.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "gyexamples/plot_opml_linear_regression.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_gyexamples_plot_opml_linear_regression.py: .. _l-example-linear-regression-bench: Benchmark Linear Regression =========================== The script compares different implementations for the operator LinearRegression. * *baseline*: LinearRegression from :epkg:`scikit-learn` * *ort*: :epkg:`onnxruntime`, * *mlprodict*: an implementation based on an array of structures, every structure describes a node, .. contents:: :local: Import ++++++ .. GENERATED FROM PYTHON SOURCE LINES 21-37 .. code-block:: default import warnings from time import perf_counter as time from multiprocessing import cpu_count import numpy from numpy.random import rand from numpy.testing import assert_almost_equal import matplotlib.pyplot as plt import pandas from onnxruntime import InferenceSession from sklearn import config_context from sklearn.linear_model import LinearRegression from sklearn.utils._testing import ignore_warnings from skl2onnx import convert_sklearn from skl2onnx.common.data_types import FloatTensorType from mlprodict.onnxrt import OnnxInference .. GENERATED FROM PYTHON SOURCE LINES 38-39 Available optimisation on this machine. .. GENERATED FROM PYTHON SOURCE LINES 39-44 .. code-block:: default from mlprodict.testing.experimental_c_impl.experimental_c import code_optimisation print(code_optimisation()) .. rst-class:: sphx-glr-script-out .. code-block:: none AVX-omp=8 .. GENERATED FROM PYTHON SOURCE LINES 45-47 Versions ++++++++ .. GENERATED FROM PYTHON SOURCE LINES 47-72 .. code-block:: default def version(): from datetime import datetime import sklearn import numpy import onnx import onnxruntime import skl2onnx import mlprodict df = pandas.DataFrame([ {"name": "date", "version": str(datetime.now())}, {"name": "numpy", "version": numpy.__version__}, {"name": "scikit-learn", "version": sklearn.__version__}, {"name": "onnx", "version": onnx.__version__}, {"name": "onnxruntime", "version": onnxruntime.__version__}, {"name": "skl2onnx", "version": skl2onnx.__version__}, {"name": "mlprodict", "version": mlprodict.__version__}, ]) return df version() .. raw:: html
name version
0 date 2023-02-04 05:51:30.916956
1 numpy 1.23.5
2 scikit-learn 1.2.1
3 onnx 1.13.0
4 onnxruntime 1.13.1
5 skl2onnx 1.13.1
6 mlprodict 0.9.1887


.. GENERATED FROM PYTHON SOURCE LINES 73-75 Implementations to benchmark ++++++++++++++++++++++++++++ .. GENERATED FROM PYTHON SOURCE LINES 75-101 .. code-block:: default def fcts_model(X, y, n_jobs): "LinearRegression." model = LinearRegression(n_jobs=n_jobs) model.fit(X, y) initial_types = [('X', FloatTensorType([None, X.shape[1]]))] onx = convert_sklearn(model, initial_types=initial_types) sess = InferenceSession(onx.SerializeToString()) outputs = [o.name for o in sess.get_outputs()] oinf = OnnxInference(onx, runtime="python") def predict_skl_predict(X, model=model): return model.predict(X) def predict_onnxrt_predict(X, sess=sess): return sess.run(outputs[:1], {'X': X})[0] def predict_onnx_inference(X, oinf=oinf): return oinf.run({'X': X})["variable"] return {'predict': ( predict_skl_predict, predict_onnxrt_predict, predict_onnx_inference)} .. GENERATED FROM PYTHON SOURCE LINES 102-104 Benchmarks ++++++++++ .. GENERATED FROM PYTHON SOURCE LINES 104-192 .. code-block:: default def allow_configuration(**kwargs): return True def bench(n_obs, n_features, n_jobss, methods, repeat=10, verbose=False): res = [] for nfeat in n_features: ntrain = 50000 X_train = numpy.empty((ntrain, nfeat)).astype(numpy.float32) X_train[:, :] = rand(ntrain, nfeat)[:, :] eps = rand(ntrain) - 0.5 y_train = X_train.sum(axis=1) + eps for n_jobs in n_jobss: fcts = fcts_model(X_train, y_train, n_jobs) for n in n_obs: for method in methods: fct1, fct2, fct3 = fcts[method] if not allow_configuration(n=n, nfeat=nfeat, n_jobs=n_jobs, method=method): continue obs = dict(n_obs=n, nfeat=nfeat, method=method, n_jobs=n_jobs) # creates different inputs to avoid caching in any ways Xs = [] for r in range(repeat): x = numpy.empty((n, nfeat)) x[:, :] = rand(n, nfeat)[:, :] Xs.append(x.astype(numpy.float32)) # measures the baseline with config_context(assume_finite=True): st = time() repeated = 0 for X in Xs: p1 = fct1(X) repeated += 1 if time() - st >= 1: break # stops if longer than a second end = time() obs["time_skl"] = (end - st) / repeated # measures the new implementation st = time() r2 = 0 for X in Xs: p2 = fct2(X) r2 += 1 if r2 >= repeated: break end = time() obs["time_ort"] = (end - st) / r2 # measures the other new implementation st = time() r2 = 0 for X in Xs: p2 = fct3(X) r2 += 1 if r2 >= repeated: break end = time() obs["time_mlprodict"] = (end - st) / r2 # final res.append(obs) if verbose and (len(res) % 1 == 0 or n >= 10000): print("bench", len(res), ":", obs) # checks that both produce the same outputs if n <= 10000: if len(p1.shape) == 1 and len(p2.shape) == 2: p2 = p2.ravel() try: assert_almost_equal( p1.ravel(), p2.ravel(), decimal=5) except AssertionError as e: warnings.warn(str(e)) return res .. GENERATED FROM PYTHON SOURCE LINES 193-195 Graphs ++++++ .. GENERATED FROM PYTHON SOURCE LINES 195-256 .. code-block:: default def plot_rf_models(dfr): def autolabel(ax, rects): for rect in rects: height = rect.get_height() ax.annotate(f'{height:1.1f}x', xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom', fontsize=8) engines = [_.split('_')[-1] for _ in dfr.columns if _.startswith("time_")] engines = [_ for _ in engines if _ != 'skl'] for engine in engines: dfr[f"speedup_{engine}"] = dfr["time_skl"] / dfr[f"time_{engine}"] print(dfr.tail().T) ncols = 2 fig, axs = plt.subplots(len(engines), ncols, figsize=( 14, 4 * len(engines)), sharey=True) row = 0 for row, engine in enumerate(engines): pos = 0 name = f"LinearRegression - {engine}" for nf in sorted(set(dfr.nfeat)): for n_jobs in sorted(set(dfr.n_jobs)): sub = dfr[(dfr.nfeat == nf) & (dfr.n_jobs == n_jobs)] ax = axs[row, pos] labels = sub.n_obs means = sub[f"speedup_{engine}"] x = numpy.arange(len(labels)) width = 0.90 rects1 = ax.bar(x, means, width, label='Speedup') if pos == 0: ax.set_yscale('log') ax.set_ylim([0.1, max(dfr[f"speedup_{engine}"])]) if pos == 0: ax.set_ylabel('Speedup') ax.set_title('%s\n%d features\n%d jobs' % (name, nf, n_jobs)) if row == len(engines) - 1: ax.set_xlabel('batch size') ax.set_xticks(x) ax.set_xticklabels(labels) autolabel(ax, rects1) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(8) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(8) pos += 1 fig.tight_layout() return fig, ax .. GENERATED FROM PYTHON SOURCE LINES 257-259 Run benchs ++++++++++ .. GENERATED FROM PYTHON SOURCE LINES 259-286 .. code-block:: default @ignore_warnings(category=FutureWarning) def run_bench(repeat=250, verbose=False): n_obs = [1, 10, 100, 1000, 10000] methods = ['predict'] n_features = [10, 50] n_jobss = [cpu_count()] start = time() results = bench(n_obs, n_features, n_jobss, methods, repeat=repeat, verbose=verbose) end = time() results_df = pandas.DataFrame(results) print("Total time = %0.3f sec cpu=%d\n" % (end - start, cpu_count())) # plot the results return results_df name = "plot_linear_regression" df = run_bench(verbose=True) df.to_csv(f"{name}.csv", index=False) df.to_excel(f"{name}.xlsx", index=False) fig, ax = plot_rf_models(df) fig.savefig(f"{name}.png") plt.show() .. image-sg:: /gyexamples/images/sphx_glr_plot_opml_linear_regression_001.png :alt: LinearRegression - ort 10 features 8 jobs, LinearRegression - ort 50 features 8 jobs, LinearRegression - mlprodict 10 features 8 jobs, LinearRegression - mlprodict 50 features 8 jobs :srcset: /gyexamples/images/sphx_glr_plot_opml_linear_regression_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none bench 1 : {'n_obs': 1, 'nfeat': 10, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.0001481182803399861, 'time_ort': 0.00011684072390198707, 'time_mlprodict': 6.014802400022745e-05} bench 2 : {'n_obs': 10, 'nfeat': 10, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.0001467620558105409, 'time_ort': 3.9624431636184455e-05, 'time_mlprodict': 6.0010224115103486e-05} bench 3 : {'n_obs': 100, 'nfeat': 10, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.0001482546399347484, 'time_ort': 4.479817999526858e-05, 'time_mlprodict': 6.149373203516007e-05} bench 4 : {'n_obs': 1000, 'nfeat': 10, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.0002465759557671845, 'time_ort': 9.749664412811398e-05, 'time_mlprodict': 7.640941999852658e-05} bench 5 : {'n_obs': 10000, 'nfeat': 10, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.0002564993319101632, 'time_ort': 0.00040586764412000773, 'time_mlprodict': 0.00015348862810060383} bench 6 : {'n_obs': 1, 'nfeat': 50, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.00029003746807575225, 'time_ort': 4.470650386065245e-05, 'time_mlprodict': 6.038074381649494e-05} bench 7 : {'n_obs': 10, 'nfeat': 50, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.0001472740122117102, 'time_ort': 4.180376790463924e-05, 'time_mlprodict': 6.030078418552876e-05} bench 8 : {'n_obs': 100, 'nfeat': 50, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.00015256707603111862, 'time_ort': 6.377387186512351e-05, 'time_mlprodict': 6.509249564260245e-05} bench 9 : {'n_obs': 1000, 'nfeat': 50, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.00024230495607480406, 'time_ort': 0.00028393073193728926, 'time_mlprodict': 9.187086019665003e-05} bench 10 : {'n_obs': 10000, 'nfeat': 50, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.00048492022790014744, 'time_ort': 0.0011058347118087113, 'time_mlprodict': 0.0004271069038659334} Total time = 6.560 sec cpu=8 5 6 7 8 9 n_obs 1 10 100 1000 10000 nfeat 50 50 50 50 50 method predict predict predict predict predict n_jobs 8 8 8 8 8 time_skl 0.00029 0.000147 0.000153 0.000242 0.000485 time_ort 0.000045 0.000042 0.000064 0.000284 0.001106 time_mlprodict 0.00006 0.00006 0.000065 0.000092 0.000427 speedup_ort 6.48759 3.522984 2.392313 0.853395 0.438511 speedup_mlprodict 4.803476 2.442323 2.34385 2.637452 1.13536 somewhere/workspace/mlprodict/mlprodict_UT_39_std/_doc/examples/plot_opml_linear_regression.py:247: MatplotlibDeprecationWarning: The label function was deprecated in Matplotlib 3.1 and will be removed in 3.8. Use Tick.label1 instead. tick.label.set_fontsize(8) somewhere/workspace/mlprodict/mlprodict_UT_39_std/_doc/examples/plot_opml_linear_regression.py:249: MatplotlibDeprecationWarning: The label function was deprecated in Matplotlib 3.1 and will be removed in 3.8. Use Tick.label1 instead. tick.label.set_fontsize(8) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 9.633 seconds) .. _sphx_glr_download_gyexamples_plot_opml_linear_regression.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_opml_linear_regression.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_opml_linear_regression.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_