2vL8DKoEgwYRET2Uq/K2cC9Jg6MuX+xSqBFi0CAiojrTSqzwt60Xv9uE\nHohBg4iI6izF1gs6C2teDZQeiEGDiIjqLFneFi6aLDTTZotdCjVSDBpERFQnpbDANbvWHDahKjFo\nEBFRndywbQmNhYxXA6UqMWgQEVGdJMm94ajNhZsmU+xSqBFj0CAiolrTQ4JkO2+0K0yGROxiqFFj\n0CAiolq7beOJYktbnp9B1bKqSaOUlBRMnz4dn376KVatWgUASEhIwJgxY9C6dWusWrUKrVu3RseO\nHTFu3DgsXLgQcrkcGo0GYWFhOH78OA4cOABBEDBq1Cj4+/tXaENERKYjya4t7HQF8CxRi10KNXLV\n9mikp6dj7969sLW1hYeHByIiIjB16lR0794dI0eOxKlTp6BQKKDX69GjRw+cOHECXl5emD9/Plxc\nXBAXF4fo6GiEh4djyZIl2LJlS6VtiIjINAgAkuRt0a7wGodNqFrV9mgoFArMmjUL48ePNyxbt24d\npk2bBgDo168fxowZA6lUiokTJ2LkyJHw9PQEAHh6eiItLQ2CIEAqlQIANBoNMjIyKrQhIiLToJa6\nI9/KnsMmVCO1PkcjMzMTFhYWaNGiBQDg7NmzkEgkkMlksLa2hlKphFpd1pWmUqng7u4OmUwGjUaD\n4uJiSKXSStsQEZFpSJJ7w6a0GM2Lb4tdCpmAGp2jca/4+Hh06dLFcL9ly5ZYtGgRbGxsMGrUKAQG\nBuLgwYMIDw8HAAQEBECn02HBggXQ6XQIDQ2Fn59fhTZERNT4lQ+beBdehyX0YpdDJkAiCIIgdhFV\niY2NRWBgoNhlEBE1eVGvjkCmtQu+avkqRqgOw7so5ZHXMHPPoUf+muauoY+znN5KREQ1liT3hrVe\nA6/iVLFLIRPBoEFERDV21a4t2hSmwEooFbsUMhEMGkREVCPZVo7IlLnxK+GpVhg0iIioRpLlbWGp\n16F14d9il0ImhEGDiIhqJMnOG62KUiEVtGKXQiak1tNbiYio6VHlFENl44lB6T+KXQo9Imq1GhER\nEXByckKHDh0wevRoAMCvv/6KH374AaWlpQgICMALL7xQ5XpMImgkJiaKXQIRUZN2MDEHFhDw/LN9\nYW/dV7Q6eDx4dHbv3o2QkBAEBARg4sSJeOWVV2BtbY3Tp0/j4sWLkEqlePHFF6tdj0kEDV9fX7FL\nICJq0hb/+idaFKXi0i5xr2PJwkMyAAAgAElEQVTB62jUv9jY2EqXZ2RkQKlUAgAcHR2Rl5cHFxcX\nPPnkk5gyZQqKioowb948fPLJJ1Wun+doEBFRlbIKNDhxLRPtCjjbpClRKpVQqVQAgJycHDg6OgIA\n1q9fDysrKzg6OqK0tPppzibRo0FEROI5ekENAUBbTmttUkaOHImIiAh88803GDJkCJYtW4a5c+fi\nxRdfxMyZM2Fra4tx48ZVux4GDSIiqlJMggoBrZpBnlwodin0CCkUCkRFRVVY/sILL1R7Aui9OHRC\nREQPlFesxW9XMjCsi6fYpZCJYtAgIqIH+vFiGjSlegzzY9CgumHQICKiBzqSoEKX5o7wcrETuxQy\nUQwaRERUqWJtKX66mM5hE3ooDBpERFSpXy6no0hbymETeigMGkREVKmYBBXaKuRo724vdilkwhg0\niIioAo1Oj6MX1HjazxMSiUTscsiEMWgQEVEFfyZnIrdYh2FdlGKXQiaOQYOIiCqISVChhbMt/Fo4\nil0KmTgGDSIiMlKqF/BdghpDu3DYhB4egwYRERmJ+/sOMvJLONuE6gWDBhERGYmJV8HNXorA1s3E\nLoXMAIMGEREZCIKAmHgVhnTxhKUFh03o4TFoEBGRQfzNXNzMLuLVQKne1Ohr4lNSUjB9+nQcOHAA\n8+bNg16vh0QiwahRoyCTybB582bY2Nigf//+GDx4MCIjI6HRaJCfn4/FixcjOTm52jZSqbSh3ysR\nEVUjJuE2HG2s8HhbV7FLITNRbY9Geno69u7dC1tbWwDA5cuXYWtrCzs7O7Rv3x7btm3D3LlzsXTp\nUuzatQs3btxAfn4+FixYgMceewxHjhypURsiIhJfTLwKg3w9ILVihzfVj2r3JIVCgVmzZsHOzg6C\nIGDOnDkICwtDnz598MUXXyArKwseHh4AAIlEgvT0dMN9T09PpKWl1agNERGJ62paHpLSCzCUs02o\nHtUqshYUFODq1asAAGdnZ2i1Wnh4eBiCgiAIUCqVUKvVAACVSgV3d/catSEiInF9e14FW2tL9O2o\nELsUMiM1OkejnL29Pa5du4bw8HDk5eVh9uzZyM7OxvLly2FtbY2QkBAolUo4OzsjPDwc+fn5WLJk\nCXx9fattQ0RE4opJUKF/JwVsrC3FLoXMiEQQBEHsIqoSGxuLwMBAscsgIjJrN7IK0SfyJ6x5zR/P\n+beotE3UqyMecVUVzdxzSOwSzE5DH2d5tg8REeFIggpSSwsM6MShbKpfDBpERISYeBWeau8KBxtr\nsUshM8OgQUTUxKXlFiP27zv8bhNqEAwaRERN3JELakgADO7MoEH1j0GDiKiJOxKvQpC3K1zkvEIz\n1T8GDSKiJiy7UIM/kjM5bEINhkGDiKgJO5qYhlK9gCFdPMQuhcwUgwYRURMWE6+Cv5czlE62YpdC\nZopBg4ioicov0eGXK+l4msMm1IAYNIiImqhjl9Kg0ekxtAuDBjUcBg0ioiYqJl6FTp4OaOMmF7sU\nMmMMGkRETVCxthQ/XUzjbBNqcAwaRERN0O9XM1CgKWXQoAbHoEFE1ATFxKvQxtUOPh4OYpdCZo5B\ng4ioidGW6vF9ohrD/JSQSCRil0NmjkGDiKiJOXktC9mFWg6b0CPBoEFE1MTExKugdLJBtxZOYpdC\nTQCDBhFRE6LXCziSoMLQLp6wsOCwCTU8Bg0ioibkzI1spOWV8CJd9MgwaBARNSEx8bfhKpeil7eL\n2KVQE8GgQUTURAiCgJgEFQZ39oAlh03oEWHQICJqIi7czsWNrCIM5WwTeoQYNIiImogj8So4yKzw\nZDtXsUuhJoRBg4ioiYhJUGGArztkVpZil0JNiJXYBRARUcNLSs/HZXU+ZgzqKHYpZCLUajUiIiLg\n5OSEDh06YPTo0QCAX375BT/88AOkUimCgoIwaNCgKtdTo6CRkpKC6dOn48CBA1i8eDF0Oh0yMzPx\n/vvv4/bt21i1ahVat26Njh07Yty4cVi4cCHkcjk0Gg3CwsJw/PhxHDhwAIIgYNSoUfD396/QhoiI\nGk5MvAo21hbo66MQuxQyEbt370ZISAgCAgIwceJEvPLKK7C2tsZXX30FHx8fqNVqdO7cudr1VBs0\n0tPTsXfvXtja2qKgoAB9+vRB//79ceTIEfz+++/IzMyEQqGAXq9Hjx49cOLECXh5eWHy5MlYu3Yt\n4uLiEB0djQ0bNkCv12PGjBkYM2ZMhTYBAQEPrCExMbF2W4eIiIwcOH0TAUobpCRdqfM6AsdMqseK\n6obHg0cnIyMDSqUSAODo6Ii8vDy4uLjg8uXLWLVqFTIyMrB69WpERkZWuZ5qg4ZCocCsWbMwfvx4\nyOVy9O/fHykpKTh8+DA++ugjpKSkYMyYMZBKpZg4cSJGjhwJT8+yM5o9PT2RlpYGQRAglUoBABqN\nBhkZGRXaVMXX17f6LUJERJW6mV2EK5nJCB3UHb6+Leu8nsNhs+uxqrqZueeQ2CWYndjY2EqXK5VK\nqFQqKJVK5OTkwNHREQDQokULyGQyODs712j9tT4Z9OjRo9ixYwciIiJgb2+Ps2fPQiKRQCaTwdra\nGkqlEmq1GgCgUqng7u4OmUwGjUaD4uJiSKXSStsQEVHDOBKvgpWFBAM6eYhdCpmQkSNHYufOnfjw\nww8xZMgQLFu2DBqNBqNHj8bcuXPx0UcfYcKECdWup1Yng6akpGDBggXo3bs3Fi5ciGHDhqFly5ZY\ntGgRbGxsMGrUKAQGBuLgwYMIDw8HAAQEBECn02HBggXQ6XQIDQ2Fn59fhTZERNQwYhJUeLK9G5xs\nrcUuhUyIQqFAVFRUheXDhg3DsGHDarweiSAIQn0WVt9iY2MRGBgodhlERCYpPa8EvZYexdIXumJU\nr1YPta6oV0fUU1V1x6GT+tfQx1leR4OIyIx9f6FsmHpwZw6bkDgYNIiIzFhMggqPtXGBm71M7FKo\niWLQICIyUzlFWhy/moFh/Ep4EhGDBhGRmfrxoho6vcAvUSNRMWgQEZmpb8+r0L2lE1o424pdCjVh\nDBpERGaoUKPDz5fT2ZtBomPQICIyQz9fSkeJTs/zM0h0DBpERGYoJkGFjh72aKuwF7sUauIYNIiI\nzEyJrhQ/JqaxN4MaBQYNIiIzczwpE3klOp6fQY0CgwYRkZmJOa9CKxc7dFY6il0KEYMGEZE50ZXq\n8X2iGsP8PCGRSMQuh4hBg4jInJy6fgdZBRoM5fkZ1EgwaBARmZEjCSq4O8jQw8tZ7FKIADBoEBGZ\nDb1eQEy8CkO7eMLCgsMm1DgwaBARmYlzqdlQ5Rbjac42oUaEQYOIyEzEJKjgbGeNXt4uYpdCZMCg\nQURkBgRBwJF4FQb7esDKkh/t1HhwbyQiMgOX1Hm4nlmIYRw2oUaGQYOIyAzExKsgl1riqfZuYpdC\nZIRBg4jIDMTEq9C/kztsrC3FLoXICIMGEZGJu55RgIuqPDztpxS7FKIKGDSIiExcTIIKUisL9PNR\niF0KUQUMGkREJi4mXoXgDgrIZVZil0JUAYMGEZEJu51ThLM3sjnbhBotBg0iIhP2XYIaVhYSDPJ1\nF7sUokrVqJ8tJSUF06dPx4EDB7B161bcvHkTeXl5mD9/PrRaLSIiIuDk5IQOHTpg9OjRdWrj4sIr\n2RER1da38bfxRDtXONtJxS6FqFLVBo309HTs3bsXtra2KCkpwenTp/HJJ5/gzz//xH/+8x+UlJQg\nJCQEAQEBmDhxIp577rk6tZk8efKjeL9ERGYjM78EJ69lYfFzfmKXQvRA1Q6dKBQKzJo1C3Z2dsjO\nzjb0PHh6eiItLQ0ZGRlQKsumVDk6OiI3N7dObYiIqHaOJqohABjS2UPsUogeqFbnaLi6uiI7OxsA\noFKp4O7uDqVSCZVKBQDIycmBu7t7ndoQEVHtxMSrENiqGdwdbcQuheiBajUXysrKCkFBQQgLC0Nu\nbi7+/e9/o7i4GBEREfjmm28wZMiQOrchIqKayy3W4vermZgzzEfsUoiqJBEEQRC7iKrExsYiMDBQ\n7DKIiBqV/569iem7z+LXOf3h5WL3SF4z6tURj+R1qjJzzyGxSzA7DX2c5fRWIiITFBOvgl8Lx0cW\nMojqikGDiMjEFGlKcexSOoZ14UW6qPFj0CAiMjG/XElHkbaUVwMlk8CgQURkYo7Eq9BOIUd7dwex\nSyGqFoMGEZEJ0ej0OJqoZm8GmQwGDSIiE/JHciZyi3V42k8pdilENcKgQURkQmLiVWjhbIsuzR3F\nLoWoRhg0iIhMRKlewPcXVBjm5wmJRCJ2OUQ1wqBBRGQiYlPuICNfw/MzyKQwaBARmYiYeBXc7GUI\naNVM7FKIaoxBg4jIBAiCgCMJKgzp4gFLCw6bkOlg0CAiMgHnb+bgZnYRnuawCT0iarUaM2bMQFhY\nGL788kujx/Lz8/HMM88gPT292vUwaBARmYCYeBUcbazweFtXsUuhJmL37t0ICQlBWFgYjh07Bq1W\nCwDQ6/WIiopCq1atarSeWn1NvFgSExPFLoGISDSCIOC/cal4rIUNrl6+JFodgWMmifba5Xg8eHQy\nMjKgVJZdr8XR0RF5eXlwcXHB+vXr8eqrr+Lzzz+v0XpMImj4+vqKXQIRkWiuqPNwM/caFj3XDb6+\n4g2dHA6bLdprl+PXxNe/2NjYSpcrlUqoVCoolUrk5OTA0dERWVlZOHfuHDIyMnDmzBls3boV8+bN\nq3L9HDohImrkYuJVsJNaIrijQuxSqAkZOXIkdu7ciQ8//BBDhgzBsmXLYG9vj88++wyLFy9Gjx49\nMGHChGrXYxI9GkRETdm38Sr093GHjbWl2KVQE6JQKBAVFfXAxyMiImq0HvZoEBE1Yn9nFuLC7VwM\n5WwTMlEMGkREjdiRBBWklhbo78NhEzJNDBpERI1YTIIKvTu4wcHGWuxSiOqEQYOIqJFKyy1GbMod\nDOvCYRMyXQwaRESN1JEEFSwtJBjU2UPsUojqjEGDiKiRiklQIcjbBS5yqdilENUZgwYRUSN0p0CD\nP5Oz+JXwZPIYNIiIGqGjiWqU6gUM6cygQaat1hfs+vLLL3H+/HlotVrExcXBx8cHzs7OAIDQ0FCk\npqbiwIEDEAQBo0aNgr+/PxYuXAi5XA6NRoOwsDAcP37cqE1AQEC9vzEiIlN2JEGFHq2c4elkI3Yp\nRA+l1j0ao0ePRkREBDw9PbFmzRr8/fffkEqlcHFxQYsWLRAdHY3w8HAsWbIEW7ZswYkTJ+Dl5YX5\n8+fDxcUFcXFxFdoQEdE/8kt0+OVKBmebkFmo0yXIk5KSkJeXhw4dOmDZsmXo3r07du7cicOHD0MQ\nBEilZScuaTQaZGRkwNOz7JfF09MTaWlpFdoQEdE/frqYBo1Oz/MzyCzU6RyNXbt2YcKECcjMzERq\naioAwNnZGVqtFjKZDBqNBsXFxZBKpVAqlVCr1QAAlUoFd3f3Cm2IiOgfMQkq+Cod0dpVLnYpRA+t\nTj0aKSkpaNWqFbRaLX755Rf89ddfyM/Px4IFC9CyZUssWLAAOp0OoaGh8PPzw8GDBxEeHg4ACAgI\ngE6nM2pDRERlirWl+OliGt4Obid2KUT1QiIIgiB2EVWJjY1FYGCg2GUQET0SRy+oMWHHaRx5Nxg+\nng5il2Mk6tURYpeAmXsOiV2C2Wno4yyntxIRNSIxCSp4u8nR0cNe7FKI6gWDBhFRI6Et1eP7C2oM\n7eIJiUQidjlE9YJBg4iokTiRnIWcIi2e5mwTMiMMGkREjURMwm0onWzQraWT2KUQ1RsGDSKiRkCv\nF3AkgcMmZH4YNIiIGoEzN+4gPa+EF+kis8OgQUTUCMTEq+Aql+KxNi5il0JUrxg0iIhEJggCvo1X\nYUgXD1hacNiEzAuDBhGRyBJu5SL1ThGG8kvUyAwxaBARiexIggoOMis82c5N7FKI6h2DBhGRyGLi\nVRjo6w6pFT+SyfxwryYiEtHVtHxcScvnbBMyWwwaREQiOpKggo21Bfp2dBe7FKIGwaBBRCSimHgV\n+nV0h63UUuxSiBoEgwYRkUhS7xTi/M0cDpuQWWPQICISyZEENawtJejficMmZL4YNIiIRHIkXoUn\n27nBydZa7FKIGgyDBhGRCNLzSnAqJYvDJmT2GDSIiETw3QUVJAAGd/YQuxSiBsWgQUQkgph4FR5r\n4wI3e5nYpRA1KAYNIqJHLKdQiz+SMjlsQk0CgwYR0SP2w0U1dHqBX6JGTQKDBhHRIxYTr0L3lk5o\n7mwrdilEDY5Bg4joESoo0eHny+kY5qcUuxSiR4JBg4joEfr5cjpKdHoM7cLZJtQ0MGgQET1CMfEq\n+Hg4oK3CXuxSiB4Jq9o+4datW5gyZQp8fX2hUChQWloKjUaD/Px8LF68GMnJydi8eTNsbGzQv39/\nDB48GJGRkdW2ISIydyW6Uvx4MQ1v9fYWuxSiR6bWQePkyZNwc3MDALi5uSEpKQmLFy/Gvn37cOTI\nEfz666+YO3cuPDw88NZbb6FTp06GgPGgNgwaRNQUHL+aifwSHYZxtgk1IbUOGt26dcOTTz4JNzc3\njBs3DkFBQQAAT09PXLx4EVlZWfDwKBt7lEgkSE9PN9x/UBsioqbg2/jbaOViB1+lg9ilED0ytT5H\nIzExEVqtFhYWFhAEAampqQAAlUoFd3d3eHh4IC0tDQAgCAKUSiXUanWVbYiIzJ2uVI/vL6jxtJ8n\n/8CiJqXWPRqtW7dGZGQkXFxc8Mwzz+D27dsIDw9Hfn4+lixZAl9fXyxfvhzW1tYICQmBUqmEs7Nz\nlW2IiMzdyetZuFOoxVBeDZSaGInQyLsUYmNjERgYKHYZREQPZdF/4xGToMIf7w+EhYVp9mhEvTpC\n7BIwc88hsUswOw86zqrVakRERMDJyQkdOnTA6NGjAQBfffUVzp8/j8LCQjz33HMYMGBAlevn9FYi\nogam1ws4kqDG0C6eJhsyqOnZvXs3QkJCEBYWhmPHjkGr1QIAHB0dsWzZMoSFheHQoeqDX62HTsSQ\nmJgodglERHV2Mb0Yqtxi+DpoTPrzLHDMJLFLMOntZ2oyMjKgVJZdwdbR0RF5eXlwcXHBiBEjUFBQ\ngOXLl2PSpOr3CZMIGr6+vmKXQERUZweuJaKZnTVG9vWHlaXpdiQfDpstdgkcOmkAsbGxlS5XKpVQ\nqVRQKpXIycmBo6MjACApKQmbNm3C9OnT4eXlVe36TXePJyIyAYIgICZBhcGdPUw6ZFDTM3LkSOzc\nuRMffvghhgwZgmXLlkGj0WDy5MkoKSnBmjVrsHnz5mrXYxI9GkREpuqiKg8pmYVY9GxnsUshqhWF\nQoGoqKgKy7///vtarYfxmoioAcXEq2Avs8KT7dzELoVIFAwaREQN6EiCCv07ucPG2lLsUohEwaBB\nRNRArmUU4KIqj99tQk0agwYRUQOJiVdBZmWBfj4KsUshEg2DBhFRA1DlFOPguVsI7qiAXMbz7qnp\n4t5PRFQPBEHAhdu5OHohDUcT1Th/MweWFhLMGeojdmlEomLQICKqI41OjxPXMnH0ghpHE9NwM7sI\ndlJL9O2owLgn22BAJ3c0k0vFLpNIVAwaRES1kF2owbFL6fg+UY2fL6Ujv0QHT0cbDOrsjkG+Hni8\nrStnmBDdg0GDiKgaKZkF+P6CGkcT1Th1/Q5K9QK6NHfE+N7eGNzZA12aO0Ii4ZelEVWGQYOI6D56\nvYCzqdl3h0TUuKzOh7WlBI+3dcWiZztjoK8HWjjbil0mkUlg0CAiAlCkKcVvVzNw9IIaP1xMQ0Z+\nCZxsrTGgkzumD+yI4I5ucLCxFrtMIpPDoEFETVZ6Xgl+vKjG9xfU+PVKBkp0erR2tcPz/s0xqLMH\nerZuxi9CI3pIDBpE1GQIgoArafmG8y3O3sgGAPTwcsa7gzpicGd3tFPY83wLonrEoEFEZk1bqsep\n61mG61v8nVUIG2sL9OmgwPIXu6F/J3coHGRil0lkthg0iMjs5BZr8cvldBy9oMZPl9KRU6SFwkGG\nQb7uWOTbGU+1d+MUVKJHhEGDiMxC6p1C/JBY1mvxZ3ImtKUCfDwc8MbjrTC4sye6tXCChQWHRIge\nNQYNIjJJgiDg/M0cHL2gxveJaUi8nQtLCwmCvF0w72lfDPL1QCtXO7HLJGryGDSIyGQUa0vxR3Km\n4foW6twSOMis0K+TOyb3bYt+Hd3hZMcpqESNCYMGETVqWQUa/HgxDUcvqPHLlXQUakrRwtkWT/sp\nMcjXA728XSC14hRUosaKQYOIGp3k9H+moMam3IFeALq3dMKUvu0wqLMHOnk6cAoqkYmoddCIi4vD\njh07YGdnh+bNmyM+Ph7Ozs4AgNDQUKSmpuLAgQMQBAGjRo2Cv78/Fi5cCLlcDo1Gg7CwMBw/ftyo\nTUBAQL2/MSIyHaV6AXF/37l7voUayekFkFpZoHd7N4Q/3xUDfd3h4WgjdplEVAe1Dhq5ubkIDw+H\nvb09xowZg4yMDLi7u8Pe3h4tWrTAkiVLsGHDBuj1esyYMQNjxoyBl5cXJk+ejLVr1yIuLg7R0dFG\nbTZt2tQQ742IGrGCEh1+vZKO7y+k4adLacgq0MBFLsWATu6YO6wT+nRwg52Una5Epq7Wv8X9+vWD\nIAjYtGkTXnjhBbRt2xbdu3fHzp07cfjwYQiCAKlUCgDQaDTIyMiAp6cnAMDT0xNpaWkV2hBR06DK\nKcYPF9U4ekGN35MyodHp0U4hx8ieLTHY1wM9WjWDJaegEpmVWgeN/Px8LF26FM8++yy8vLxw7tw5\ndO/eHc7OztBoNJDJZNBoNNDr9ZBKpVAqlYiNjQUAqFQqtG/fvkIbIjJPgiAg8XYejiaWnW/xV2oO\nLCRAzzYumD3EBwN93dFWYS92mUTUgGodND766COkpKRg3759EAQBVlZW+Ouvv5Cfn48FCxagZcuW\nWLBgAXQ6HUJDQ+Hn54eDBw8iPDwcABAQEACdTmfUhojMh0anx4lr5VNQ03Azuwh2Ukv07ajA2Cfa\nYEAndzST8w8MoqZCIgiCIHYRVYmNjUVgYKDYZRARAL1ewJ1CDTLyNUjPK0FGfonRbXp+Cc7+nY28\nEh08HW0wqLM7Bvl64PG2rrzktxmIenWE2CVg5p5DYpdgdhr6OMszrYiaOEEQkFOkNQSFsuBQeZDI\nLNCgVG/8t4mNtQUUDjIo7GVws5fhzd7eGNLZA12aO3IKKhExaBCZI0EQkFusqxAUMioJEhn5JdCW\nGocHqZVFWXC4GyC6tXQyun/vrVxqyUBBRA/EoEFkIgRBQIGm9AHBoXzoQoOMuz0TGp3e6PnWlhK4\n3e11UDjI0FnpCDcHacUA4SCDg8yK4QHAhsk/il0CAOCdTwaIXQJRnTFoEImsUKNDRp7GMGyRnl9i\nCAuG27uPFWuNw4OlhQSucikUDmUBooO7PZ5o63r3vtQwpKFwkMHJ1prhgYgeOQYNogZQrC2tdJii\nstsCTanRcy0kgIv8n6Dg7SpHrzYuhp6If26laGYn5VefE1GjxqBBVI3yIYs7BRrkFGlxp1CDO4Va\nZBdqcKeg7P79PRF5xboK63GRlw9TSNGymS38vZzvCw5lty5yKS9aRURmg0GDmhRtqR7Z5SGhsCwk\n3Pv/nML7gkShFjmFWmhK9RXWZWkhgbOtNZrdDRAejjbwa+5U4byH8vBgbclvGCWipodBg0ySIAjI\nK9Ehu6A8GNztbSgwDgllQeKf2/ySij0NACCXWsLZTopmcms0s5PCw9EGnTwdypbZlS1zunvbzM4a\nznZSOMisOGxBRFQNBg0SXYmu9G4vQ8UehuzCf8JDTtE/ISK7UAudvuK15qwsJEbhwNnOGs2VtnC+\nGw6a3XPbTF72uLOtFFIr9jYQETUEBg2qN3q9gLxinaGHIfueYYicB/Qw3CnUoPC+kyHLOdhYwdkQ\nGKRo7myLLs2d7llW8dae0zKJiBoVBg0yKNULKNDokF+sQ37J3X/F/9zmld8Wa+8ZnigLDNlFZfcr\n6WSA1NKiQijwcrGFk61xz0Mz+T89Dk621jyngYjIDDBomAGNTn9PGNAaB4V7wkJe8X33S3TIL9Ya\nlt0/zfJ+MisLONhYwV5mBae7ww+tXeXo7mV87kJ5cCgPFXa8ciQRUZPFoCESQRBQpC016ikwDgNa\nQxgoqOzxe3oZ7r8C5L0kEkAuLQsH9ndDgoNN2T+lkw3sbazgYHjM+u6tZdn/77a1l1lBLrPieQxE\nRFRrDBq1VKoX7usp0FbsKaik58A4LJSFiMqGGcpZWUjKDvJ3A0B5GPBwtEHbewJAeYBwuC9IlIcG\nO2tLzowgIiLRMGjUwITtp3AuNQcFJboHnrhYzk5qCbnM+MBvL7OCm71dhZ4DB9k/vQWG4HD3VmZl\nweEGIiIyeQwaNTDQ1wNdmjtVCAMORsMNVpBLLWHFExiJiIgMGDRqYFSvVmKXQEREZJL45zcRERE1\nGPZoEBERUQVqtRoRERFwcnJChw4dMHr0aADA8ePHceDAAQiCgFGjRiEgIKDK9bBHg4iIiCrYvXs3\nQkJCEBYWhmPHjkGr1QIAoqOjER4ejiVLlmDLli3VrsckejQSExPFLoGoSSiOjxe7BACAjZ+f2CUA\nAPyel4tdAoDG8xkYOGaS2CU0mm3RFGRkZECpVAIAHB0dkZeXBxcXFwiCAKlUCgDQaDTVrsckgoav\nr+9DPb/N+/+rp0oezvWI4WKXQPfpur2r2CUAAM6PPS92CQCAxBdeFLsEAIDvxcZxMPlxzY9ilwAA\neOeTILFLAAAcDpstdgmYueeQ2CWYndjY2EqXK5VKqFQqKJVK5OTkwNHREQAgk8mg0Wig1+sNgaMq\nJhE0iIiI6NEaOXIkIiIi8M0332DIkCFYtmwZ5s6di7Fjx2LBggXQ6XQIDQ2tdj0MGk1NmJPYFZQJ\nyxG7AiIiqoJCoUBUVFSF5b169UKvXr1qvB6eDEpEREQNhkGDiIiIGoxoQycPmp9LRERE5kMiCEIV\n3yHacNasWYM+ffogII5y5FMAAALtSURBVCAAEydOxMaNG2FtbV2h3YPOhiUiIqL6ERgY2GDrFq1H\n40Hzc+/XkG+eiIiIGpZo52iUz88FYDQ/l4iIiMyHaEMn6enpiIiIgFwuh5+fH1555RUxyiAiIqIG\nJFrQICIiIvPH6a1ERETUYBg0iIiIqMHwEuTV4PU+KkpJScH06dNx4MABsUsRVVxcHHbs2AE7Ozs0\nb94cU6dOFbskUV2/fh1RUVFwc3ND165d8eKLjeML2sQ2c+ZMDBgwAMOHN+0vVbx16xamTJkCX19f\nKBQKzJw5U+ySRJOamoqNGzfC1dUVcrkckydPFrukBsUejWrs3r0bISEhCAsLw7Fjx6DVasUuSVTp\n6enYu3cvbG1txS5FdLm5uQgPD8fSpUsRFxcndjmiy8vLw5w5czB//nx89913YpfTKERHR0Mubxxf\nNS+2kydPws3NDQDQo0cPkasRV3R0NDw9PZGeng5/f3+xy2lwDBrVqOx6H02ZQqHArFmzYGdnJ3Yp\nouvXrx/kcjk2bdqEZ599VuxyRNe1a1dIpVK8/fbbTeLDszo//vgjHBwcuC3u6tatG5YtW4alS5fi\n888/b9J/tKWkpGDQoEFYsmQJ/n97946qMBRFYXgRTAQJxAd2glPIDOxS2Fk4A2eRwkpQQbCxdQQm\nkQwlEFJnBEGwS2Nx64vVYRf+3wgWp1qcxz632806jnMUjS+Y94H/vN9vpWmqOI612Wys45hrmkZB\nEOh+v6uua71ev/1Db1mWqqpKRVHo8Xio6zrrSKaaplHf9/I8T6PRSL/84HE+nysMQ/m+/xM7XtzR\n+GK73ep4PKooCiVJosGAJcOfw+Ggtm2VZZmez6dOp5N1JFN932u/32s8HmuxWCiKIutIpq7XqyQp\nz3MNh0NNJhPjRLaWy6XO57Om06lWq5WCILCOZGa32+lyuWg2m2m9XlvHcY45GgAAwBmOTgAAgDMU\nDQAA4AxFAwAAOEPRAAAAzlA0AACAMxQNAADgzAcEUI67nKPS7AAAAABJRU5ErkJggg==\n", "text/plain": [""]}, "metadata": {}, "output_type": "display_data"}], "source": ["df[\"nb\"] = 1\n", "dissem = df[[\"JSEMAINE\",\"nb\"]].groupby(\"JSEMAINE\",as_index=False).sum()\n", "total = dissem[\"nb\"].sum()\n", "repsem = dissem.cumsum() \n", "repsem[\"nb\"] /= total\n", "\n", "sns.set_style('whitegrid')\n", "ax = dissem[\"nb\"].plot(kind=\"bar\")\n", "repsem[\"nb\"].plot(ax=ax, secondary_y=True)\n", "ax.set_title(\"Distribution des mariages par jour de la semaine\",fontsize=16)"]}, {"cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " ANAISH | \n", " DEPNAISH | \n", " INDNATH | \n", " ETAMATH | \n", " ANAISF | \n", " DEPNAISF | \n", " INDNATF | \n", " ETAMATF | \n", " AMAR | \n", " MMAR | \n", " JSEMAINE | \n", " DEPMAR | \n", " DEPDOM | \n", " TUDOM | \n", " TUCOM | \n", " NBENFCOM | \n", " AGEF | \n", " AGEH | \n", " nb | \n", " differenceHF | \n", "
