RSS <== page de blog - 7/12 ==> Blog modules (9)


page de blog - 7/12

PyData Seattle - des idées à prendre

2017-08-03

Les vidéos de la conférence sont en ligne et il y a toujours de bonnes idées à prendre : PyData Seattle 2017. Quelques modules à suivre : Scattertext, pomegranate. Un dernier module qui montre que toutes les grandes boîtes ont leur outil de machine learning. catboost est optimisé pour la construction de forêt d’arbres sur des variables catégorielles tout comme Facebook avait sorti le sien sur le texte fasttext. Enfin, un champ que je connais moins, z3, un outil de preuve systématique, qui pourrait servir un jour à traiter des données.

article

Cheat Sheets

2017-06-24

Quand quelqu’un s’amuse à regrouper plusieurs cheat sheets au même endroit, il faut absolument garder le lien quelque part, Essential Cheat Sheets for Machine Learning and Deep Learning Engineers, et son répertoire GitHub. C’est une façon très simple d’attirer pas mal de monde au même endroit car cela nous évite pas mal d’aller retour vers un moteur de recherche.

article

Performance du langage Python

2017-02-25

C’est un article de blog assez concis et clair qui dévoile une partie de ce que cache un langage interprété comme Python : Cost of abstractions.

article

Combiner des random forest

2017-02-15

C’est une astuce que m’ont fait découvrir deux étudiants dans leur projet associé au cours de troisième année Eléments logiciels pour le traitement des données massives. Ils ont utilisé une propriété rendue possible par l’implémentation des random forest de scikit-learn : il est possible de construire une random forest issue de l’assemblage de deux random forest. De là à paralléliser l’apprentissage d’une random forest, il n’y a qu’un pas. L’article en question : Combining random forest models in scikit learn.

article

Un module pour calculer des indicateurs financiers

2017-01-08

Je ne l’ai pas essayé mais il a l’air intéressant pour quiconque souhaite coder des algorithmes de trading automatiques : TA-LIB et son interface Python. La plupart des indicateurs financiers y sont implémentés.

article

Annoter des images

2017-01-05

Construire une application qui reconnaît des images implique qu’on sache localiser un visage et le reconnaître. Pour appendre, il faut disposer d’une base images annotées ou labellisées dans lesquelles on connaît l’information à trouver. Voici l’image tirée de wikipédia : Détection de visage.

article

Deviner l’encoding d’un fichier

2016-12-20

Lire un fichier avec pandas est parfois compliqué voire très frustrant parce que chaque source à sa propre façon de faire. Bref comment devenir l”encoding d’un fichier texte.

article

Ecrire un test unitaire pour Flask

2016-12-01

Utiliser flask n’est pas si compliqué (voir 2A.eco - Débuter avec Flask). Et puis une fois qu’on a terminé, on souhaite écrire des tests unitaires pour vérifier que cela ne casse pas. Cela veut dire créer un second thread qui va faire tourner le site web et surtout l’arrêter quand on n’en a plus besoin. La suite est à lire sur cette page Site Web, exemple avec Flask.

article

Tranformer les variables catégorielles et contrastes

2016-11-30

Certains modèles de machine learning requiert de transformer les variables catégorielles en variables numériques. Il existe plusieurs façons de faire cela : Patsy: Contrast Coding Systems for categorical variables. Les extensions de scikit-learn incluent un module qui fait cela aussi mais façon scikit-learn : category_encoders implémente les transformations suivantes :

article

pandas, groupby, nan values

2016-11-20

La fonction groupby ne considère pas (plus) les valeurs manquantes ou NaN. Le notebook groupby et valeur manquantes illustre ce fait et montre comment les corriger.

article


RSS <== page de blog - 7/12 ==> 2019-02 (2) 2019-05 (2) 2019-06 (1) 2019-09 (1) 2019-12 (1)