.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "gyexamples/plot_opml_random_forest_cls_multi.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_gyexamples_plot_opml_random_forest_cls_multi.py: .. _l-example-tree-ensemble-cls-bench-multi: Benchmark Random Forests, Tree Ensemble, Multi-Classification ============================================================= The script compares different implementations for the operator TreeEnsembleRegressor for a multi-regression. It replicates the benchmark :ref:`l-example-tree-ensemble-reg-bench` for multi-classification. .. contents:: :local: Import ++++++ .. GENERATED FROM PYTHON SOURCE LINES 18-34 .. code-block:: default import warnings from time import perf_counter as time from multiprocessing import cpu_count import numpy from numpy.random import rand from numpy.testing import assert_almost_equal import pandas import matplotlib.pyplot as plt from sklearn import config_context from sklearn.ensemble import RandomForestClassifier from sklearn.utils._testing import ignore_warnings from skl2onnx import convert_sklearn from skl2onnx.common.data_types import FloatTensorType from onnxruntime import InferenceSession from mlprodict.onnxrt import OnnxInference .. GENERATED FROM PYTHON SOURCE LINES 35-36 Available optimisation on this machine. .. GENERATED FROM PYTHON SOURCE LINES 36-41 .. code-block:: default from mlprodict.testing.experimental_c_impl.experimental_c import code_optimisation print(code_optimisation()) .. rst-class:: sphx-glr-script-out .. code-block:: none AVX-omp=8 .. GENERATED FROM PYTHON SOURCE LINES 42-44 Versions ++++++++ .. GENERATED FROM PYTHON SOURCE LINES 44-69 .. code-block:: default def version(): from datetime import datetime import sklearn import numpy import onnx import onnxruntime import skl2onnx import mlprodict df = pandas.DataFrame([ {"name": "date", "version": str(datetime.now())}, {"name": "numpy", "version": numpy.__version__}, {"name": "scikit-learn", "version": sklearn.__version__}, {"name": "onnx", "version": onnx.__version__}, {"name": "onnxruntime", "version": onnxruntime.__version__}, {"name": "skl2onnx", "version": skl2onnx.__version__}, {"name": "mlprodict", "version": mlprodict.__version__}, ]) return df version() .. raw:: html
name version
0 date 2023-02-04 05:58:24.371365
1 numpy 1.23.5
2 scikit-learn 1.2.1
3 onnx 1.13.0
4 onnxruntime 1.13.1
5 skl2onnx 1.13.1
6 mlprodict 0.9.1887


.. GENERATED FROM PYTHON SOURCE LINES 70-72 Implementations to benchmark ++++++++++++++++++++++++++++ .. GENERATED FROM PYTHON SOURCE LINES 72-113 .. code-block:: default def fcts_model(X, y, max_depth, n_estimators, n_jobs): "RandomForestClassifier." rf = RandomForestClassifier(max_depth=max_depth, n_estimators=n_estimators, n_jobs=n_jobs) rf.fit(X, y) initial_types = [('X', FloatTensorType([None, X.shape[1]]))] onx = convert_sklearn(rf, initial_types=initial_types, options={id(rf): {'zipmap': False}}) sess = InferenceSession(onx.SerializeToString()) outputs = [o.name for o in sess.get_outputs()] oinf = OnnxInference(onx, runtime="python") oinf.sequence_[0].ops_._init(numpy.float32, 1) name = outputs[1] oinf2 = OnnxInference(onx, runtime="python") oinf2.sequence_[0].ops_._init(numpy.float32, 2) oinf3 = OnnxInference(onx, runtime="python") oinf3.sequence_[0].ops_._init(numpy.float32, 3) def predict_skl_predict(X, model=rf): return rf.predict_proba(X) def predict_onnxrt_predict(X, sess=sess): return sess.run(outputs[:1], {'X': X})[0] def predict_onnx_inference(X, oinf=oinf): return oinf.run({'X': X})[name] def predict_onnx_inference2(X, oinf2=oinf2): return oinf2.run({'X': X})[name] def predict_onnx_inference3(X, oinf3=oinf3): return oinf3.run({'X': X})[name] return {'predict': ( predict_skl_predict, predict_onnxrt_predict, predict_onnx_inference, predict_onnx_inference2, predict_onnx_inference3)} .. GENERATED FROM PYTHON SOURCE LINES 114-116 Benchmarks ++++++++++ .. GENERATED FROM PYTHON SOURCE LINES 116-237 .. code-block:: default def allow_configuration(**kwargs): return True def bench(n_obs, n_features, max_depths, n_estimatorss, n_jobss, methods, repeat=10, verbose=False): res = [] for nfeat in n_features: ntrain = 50000 X_train = numpy.empty((ntrain, nfeat)).astype(numpy.float32) X_train[:, :] = rand(ntrain, nfeat)[:, :] eps = rand(ntrain) - 0.5 y_train_f = X_train.sum(axis=1) + eps y_train = (y_train_f > 12).astype(numpy.int64) y_train[y_train_f > 15] = 2 y_train[y_train_f < 10] = 3 for n_jobs in n_jobss: for max_depth in max_depths: for n_estimators in n_estimatorss: fcts = fcts_model(X_train, y_train, max_depth, n_estimators, n_jobs) for n in n_obs: for