\n", " \n", " \n", " \n", " 0 | \n", " 1982 | \n", " 75 | \n", " 1 | \n", " 1 | \n", " 1984 | \n", " 99 | \n", " 2 | \n", " 1 | \n", " 2012 | \n", " 01 | \n", " 1 | \n", " 29 | \n", " 99 | \n", " 9 | \n", " | \n", " N | \n", " 28 | \n", " 30 | \n", " 1 | \n", " -2 | \n", "
\n", " \n", " 1 | \n", " 1956 | \n", " 69 | \n", " 2 | \n", " 4 | \n", " 1969 | \n", " 99 | \n", " 2 | \n", " 4 | \n", " 2012 | \n", " 01 | \n", " 3 | \n", " 75 | \n", " 99 | \n", " 9 | \n", " | \n", " N | \n", " 43 | \n", " 56 | \n", " 1 | \n", " -13 | \n", "
\n", " \n", " 2 | \n", " 1982 | \n", " 99 | \n", " 2 | \n", " 1 | \n", " 1992 | \n", " 99 | \n", " 1 | \n", " 1 | \n", " 2012 | \n", " 01 | \n", " 5 | \n", " 34 | \n", " 99 | \n", " 9 | \n", " | \n", " N | \n", " 20 | \n", " 30 | \n", " 1 | \n", " -10 | \n", "
\n", " \n", " 3 | \n", " 1985 | \n", " 99 | \n", " 2 | \n", " 1 | \n", " 1987 | \n", " 84 | \n", " 1 | \n", " 1 | \n", " 2012 | \n", " 01 | \n", " 4 | \n", " 13 | \n", " 99 | \n", " 9 | \n", " | \n", " N | \n", " 25 | \n", " 27 | \n", " 1 | \n", " -2 | \n", "
\n", " \n", " 4 | \n", " 1968 | \n", " 99 | \n", " 2 | \n", " 1 | \n", " 1963 | \n", " 99 | \n", " 2 | \n", " 1 | \n", " 2012 | \n", " 01 | \n", " 6 | \n", " 26 | \n", " 99 | \n", " 9 | \n", " | \n", " N | \n", " 49 | \n", " 44 | \n", " 1 | \n", " 5 | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" ANAISH DEPNAISH INDNATH ETAMATH ANAISF DEPNAISF INDNATF ETAMATF AMAR \\\n", "0 1982 75 1 1 1984 99 2 1 2012 \n", "1 1956 69 2 4 1969 99 2 4 2012 \n", "2 1982 99 2 1 1992 99 1 1 2012 \n", "3 1985 99 2 1 1987 84 1 1 2012 \n", "4 1968 99 2 1 1963 99 2 1 2012 \n", "\n", " MMAR JSEMAINE DEPMAR DEPDOM TUDOM TUCOM NBENFCOM AGEF AGEH nb \\\n", "0 01 1 29 99 9 N 28 30 1 \n", "1 01 3 75 99 9 N 43 56 1 \n", "2 01 5 34 99 9 N 20 30 1 \n", "3 01 4 13 99 9 N 25 27 1 \n", "4 01 6 26 99 9 N 49 44 1 \n", "\n", " differenceHF \n", "0 -2 \n", "1 -13 \n", "2 -10 \n", "3 -2 \n", "4 5 "]}, "execution_count": 33, "metadata": {}, "output_type": "execute_result"}], "source": ["df.head()"]}, {"cell_type": "markdown", "metadata": {}, "source": ["# Graphes int\u00e9ractifs : bokeh, altair, bqplot"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Pour faire simple, il est possible d'introduire du JavaScript dans l'application web locale cr\u00e9\u00e9e par jupyter. C'est ce que fait D3.js. Les librairies interactives comme [bokeh](http://bokeh.pydata.org/en/latest/) ou [altair](https://altair-viz.github.io/) ont associ\u00e9 le design de [matplotlib](https://matplotlib.org/) avec des librairies javascript comme [vega-lite](https://vega.github.io/vega-lite/). L'exemple suivant utilise [bokeh](http://bokeh.pydata.org/en/latest/)."]}, {"cell_type": "code", "execution_count": 33, "metadata": {"scrolled": false}, "outputs": [{"data": {"text/html": ["\n", " \n", "
\n", "
Loading BokehJS ...\n", "
"]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/javascript": ["\n", "(function(root) {\n", " function now() {\n", " return new Date();\n", " }\n", "\n", " var force = true;\n", "\n", " if (typeof (root._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n", " root._bokeh_onload_callbacks = [];\n", " root._bokeh_is_loading = undefined;\n", " }\n", "\n", " var JS_MIME_TYPE = 'application/javascript';\n", " var HTML_MIME_TYPE = 'text/html';\n", " var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", " var CLASS_NAME = 'output_bokeh rendered_html';\n", "\n", " /**\n", " * Render data to the DOM node\n", " */\n", " function render(props, node) {\n", " var script = document.createElement(\"script\");\n", " node.appendChild(script);\n", " }\n", "\n", " /**\n", " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", " var cell = handle.cell;\n", "\n", " var id = cell.output_area._bokeh_element_id;\n", " var server_id = cell.output_area._bokeh_server_id;\n", " // Clean up Bokeh references\n", " if (id !== undefined) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", "\n", " if (server_id !== undefined) {\n", " // Clean up Bokeh references\n", " var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", " cell.notebook.kernel.execute(cmd, {\n", " iopub: {\n", " output: function(msg) {\n", " var element_id = msg.content.text.trim();\n", " Bokeh.index[element_id].model.document.clear();\n", " delete Bokeh.index[element_id];\n", " }\n", " }\n", " });\n", " // Destroy server and session\n", " var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", " cell.notebook.kernel.execute(cmd);\n", " }\n", " }\n", "\n", " /**\n", " * Handle when a new output is added\n", " */\n", " function handleAddOutput(event, handle) {\n", " var output_area = handle.output_area;\n", " var output = handle.output;\n", "\n", " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", " if ((output.output_type != \"display_data\") || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", " return\n", " }\n", "\n", " var toinsert = output_area.element.find(`.${CLASS_NAME.split(' ')[0]}`);\n", "\n", " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", " toinsert[0].firstChild.textContent = output.data[JS_MIME_TYPE];\n", " // store reference to embed id on output_area\n", " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", " }\n", " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", " var bk_div = document.createElement(\"div\");\n", " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", " var script_attrs = bk_div.children[0].attributes;\n", " for (var i = 0; i < script_attrs.length; i++) {\n", " toinsert[0].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", " }\n", " // store reference to server id on output_area\n", " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", " }\n", " }\n", "\n", " function register_renderer(events, OutputArea) {\n", "\n", " function append_mime(data, metadata, element) {\n", " // create a DOM node to render to\n", " var toinsert = this.create_output_subarea(\n", " metadata,\n", " CLASS_NAME,\n", " EXEC_MIME_TYPE\n", " );\n", " this.keyboard_manager.register_events(toinsert);\n", " // Render to node\n", " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", " render(props, toinsert[0]);\n", " element.append(toinsert);\n", " return toinsert\n", " }\n", "\n", " /* Handle when an output is cleared or removed */\n", " events.on('clear_output.CodeCell', handleClearOutput);\n", " events.on('delete.Cell', handleClearOutput);\n", "\n", " /* Handle when a new output is added */\n", " events.on('output_added.OutputArea', handleAddOutput);\n", "\n", " /**\n", " * Register the mime type and append_mime function with output_area\n", " */\n", " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", " /* Is output safe? */\n", " safe: true,\n", " /* Index of renderer in `output_area.display_order` */\n", " index: 0\n", " });\n", " }\n", "\n", " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", " if (root.Jupyter !== undefined) {\n", " var events = require('base/js/events');\n", " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", "\n", " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", " register_renderer(events, OutputArea);\n", " }\n", " }\n", "\n", " \n", " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", " root._bokeh_timeout = Date.now() + 5000;\n", " root._bokeh_failed_load = false;\n", " }\n", "\n", " var NB_LOAD_WARNING = {'data': {'text/html':\n", " \"\\n\"+\n", " \"
\\n\"+\n", " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", " \"
\\n\"+\n", " \"
\\n\"+\n", " \"- re-rerun `output_notebook()` to attempt to load from CDN again, or
\\n\"+\n", " \"- use INLINE resources instead, as so:
\\n\"+\n", " \"
\\n\"+\n", " \"
\\n\"+\n", " \"from bokeh.resources import INLINE\\n\"+\n", " \"output_notebook(resources=INLINE)\\n\"+\n", " \"
\\n\"+\n", " \"
\"}};\n", "\n", " function display_loaded() {\n", " var el = document.getElementById(\"459191df-ec45-44f7-a189-2c62fb6a1d5c\");\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", " if (root.Bokeh !== undefined) {\n", " if (el != null) {\n", " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", " }\n", " } else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(display_loaded, 100)\n", " }\n", " }\n", "\n", "\n", " function run_callbacks() {\n", " try {\n", " root._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n", " }\n", " finally {\n", " delete root._bokeh_onload_callbacks\n", " }\n", " console.info(\"Bokeh: all callbacks have finished\");\n", " }\n", "\n", " function load_libs(js_urls, callback) {\n", " root._bokeh_onload_callbacks.push(callback);\n", " if (root._bokeh_is_loading > 0) {\n", " console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", " return null;\n", " }\n", " if (js_urls == null || js_urls.length === 0) {\n", " run_callbacks();\n", " return null;\n", " }\n", " console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", " root._bokeh_is_loading = js_urls.length;\n", " for (var i = 0; i < js_urls.length; i++) {\n", " var url = js_urls[i];\n", " var s = document.createElement('script');\n", " s.src = url;\n", " s.async = false;\n", " s.onreadystatechange = s.onload = function() {\n", " root._bokeh_is_loading--;\n", " if (root._bokeh_is_loading === 0) {\n", " console.log(\"Bokeh: all BokehJS libraries loaded\");\n", " run_callbacks()\n", " }\n", " };\n", " s.onerror = function() {\n", " console.warn(\"failed to load library \" + url);\n", " };\n", " console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", " document.getElementsByTagName(\"head\")[0].appendChild(s);\n", " }\n", " };var element = document.getElementById(\"459191df-ec45-44f7-a189-2c62fb6a1d5c\");\n", " if (element == null) {\n", " console.log(\"Bokeh: ERROR: autoload.js configured with elementid '459191df-ec45-44f7-a189-2c62fb6a1d5c' but no matching script tag was found. \")\n", " return false;\n", " }\n", "\n", " var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.10.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.10.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.10.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-0.12.10.min.js\"];\n", "\n", " var inline_js = [\n", " function(Bokeh) {\n", " Bokeh.set_log_level(\"info\");\n", " },\n", " \n", " function(Bokeh) {\n", " \n", " },\n", " function(Bokeh) {\n", " console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-0.12.10.min.css\");\n", " Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.10.min.css\");\n", " console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.10.min.css\");\n", " Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.10.min.css\");\n", " console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.10.min.css\");\n", " Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.10.min.css\");\n", " }\n", " ];\n", "\n", " function run_inline_js() {\n", " \n", " if ((root.Bokeh !== undefined) || (force === true)) {\n", " for (var i = 0; i < inline_js.length; i++) {\n", " inline_js[i].call(root, root.Bokeh);\n", " }if (force === true) {\n", " display_loaded();\n", " }} else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(run_inline_js, 100);\n", " } else if (!root._bokeh_failed_load) {\n", " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", " var cell = $(document.getElementById(\"459191df-ec45-44f7-a189-2c62fb6a1d5c\")).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", "\n", " }\n", "\n", " if (root._bokeh_is_loading === 0) {\n", " console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", " run_inline_js();\n", " } else {\n", " load_libs(js_urls, function() {\n", " console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n", " run_inline_js();\n", " });\n", " }\n", "}(window));"], "application/vnd.bokehjs_load.v0+json": "\n(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof (root._bokeh_onload_callbacks) === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n \n\n \n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n var NB_LOAD_WARNING = {'data': {'text/html':\n \"\\n\"+\n \"
\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"
\\n\"+\n \"
\\n\"+\n \"- re-rerun `output_notebook()` to attempt to load from CDN again, or
\\n\"+\n \"- use INLINE resources instead, as so:
\\n\"+\n \"
\\n\"+\n \"
\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"
\\n\"+\n \"
\"}};\n\n function display_loaded() {\n var el = document.getElementById(\"459191df-ec45-44f7-a189-2c62fb6a1d5c\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) { callback() });\n }\n finally {\n delete root._bokeh_onload_callbacks\n }\n console.info(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(js_urls, callback) {\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.log(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.log(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = js_urls.length;\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n var s = document.createElement('script');\n s.src = url;\n s.async = false;\n s.onreadystatechange = s.onload = function() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.log(\"Bokeh: all BokehJS libraries loaded\");\n run_callbacks()\n }\n };\n s.onerror = function() {\n console.warn(\"failed to load library \" + url);\n };\n console.log(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.getElementsByTagName(\"head\")[0].appendChild(s);\n }\n };var element = document.getElementById(\"459191df-ec45-44f7-a189-2c62fb6a1d5c\");\n if (element == null) {\n console.log(\"Bokeh: ERROR: autoload.js configured with elementid '459191df-ec45-44f7-a189-2c62fb6a1d5c' but no matching script tag was found. \")\n return false;\n }\n\n var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.10.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.10.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.10.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-0.12.10.min.js\"];\n\n var inline_js = [\n function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\n \n function(Bokeh) {\n \n },\n function(Bokeh) {\n console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-0.12.10.min.css\");\n Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-0.12.10.min.css\");\n console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.10.min.css\");\n Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-widgets-0.12.10.min.css\");\n console.log(\"Bokeh: injecting CSS: https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.10.min.css\");\n Bokeh.embed.inject_css(\"https://cdn.pydata.org/bokeh/release/bokeh-tables-0.12.10.min.css\");\n }\n ];\n\n function run_inline_js() {\n \n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }if (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n var cell = $(document.getElementById(\"459191df-ec45-44f7-a189-2c62fb6a1d5c\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n\n }\n\n if (root._bokeh_is_loading === 0) {\n console.log(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(js_urls, function() {\n console.log(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));"}, "metadata": {}, "output_type": "display_data"}, {"data": {"text/html": ["\n", ""]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/javascript": ["(function(root) {\n", " function embed_document(root) {\n", " var docs_json = {\"ce4157b9-d498-4eed-9c57-8fa7ea5e01f3\":{\"roots\":{\"references\":[{\"attributes\":{\"callback\":null},\"id\":\"0b3d2958-149d-4795-af8a-fbf55806a247\",\"type\":\"DataRange1d\"},{\"attributes\":{\"callback\":null},\"id\":\"04cab520-084f-4cfe-8aed-5bdadecaef4c\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"e9e4bfce-f479-42f7-91cd-92c642bd801d\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"fabed95a-81ac-4fb8-8324-2d56fee9c952\",\"type\":\"LinearScale\"},{\"attributes\":{\"plot\":null,\"text\":\"\"},\"id\":\"a8a366fa-0a5b-40d9-bcc8-8a7c83c90f93\",\"type\":\"Title\"},{\"attributes\":{\"axis_label\":\"AGEH\",\"formatter\":{\"id\":\"2eada4f1-5a81-4de0-aa81-0b70a3721f95\",\"type\":\"BasicTickFormatter\"},\"plot\":{\"id\":\"977cac45-d8c4-4e93-bbe2-4424ebc3fc16\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"6b84c573-2474-45fc-b82e-07e1c4d5ee25\",\"type\":\"BasicTicker\"}},\"id\":\"af6c842e-2794-41b0-986c-8241b3a0edfc\",\"type\":\"LinearAxis\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"706534ab-495e-4942-94ca-549667d9adaf\",\"type\":\"Circle\"},{\"attributes\":{},\"id\":\"6b84c573-2474-45fc-b82e-07e1c4d5ee25\",\"type\":\"BasicTicker\"},{\"attributes\":{\"plot\":{\"id\":\"977cac45-d8c4-4e93-bbe2-4424ebc3fc16\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"6b84c573-2474-45fc-b82e-07e1c4d5ee25\",\"type\":\"BasicTicker\"}},\"id\":\"70e31a0f-32bf-4f5b-998b-310f1e515b57\",\"type\":\"Grid\"},{\"attributes\":{\"callback\":null,\"column_names\":[\"x\",\"y\"],\"data\":{\"x\":[33,29,54,59,24,33,30,36,38,70,33,40,31,40,41,39,31,44,62,32,34,59,36,31,30,27,27,38,27,28,57,24,33,37,37,24,41,32,42,28,30,28,25,46,32,26,23,39,44,28,22,30,31,64,42,33,52,25,66,33,40,49,64,25,32,26,49,24,23,55,26,38,41,33,30,43,32,64,41,30,37,30,31,26,35,24,35,33,30,53,51,39,32,68,24,27,46,34,32,57,35,51,33,27,47,39,28,24,28,35,28,30,35,25,38,44,23,57,34,37,29,31,28,26,38,52,34,42,43,29,44,52,39,33,59,34,27,74,44,37,43,29,28,30,26,51,26,50,25,38,50,43,31,37,36,54,49,45,42,33,26,56,30,32,38,47,34,42,27,51,24,27,26,35,32,29,23,31,22,26,46,33,46,35,55,37,61,60,38,57,30,56,25,27,42,42,26,41,35,33,33,30,56,63,32,32,28,34,50,56,27,25,41,57,37,56,26,52,34,40,33,24,45,28,33,30,44,24,32,28,24,48,29,48,59,28,27,34,24,30,25,29,26,24,27,31,41,30,32,40,28,54,40,26,22,39,25,32,28,54,33,30,28,28,28,28,26,27,39,37,22,42,26,28,30,51,32,29,43,45,28,33,29,31,39,44,26,25,25,26,37,50,39,59,25,30,38,28,29,58,60,40,30,34,39,32,31,27,40,36,32,58,33,52,64,24,30,23,32,28,29,34,49,29,47,25,39,52,38,39,35,65,32,29,51,30,41,42,49,28,41,31,50,34,30,31,41,61,33,31,28,28,23,47,42,43,30,47,26,27,47,34,31,28,35,40,33,25,39,38,40,56,53,56,31,43,35,30,50,30,23,23,72,51,31,32,45,30,37,32,29,26,41,27,33,32,27,34,53,25,40,37,32,36,39,38,46,29,48,61,23,24,50,31,27,70,39,32,38,21,30,39,27,31,24,27,39,39,38,26,65,63,30,42,31,30,24,30,30,47,28,38,48,27,37,33,42,29,32,32,27,28,37,31,49,40,38,29,26,45,29,25,33,27,62,28,42,60,39,30,30,29,31,36,42,28,35,27,30,36,40,21,64,28,31,55,32,27,51,33,31,33,40,27,47,42,57,38,28,30],\"y\":[30,29,38,65,23,28,30,31,32,73,29,31,25,45,41,36,29,44,46,23,33,56,41,29,24,31,25,44,24,24,61,23,28,23,33,25,33,28,40,30,44,26,24,41,31,19,23,28,42,28,20,26,29,47,37,33,55,24,55,25,24,51,59,19,30,24,40,28,22,55,23,29,40,42,27,35,27,60,34,25,33,39,29,25,36,23,22,36,26,44,47,44,30,59,24,32,42,32,31,57,30,33,33,27,45,36,28,20,26,31,26,28,44,24,29,41,21,48,27,30,36,55,30,26,35,44,35,38,50,30,30,62,41,29,59,34,23,59,43,39,34,33,21,26,26,51,24,44,36,37,49,38,24,41,30,51,47,39,37,25,24,46,31,38,39,45,33,37,25,47,23,19,22,37,31,27,22,30,22,23,42,30,35,31,48,26,54,64,31,49,26,41,27,26,38,35,30,33,27,26,29,34,27,51,22,33,28,39,38,42,30,26,40,53,35,45,22,42,33,38,28,25,35,26,32,29,40,22,26,27,18,37,25,39,59,28,26,32,25,32,24,29,29,32,23,33,41,25,31,45,21,41,25,25,21,39,22,28,27,48,34,28,27,25,28,25,33,26,35,35,20,34,22,27,22,40,25,23,43,41,28,31,29,27,42,49,26,27,25,27,40,53,40,58,44,25,37,32,29,50,43,34,27,34,34,33,30,25,33,37,28,51,35,46,54,23,31,21,28,27,27,31,52,28,43,22,42,50,57,34,41,41,31,32,47,28,40,41,47,26,38,27,48,22,28,32,42,54,30,31,27,29,22,51,31,53,28,51,25,27,31,39,27,22,31,36,33,25,45,44,41,47,55,53,33,35,36,29,30,29,22,26,46,53,30,30,36,27,37,20,29,24,40,31,31,24,25,30,39,24,35,34,32,36,36,37,42,26,35,61,20,22,56,30,24,43,29,32,33,22,28,36,28,29,22,29,31,40,23,22,64,58,27,49,29,28,36,28,26,27,27,32,32,36,34,28,33,27,32,29,24,29,31,30,50,49,46,29,24,42,28,22,30,21,25,30,39,56,39,23,27,32,30,29,37,22,35,31,30,32,37,22,40,28,29,42,35,30,43,35,28,26,37,22,52,36,45,37,27,30]}},\"id\":\"42f443aa-a0d1-4c8f-9a28-66b9050c2a64\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"axis_label\":\"AGEH\",\"formatter\":{\"id\":\"0b51f98e-acb6-40e4-b9ad-1506ea8efc04\",\"type\":\"BasicTickFormatter\"},\"plot\":{\"id\":\"977cac45-d8c4-4e93-bbe2-4424ebc3fc16\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"98a4f373-aa6f-4b93-bb9a-af719a7dd562\",\"type\":\"BasicTicker\"}},\"id\":\"c076b591-fd95-49d3-a588-bd269a855f04\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"98a4f373-aa6f-4b93-bb9a-af719a7dd562\",\"type\":\"BasicTicker\"},{\"attributes\":{\"dimension\":1,\"plot\":{\"id\":\"977cac45-d8c4-4e93-bbe2-4424ebc3fc16\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"98a4f373-aa6f-4b93-bb9a-af719a7dd562\",\"type\":\"BasicTicker\"}},\"id\":\"cb97200d-513d-4f6c-849f-1da105780455\",\"type\":\"Grid\"},{\"attributes\":{\"bottom_units\":\"screen\",\"fill_alpha\":{\"value\":0.5},\"fill_color\":{\"value\":\"lightgrey\"},\"left_units\":\"screen\",\"level\":\"overlay\",\"line_alpha\":{\"value\":1.0},\"line_color\":{\"value\":\"black\"},\"line_dash\":[4,4],\"line_width\":{\"value\":2},\"plot\":null,\"render_mode\":\"css\",\"right_units\":\"screen\",\"top_units\":\"screen\"},\"id\":\"5b99ca1e-7e9a-4781-b6bc-7010752e2f10\",\"type\":\"BoxAnnotation\"},{\"attributes\":{},\"id\":\"0b51f98e-acb6-40e4-b9ad-1506ea8efc04\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"55e61650-65f5-41cc-a8c1-90f36979d43f\",\"type\":\"PanTool\"},{\"attributes\":{},\"id\":\"5975ba4c-3185-4691-9947-aa38a970b862\",\"type\":\"WheelZoomTool\"},{\"attributes\":{\"fill_color\":{\"value\":\"#1f77b4\"},\"line_color\":{\"value\":\"#1f77b4\"},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"9cd446c0-2e2e-41e6-a0c6-f3f4f87fd03a\",\"type\":\"Circle\"},{\"attributes\":{\"overlay\":{\"id\":\"5b99ca1e-7e9a-4781-b6bc-7010752e2f10\",\"type\":\"BoxAnnotation\"}},\"id\":\"3d695e9a-9f05-4861-a14c-b762594bc17b\",\"type\":\"BoxZoomTool\"},{\"attributes\":{},\"id\":\"459ac4a7-fa01-4453-a282-4d1730671f7a\",\"type\":\"SaveTool\"},{\"attributes\":{},\"id\":\"679a2ebc-1202-4515-a497-d7a0fa41cb0d\",\"type\":\"ResetTool\"},{\"attributes\":{},\"id\":\"ce3e3121-a45c-4518-8c69-dc7886abf6c6\",\"type\":\"HelpTool\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"55e61650-65f5-41cc-a8c1-90f36979d43f\",\"type\":\"PanTool\"},{\"id\":\"5975ba4c-3185-4691-9947-aa38a970b862\",\"type\":\"WheelZoomTool\"},{\"id\":\"3d695e9a-9f05-4861-a14c-b762594bc17b\",\"type\":\"BoxZoomTool\"},{\"id\":\"459ac4a7-fa01-4453-a282-4d1730671f7a\",\"type\":\"SaveTool\"},{\"id\":\"679a2ebc-1202-4515-a497-d7a0fa41cb0d\",\"type\":\"ResetTool\"},{\"id\":\"ce3e3121-a45c-4518-8c69-dc7886abf6c6\",\"type\":\"HelpTool\"}]},\"id\":\"b16b1054-a159-42b4-bea8-0c820b8ea9a6\",\"type\":\"Toolbar\"},{\"attributes\":{\"below\":[{\"id\":\"af6c842e-2794-41b0-986c-8241b3a0edfc\",\"type\":\"LinearAxis\"}],\"left\":[{\"id\":\"c076b591-fd95-49d3-a588-bd269a855f04\",\"type\":\"LinearAxis\"}],\"renderers\":[{\"id\":\"af6c842e-2794-41b0-986c-8241b3a0edfc\",\"type\":\"LinearAxis\"},{\"id\":\"70e31a0f-32bf-4f5b-998b-310f1e515b57\",\"type\":\"Grid\"},{\"id\":\"c076b591-fd95-49d3-a588-bd269a855f04\",\"type\":\"LinearAxis\"},{\"id\":\"cb97200d-513d-4f6c-849f-1da105780455\",\"type\":\"Grid\"},{\"id\":\"5b99ca1e-7e9a-4781-b6bc-7010752e2f10\",\"type\":\"BoxAnnotation\"},{\"id\":\"4ef25b4e-1438-43e3-a46a-854b9dbdfba8\",\"type\":\"GlyphRenderer\"}],\"title\":{\"id\":\"a8a366fa-0a5b-40d9-bcc8-8a7c83c90f93\",\"type\":\"Title\"},\"toolbar\":{\"id\":\"b16b1054-a159-42b4-bea8-0c820b8ea9a6\",\"type\":\"Toolbar\"},\"x_range\":{\"id\":\"0b3d2958-149d-4795-af8a-fbf55806a247\",\"type\":\"DataRange1d\"},\"x_scale\":{\"id\":\"e9e4bfce-f479-42f7-91cd-92c642bd801d\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"04cab520-084f-4cfe-8aed-5bdadecaef4c\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"fabed95a-81ac-4fb8-8324-2d56fee9c952\",\"type\":\"LinearScale\"}},\"id\":\"977cac45-d8c4-4e93-bbe2-4424ebc3fc16\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{},\"id\":\"2eada4f1-5a81-4de0-aa81-0b70a3721f95\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"data_source\":{\"id\":\"42f443aa-a0d1-4c8f-9a28-66b9050c2a64\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"9cd446c0-2e2e-41e6-a0c6-f3f4f87fd03a\",\"type\":\"Circle\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"706534ab-495e-4942-94ca-549667d9adaf\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"5e9cfaa1-384c-419a-a6c3-c1cfa369093b\",\"type\":\"CDSView\"}},\"id\":\"4ef25b4e-1438-43e3-a46a-854b9dbdfba8\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"source\":{\"id\":\"42f443aa-a0d1-4c8f-9a28-66b9050c2a64\",\"type\":\"ColumnDataSource\"}},\"id\":\"5e9cfaa1-384c-419a-a6c3-c1cfa369093b\",\"type\":\"CDSView\"}],\"root_ids\":[\"977cac45-d8c4-4e93-bbe2-4424ebc3fc16\"]},\"title\":\"Bokeh Application\",\"version\":\"0.12.10\"}};\n", " var render_items = [{\"docid\":\"ce4157b9-d498-4eed-9c57-8fa7ea5e01f3\",\"elementid\":\"4ca479c1-0582-4409-937d-68452b702bd4\",\"modelid\":\"977cac45-d8c4-4e93-bbe2-4424ebc3fc16\"}];\n", "\n", " root.Bokeh.embed.embed_items(docs_json, render_items);\n", " }\n", "\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " var attempts = 0;\n", " var timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " clearInterval(timer);\n", " }\n", " attempts++;\n", " if (attempts > 100) {\n", " console.log(\"Bokeh: ERROR: Unable to embed document because BokehJS library is missing\")\n", " clearInterval(timer);\n", " }\n", " }, 10, root)\n", " }\n", "})(window);"], "application/vnd.bokehjs_exec.v0+json": ""}, "metadata": {"application/vnd.bokehjs_exec.v0+json": {"id": "977cac45-d8c4-4e93-bbe2-4424ebc3fc16"}}, "output_type": "display_data"}], "source": ["from bokeh.plotting import figure, show, output_notebook\n", "output_notebook()\n", "\n", "fig = figure()\n", "\n", "sample = df.sample(500)\n", "\n", "fig.scatter(sample['AGEH'],sample['AGEF'])\n", "fig.xaxis.axis_label = 'AGEH'\n", "fig.yaxis.axis_label = 'AGEH'\n", "show(fig)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["La page [callbacks](https://bokeh.pydata.org/en/latest/docs/user_guide/interaction/callbacks.html) montre comment utiliser les interactions utilisateurs. Seul inconv\u00e9nient, il faut conna\u00eetre le javascript."]}, {"cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", ""]}, "metadata": {}, "output_type": "display_data"}, {"data": {"application/javascript": ["(function(root) {\n", " function embed_document(root) {\n", " var docs_json = {\"b0c3fe59-2ef5-4600-9700-e5d1b6eaec90\":{\"roots\":{\"references\":[{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"17e540b7-6ed8-480d-ac1d-62aa47dfb403\",\"type\":\"HoverTool\"}]},\"id\":\"53019176-53e0-4bd1-882f-78d06fa33f77\",\"type\":\"Toolbar\"},{\"attributes\":{},\"id\":\"cbad94c3-1675-480c-81a1-9f0e32779c50\",\"type\":\"LinearScale\"},{\"attributes\":{\"callback\":null},\"id\":\"907659cb-bca4-4311-b875-6835665452ae\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"aeae838f-00e9-42fa-81f6-55eafabd2430\",\"type\":\"LinearScale\"},{\"attributes\":{\"formatter\":{\"id\":\"23d1c07b-8478-4ecd-a789-d1718afeec04\",\"type\":\"BasicTickFormatter\"},\"plot\":{\"id\":\"535ebb48-a4c6-4f64-b121-7e9255a0a944\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"018234ee-c473-488f-a87b-4a5b50c8eeaf\",\"type\":\"BasicTicker\"}},\"id\":\"215b666f-e349-42d1-86f9-e77676c2fb8e\",\"type\":\"LinearAxis\"},{\"attributes\":{\"line_alpha\":{\"value\":0.6},\"line_color\":{\"value\":\"olive\"},\"line_width\":{\"value\":3},\"x0\":{\"field\":\"x0\"},\"x1\":{\"field\":\"x1\"},\"y0\":{\"field\":\"y0\"},\"y1\":{\"field\":\"y1\"}},\"id\":\"3fa20552-7219-45ea-a366-99c56e75b466\",\"type\":\"Segment\"},{\"attributes\":{\"plot\":{\"id\":\"535ebb48-a4c6-4f64-b121-7e9255a0a944\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"018234ee-c473-488f-a87b-4a5b50c8eeaf\",\"type\":\"BasicTicker\"}},\"id\":\"13f19693-6a83-40e4-8acd-285e9b9fa31b\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"018234ee-c473-488f-a87b-4a5b50c8eeaf\",\"type\":\"BasicTicker\"},{\"attributes\":{\"formatter\":{\"id\":\"523ef191-c459-4cee-98ba-82b0bc9d43ee\",\"type\":\"BasicTickFormatter\"},\"plot\":{\"id\":\"535ebb48-a4c6-4f64-b121-7e9255a0a944\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"1e2101d7-d953-422a-b3ea-ace59e83ee1b\",\"type\":\"BasicTicker\"}},\"id\":\"840b9657-0a74-4bd6-98f8-74abbacc3885\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"1e2101d7-d953-422a-b3ea-ace59e83ee1b\",\"type\":\"BasicTicker\"},{\"attributes\":{\"dimension\":1,\"plot\":{\"id\":\"535ebb48-a4c6-4f64-b121-7e9255a0a944\",\"subtype\":\"Figure\",\"type\":\"Plot\"},\"ticker\":{\"id\":\"1e2101d7-d953-422a-b3ea-ace59e83ee1b\",\"type\":\"BasicTicker\"}},\"id\":\"224a184c-4ce1-40ec-8058-e4ebb30ca7be\",\"type\":\"Grid\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.4},\"fill_color\":{\"value\":\"olive\"},\"line_alpha\":{\"value\":0.4},\"line_color\":{\"value\":\"olive\"},\"size\":{\"units\":\"screen\",\"value\":30},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"13325f26-0632-4336-9532-f91cf7c86ab6\",\"type\":\"Circle\"},{\"attributes\":{\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"line_width\":{\"value\":3},\"x0\":{\"field\":\"x0\"},\"x1\":{\"field\":\"x1\"},\"y0\":{\"field\":\"y0\"},\"y1\":{\"field\":\"y1\"}},\"id\":\"1e71b297-0fee-4c4a-be78-a9e9b8996658\",\"type\":\"Segment\"},{\"attributes\":{\"data_source\":{\"id\":\"b4cade67-5081-45c0-a6b6-761b2e394545\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"3fa20552-7219-45ea-a366-99c56e75b466\",\"type\":\"Segment\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"1e71b297-0fee-4c4a-be78-a9e9b8996658\",\"type\":\"Segment\"},\"selection_glyph\":null,\"view\":{\"id\":\"e8cd0a1a-efbe-45e1-bbb5-ec528804a97d\",\"type\":\"CDSView\"}},\"id\":\"1145519d-bc35-45cc-ae26-832c8be581b8\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"source\":{\"id\":\"b4cade67-5081-45c0-a6b6-761b2e394545\",\"type\":\"ColumnDataSource\"}},\"id\":\"e8cd0a1a-efbe-45e1-bbb5-ec528804a97d\",\"type\":\"CDSView\"},{\"attributes\":{},\"id\":\"23d1c07b-8478-4ecd-a789-d1718afeec04\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"args\":{\"circle\":{\"id\":\"ca90edc5-28fb-4816-be9b-edbc85a075fb\",\"type\":\"ColumnDataSource\"},\"segment\":{\"id\":\"b4cade67-5081-45c0-a6b6-761b2e394545\",\"type\":\"ColumnDataSource\"}},\"code\":\"\\nvar links = {0: [1, 2], 1: [0, 3, 4], 2: [0, 5], 3: [1, 4], 4: [1, 3], 5: [2, 3, 4]};\\nvar data = {'x0': [], 'y0': [], 'x1': [], 'y1': []};\\nvar cdata = circle.data;\\nvar indices = cb_data.index['1d'].indices;\\nfor (i=0; i < indices.length; i++) {\\n ind0 = indices[i]\\n for (j=0; j < links[ind0].length; j++) {\\n ind1 = links[ind0][j];\\n data['x0'].push(cdata.x[ind0]);\\n data['y0'].push(cdata.y[ind0]);\\n data['x1'].push(cdata.x[ind1]);\\n data['y1'].push(cdata.y[ind1]);\\n }\\n}\\nsegment.data = data;\\n\"},\"id\":\"781e8824-0cd8-477b-adbf-5ca5937f2e46\",\"type\":\"CustomJS\"},{\"attributes\":{\"fill_color\":{\"value\":\"olive\"},\"line_color\":{\"value\":\"olive\"},\"size\":{\"units\":\"screen\",\"value\":30},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"6c04ef7b-95ef-4971-bfdc-812144b13b60\",\"type\":\"Circle\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"size\":{\"units\":\"screen\",\"value\":30},\"x\":{\"field\":\"x\"},\"y\":{\"field\":\"y\"}},\"id\":\"692c3816-054c-4029-b72b-e3ad86e10418\",\"type\":\"Circle\"},{\"attributes\":{\"callback\":{\"id\":\"781e8824-0cd8-477b-adbf-5ca5937f2e46\",\"type\":\"CustomJS\"},\"renderers\":[{\"id\":\"d4991b62-0d39-4054-a60c-c0155bcf31a3\",\"type\":\"GlyphRenderer\"}],\"tooltips\":null},\"id\":\"17e540b7-6ed8-480d-ac1d-62aa47dfb403\",\"type\":\"HoverTool\"},{\"attributes\":{\"data_source\":{\"id\":\"ca90edc5-28fb-4816-be9b-edbc85a075fb\",\"type\":\"ColumnDataSource\"},\"glyph\":{\"id\":\"13325f26-0632-4336-9532-f91cf7c86ab6\",\"type\":\"Circle\"},\"hover_glyph\":{\"id\":\"6c04ef7b-95ef-4971-bfdc-812144b13b60\",\"type\":\"Circle\"},\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"692c3816-054c-4029-b72b-e3ad86e10418\",\"type\":\"Circle\"},\"selection_glyph\":null,\"view\":{\"id\":\"ab4ea455-f088-4d07-a40e-85b05b014450\",\"type\":\"CDSView\"}},\"id\":\"d4991b62-0d39-4054-a60c-c0155bcf31a3\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"source\":{\"id\":\"ca90edc5-28fb-4816-be9b-edbc85a075fb\",\"type\":\"ColumnDataSource\"}},\"id\":\"ab4ea455-f088-4d07-a40e-85b05b014450\",\"type\":\"CDSView\"},{\"attributes\":{\"callback\":null,\"column_names\":[\"x0\",\"y0\",\"x1\",\"y1\"],\"data\":{\"x0\":[],\"x1\":[],\"y0\":[],\"y1\":[]}},\"id\":\"b4cade67-5081-45c0-a6b6-761b2e394545\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"below\":[{\"id\":\"215b666f-e349-42d1-86f9-e77676c2fb8e\",\"type\":\"LinearAxis\"}],\"left\":[{\"id\":\"840b9657-0a74-4bd6-98f8-74abbacc3885\",\"type\":\"LinearAxis\"}],\"plot_height\":400,\"plot_width\":400,\"renderers\":[{\"id\":\"215b666f-e349-42d1-86f9-e77676c2fb8e\",\"type\":\"LinearAxis\"},{\"id\":\"13f19693-6a83-40e4-8acd-285e9b9fa31b\",\"type\":\"Grid\"},{\"id\":\"840b9657-0a74-4bd6-98f8-74abbacc3885\",\"type\":\"LinearAxis\"},{\"id\":\"224a184c-4ce1-40ec-8058-e4ebb30ca7be\",\"type\":\"Grid\"},{\"id\":\"1145519d-bc35-45cc-ae26-832c8be581b8\",\"type\":\"GlyphRenderer\"},{\"id\":\"d4991b62-0d39-4054-a60c-c0155bcf31a3\",\"type\":\"GlyphRenderer\"}],\"title\":{\"id\":\"bb5dbaf0-9f49-4802-a9d2-cb3912dc09b3\",\"type\":\"Title\"},\"toolbar\":{\"id\":\"53019176-53e0-4bd1-882f-78d06fa33f77\",\"type\":\"Toolbar\"},\"toolbar_location\":null,\"x_range\":{\"id\":\"5e69d73f-39ea-4407-b2ed-1b95ff963ea3\",\"type\":\"DataRange1d\"},\"x_scale\":{\"id\":\"cbad94c3-1675-480c-81a1-9f0e32779c50\",\"type\":\"LinearScale\"},\"y_range\":{\"id\":\"907659cb-bca4-4311-b875-6835665452ae\",\"type\":\"DataRange1d\"},\"y_scale\":{\"id\":\"aeae838f-00e9-42fa-81f6-55eafabd2430\",\"type\":\"LinearScale\"}},\"id\":\"535ebb48-a4c6-4f64-b121-7e9255a0a944\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{},\"id\":\"523ef191-c459-4cee-98ba-82b0bc9d43ee\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"callback\":null,\"column_names\":[\"x\",\"y\"],\"data\":{\"x\":[2,3,5,6,8,7],\"y\":[6,4,3,8,7,5]}},\"id\":\"ca90edc5-28fb-4816-be9b-edbc85a075fb\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"plot\":null,\"text\":\"Hover over points\"},\"id\":\"bb5dbaf0-9f49-4802-a9d2-cb3912dc09b3\",\"type\":\"Title\"},{\"attributes\":{\"callback\":null},\"id\":\"5e69d73f-39ea-4407-b2ed-1b95ff963ea3\",\"type\":\"DataRange1d\"}],\"root_ids\":[\"535ebb48-a4c6-4f64-b121-7e9255a0a944\"]},\"title\":\"Bokeh Application\",\"version\":\"0.12.10\"}};\n", " var render_items = [{\"docid\":\"b0c3fe59-2ef5-4600-9700-e5d1b6eaec90\",\"elementid\":\"38f951a6-5c61-4fc1-8aa4-28135319a094\",\"modelid\":\"535ebb48-a4c6-4f64-b121-7e9255a0a944\"}];\n", "\n", " root.Bokeh.embed.embed_items(docs_json, render_items);\n", " }\n", "\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " } else {\n", " var attempts = 0;\n", " var timer = setInterval(function(root) {\n", " if (root.Bokeh !== undefined) {\n", " embed_document(root);\n", " clearInterval(timer);\n", " }\n", " attempts++;\n", " if (attempts > 100) {\n", " console.log(\"Bokeh: ERROR: Unable to embed document because BokehJS library is missing\")\n", " clearInterval(timer);\n", " }\n", " }, 10, root)\n", " }\n", "})(window);"], "application/vnd.bokehjs_exec.v0+json": ""}, "metadata": {"application/vnd.bokehjs_exec.v0+json": {"id": "535ebb48-a4c6-4f64-b121-7e9255a0a944"}}, "output_type": "display_data"}], "source": ["from bokeh.plotting import figure, output_file, show\n", "from bokeh.models import ColumnDataSource, HoverTool, CustomJS\n", "\n", "\n", "# define some points and a little graph between them\n", "x = [2, 3, 5, 6, 8, 7]\n", "y = [6, 4, 3, 8, 7, 5]\n", "links = {\n", " 0: [1, 2],\n", " 1: [0, 3, 4],\n", " 2: [0, 5],\n", " 3: [1, 4],\n", " 4: [1, 3],\n", " 5: [2, 3, 4]\n", "}\n", "\n", "p = figure(plot_width=400, plot_height=400, tools=\"\", toolbar_location=None, title='Hover over points')\n", "\n", "source = ColumnDataSource({'x0': [], 'y0': [], 'x1': [], 'y1': []})\n", "sr = p.segment(x0='x0', y0='y0', x1='x1', y1='y1', color='olive', alpha=0.6, line_width=3, source=source, )\n", "cr = p.circle(x, y, color='olive', size=30, alpha=0.4, hover_color='olive', hover_alpha=1.0)\n", "\n", "# Add a hover tool, that sets the link data for a hovered circle\n", "code = \"\"\"\n", "var links = %s;\n", "var data = {'x0': [], 'y0': [], 'x1': [], 'y1': []};\n", "var cdata = circle.data;\n", "var indices = cb_data.index['1d'].indices;\n", "for (i=0; i < indices.length; i++) {\n", " ind0 = indices[i]\n", " for (j=0; j < links[ind0].length; j++) {\n", " ind1 = links[ind0][j];\n", " data['x0'].push(cdata.x[ind0]);\n", " data['y0'].push(cdata.y[ind0]);\n", " data['x1'].push(cdata.x[ind1]);\n", " data['y1'].push(cdata.y[ind1]);\n", " }\n", "}\n", "segment.data = data;\n", "\"\"\" % links\n", "\n", "callback = CustomJS(args={'circle': cr.data_source, 'segment': sr.data_source}, code=code)\n", "p.add_tools(HoverTool(tooltips=None, callback=callback, renderers=[cr]))\n", "\n", "show(p)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["Le module [bqplot](https://github.com/bloomberg/bqplot/blob/master/examples/Interactions/Mark%20Interactions.ipynb) permet de d\u00e9finir des *callbacks* en Python. L'inconv\u00e9nient est que cela ne fonction que depuis un notebook et il vaut mieux ne pas trop m\u00e9langer les librairies javascripts qui ne peuvent pas toujours fonctionner ensemble."]}, {"cell_type": "markdown", "metadata": {}, "source": ["# Plotly"]}, {"cell_type": "markdown", "metadata": {}, "source": ["- Plotly: https://plot.ly/python/\n", "- Doc: https://plot.ly/python/reference/\n", "- Colors: http://www.cssportal.com/css3-rgba-generator/"]}, {"cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": ["import pandas as pd\n", "import numpy as np"]}, {"cell_type": "markdown", "metadata": {}, "source": ["# Creation dataframe"]}, {"cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [{"data": {"text/html": ["\n", "\n", "
\n", " \n", " \n", " | \n", " value1 | \n", " value2 | \n", " rate1 | \n", " rate2 | \n", "
\n", " \n", " indx | \n", " | \n", " | \n", " | \n", " | \n", "
\n", " \n", " \n", " \n", " a | \n", " 0 | \n", " 1 | \n", " 0.00 | \n", " 0.01 | \n", "
\n", " \n", " b | \n", " 1 | \n", " 5 | \n", " 0.01 | \n", " 0.05 | \n", "
\n", " \n", " c | \n", " 2 | \n", " 2 | \n", " 0.02 | \n", " 0.02 | \n", "
\n", " \n", " d | \n", " 3 | \n", " 3 | \n", " 0.03 | \n", " 0.03 | \n", "
\n", " \n", " e | \n", " 4 | \n", " 7 | \n", " 0.04 | \n", " 0.07 | \n", "
\n", " \n", "
\n", "
"], "text/plain": [" value1 value2 rate1 rate2\n", "indx \n", "a 0 1 0.00 0.01\n", "b 1 5 0.01 0.05\n", "c 2 2 0.02 0.02\n", "d 3 3 0.03 0.03\n", "e 4 7 0.04 0.07"]}, "execution_count": 37, "metadata": {}, "output_type": "execute_result"}], "source": ["indx = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']\n", "value1 = [0,1,2,3,4,5,6,7,8,9]\n", "value2 = [1,5,2,3,7,5,1,8,9,1]\n", "\n", "df = {'indx': indx, 'value1': value1, 'value2': value2}\n", "df = pd.DataFrame(df)\n", "df['rate1'] = df.value1 / 100\n", "df['rate2'] = df.value2 / 100\n", "df = df.set_index('indx')\n", "df.head()"]}, {"cell_type": "markdown", "metadata": {}, "source": ["# Bars and Scatter"]}, {"cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": ["# installer plotly"]}, {"cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Sign in failed.\n"]}], "source": ["import plotly.plotly as py\n", "import os\n", "from pyquickhelper.loghelper import get_password\n", "user = get_password(\"plotly\", \"ensae_teaching_cs,login\")\n", "pwd = get_password(\"plotly\", \"ensae_teaching_cs,pwd\")\n", "try:\n", " py.sign_in(user, pwd)\n", "except Exception as e:\n", " print(e)"]}, {"cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["High five! You successfully sent some data to your account on plotly. View your plot in your browser at https://plot.ly/~athean/0 or inside your plot.ly account where it is named 'marker-h-bar'\n"]}, {"data": {"text/html": [""], "text/plain": [""]}, "execution_count": 40, "metadata": {}, "output_type": "execute_result"}], "source": ["import plotly \n", "from plotly.graph_objs import Bar, Scatter, Figure, Layout\n", "import plotly.plotly as py\n", "import plotly.graph_objs as go\n", "\n", "# BARS\n", "\n", "trace1 = go.Bar(\n", " x = df.index,\n", " y = df.value1,\n", " name='Value1', # Bar legend\n", " #orientation = 'h',\n", " marker = dict( # Colors\n", " color = 'rgba(237, 74, 51, 0.6)',\n", " line = dict(\n", " color = 'rgba(237, 74, 51, 0.6)',\n", " width = 3)\n", " ))\n", "\n", "trace2 = go.Bar(\n", " x = df.index,\n", " y = df.value2,\n", " name='Value 2',\n", " #orientation = 'h', # Uncomment to have horizontal bars\n", " marker = dict(\n", " color = 'rgba(0, 74, 240, 0.4)',\n", " line = dict(\n", " color = 'rgba(0, 74, 240, 0.4)',\n", " width = 3)\n", " ))\n", "\n", "# SCATTER\n", "\n", "trace3 = go.Scatter(\n", " x = df.index,\n", " y = df.rate1, \n", " name='Rate', \n", " yaxis='y2', # Define 2 axis\n", " marker = dict( # Colors\n", " color = 'rgba(187, 0, 0, 1)',\n", " ))\n", "\n", "trace4 = go.Scatter(\n", " x = df.index,\n", " y = df.rate2,\n", " name='Rate2',\n", " yaxis='y2', # To have a 2nd axis\n", " marker = dict( # Colors\n", " color = 'rgba(0, 74, 240, 0.4)',\n", " ))\n", "\n", "data = [trace2, trace1, trace3, trace4]\n", "\n", "layout = go.Layout(\n", " title='Stack bars and scatter',\n", " barmode ='stack', # Take value 'stack' or 'group'\n", " xaxis=dict(\n", " autorange=True,\n", " showgrid=False,\n", " zeroline=False,\n", " showline=True,\n", " autotick=True,\n", " ticks='',\n", " showticklabels=True\n", " ),\n", " yaxis=dict( # Params 1st axis\n", " #range=[0,1200000], # Set range\n", " autorange=True,\n", " showgrid=False,\n", " zeroline=False,\n", " showline=True,\n", " autotick=True,\n", " ticks='',\n", " showticklabels=True\n", " ), \n", " yaxis2=dict( # Params 2nd axis\n", " overlaying='y',\n", " autorange=True,\n", " showgrid=False,\n", " zeroline=False,\n", " showline=True,\n", " autotick=True,\n", " ticks='',\n", " side='right'\n", " ))\n", "\n", "fig = go.Figure(data=data, layout=layout)\n", "py.iplot(fig, filename='marker-h-bar')"]}, {"cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["This is the format of your plot grid:\n", "[ (1,1) x1,y1 ] [ (1,2) x2,y2 ]\n", "\n"]}, {"data": {"text/html": [""], "text/plain": [""]}, "execution_count": 41, "metadata": {}, "output_type": "execute_result"}], "source": ["trace5 = go.Scatter(\n", " x = ['h', 'h'],\n", " y = [0,0.09], \n", " yaxis='y2', # Define 2 axis\n", " showlegend = False, # Hiding legend for this trace\n", " marker = dict( # Colors\n", " color = 'rgba(46, 138, 24, 1)',\n", " )\n", ")\n", "\n", "from plotly import tools\n", "import plotly.plotly as py\n", "import plotly.graph_objs as go\n", "\n", "\n", "fig = tools.make_subplots(rows=1, cols=2)\n", "\n", "# 1st subplot\n", "fig.append_trace(trace1, 1, 1)\n", "fig.append_trace(trace2, 1, 1)\n", "\n", "# 2nd subplot\n", "fig.append_trace(trace3, 1, 2)\n", "fig.append_trace(trace4, 1, 2)\n", "fig.append_trace(trace5, 1, 2) # Vertical line here\n", "\n", "\n", "fig['layout'].update(height=600, width=1000, title='Two in One & Vertical line')\n", "py.iplot(fig, filename='make-subplots')"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### Exercice : repr\u00e9senter le nombre de mariages par d\u00e9partement avec plotly ou tout autre librairie javascript\n", "\n", "[Bokeh](https://bokeh.pydata.org/en/latest/), [altair](https://altair-viz.github.io/), ..."]}, {"cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": []}, {"cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": []}], "metadata": {"anaconda-cloud": {}, "kernelspec": {"display_name": "Python 3", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1"}}, "nbformat": 4, "nbformat_minor": 4}