method in methods: fct1, fct2, fct3, fct4, fct5 = fcts[method] if not allow_configuration( n=n, nfeat=nfeat, max_depth=max_depth, n_estimator=n_estimators, n_jobs=n_jobs, method=method): continue obs = dict(n_obs=n, nfeat=nfeat, max_depth=max_depth, n_estimators=n_estimators, method=method, n_jobs=n_jobs) # creates different inputs to avoid caching Xs = [] for r in range(repeat): x = numpy.empty((n, nfeat)) x[:, :] = rand(n, nfeat)[:, :] Xs.append(x.astype(numpy.float32)) # measures the baseline with config_context(assume_finite=True): st = time() repeated = 0 for X in Xs: p1 = fct1(X) repeated += 1 if time() - st >= 1: break # stops if longer than a second end = time() obs["time_skl"] = (end - st) / repeated # measures the new implementation st = time() r2 = 0 for X in Xs: p2 = fct2(X) r2 += 1 if r2 >= repeated: break end = time() obs["time_ort"] = (end - st) / r2 # measures the other new implementation st = time() r2 = 0 for X in Xs: p2 = fct3(X) r2 += 1 if r2 >= repeated: break end = time() obs["time_mlprodict"] = (end - st) / r2 # measures the other new implementation 2 st = time() r2 = 0 for X in Xs: p2 = fct4(X) r2 += 1 if r2 >= repeated: break end = time() obs["time_mlprodict2"] = (end - st) / r2 # measures the other new implementation 3 st = time() r2 = 0 for X in Xs: p2 = fct5(X) r2 += 1 if r2 >= repeated: break end = time() obs["time_mlprodict3"] = (end - st) / r2 # final res.append(obs) if verbose and (len(res) % 1 == 0 or n >= 10000): print("bench", len(res), ":", obs) # checks that both produce the same outputs if n <= 10000: if len(p1.shape) == 1 and len(p2.shape) == 2: p2 = p2.ravel() try: assert_almost_equal( p1.ravel(), p2.ravel(), decimal=5) except AssertionError as e: warnings.warn(str(e)) return res .. GENERATED FROM PYTHON SOURCE LINES 238-240 Graphs ++++++ .. GENERATED FROM PYTHON SOURCE LINES 240-308 .. code-block:: default def plot_rf_models(dfr): def autolabel(ax, rects): for rect in rects: height = rect.get_height() ax.annotate(f'{height:1.1f}x', xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom', fontsize=8) engines = [_.split('_')[-1] for _ in dfr.columns if _.startswith("time_")] engines = [_ for _ in engines if _ != 'skl'] for engine in engines: dfr[f"speedup_{engine}"] = dfr["time_skl"] / dfr[f"time_{engine}"] print(dfr.tail().T) ncols = 4 fig, axs = plt.subplots(len(engines), ncols, figsize=( 14, 4 * len(engines)), sharey=True) row = 0 for row, engine in enumerate(engines): pos = 0 name = f"RandomForestClassifier - {engine}" for max_depth in sorted(set(dfr.max_depth)): for nf in sorted(set(dfr.nfeat)): for est in sorted(set(dfr.n_estimators)): for n_jobs in sorted(set(dfr.n_jobs)): sub = dfr[(dfr.max_depth == max_depth) & (dfr.nfeat == nf) & (dfr.n_estimators == est) & (dfr.n_jobs == n_jobs)] ax = axs[row, pos] labels = sub.n_obs means = sub[f"speedup_{engine}"] x = numpy.arange(len(labels)) width = 0.90 rects1 = ax.bar(x, means, width, label='Speedup') if pos == 0: ax.set_yscale('log') ax.set_ylim([0.1, max(dfr[f"speedup_{engine}"])]) if pos == 0: ax.set_ylabel('Speedup') ax.set_title( '%s\ndepth %d - %d features\n %d estimators ' '%d jobs' % (name, max_depth, nf, est, n_jobs)) if row == len(engines) - 1: ax.set_xlabel('batch size') ax.set_xticks(x) ax.set_xticklabels(labels) autolabel(ax, rects1) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(8) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(8) pos += 1 fig.tight_layout() return fig, ax .. GENERATED FROM PYTHON SOURCE LINES 309-311 Run benchs ++++++++++ .. GENERATED FROM PYTHON SOURCE LINES 311-340 .. code-block:: default @ignore_warnings(category=FutureWarning) def run_bench(repeat=100, verbose=False): n_obs = [1, 10, 100, 1000, 10000] methods = ['predict'] n_features = [30] max_depths = [6, 8, 10, 12] n_estimatorss = [100] n_jobss = [cpu_count()] start = time() results = bench(n_obs, n_features, max_depths, n_estimatorss, n_jobss, methods, repeat=repeat, verbose=verbose) end = time() results_df = pandas.DataFrame(results) print("Total time = %0.3f sec cpu=%d\n" % (end - start, cpu_count())) # plot the results return results_df name = "plot_random_forest_cls_multi" df = run_bench(verbose=True) df.to_csv(f"{name}.csv", index=False) df.to_excel(f"{name}.xlsx", index=False) fig, ax = plot_rf_models(df) fig.savefig(f"{name}.png") plt.show() .. image-sg:: /gyexamples/images/sphx_glr_plot_opml_random_forest_cls_multi_001.png :alt: RandomForestClassifier - ort depth 6 - 30 features 100 estimators 8 jobs, RandomForestClassifier - ort depth 8 - 30 features 100 estimators 8 jobs, RandomForestClassifier - ort depth 10 - 30 features 100 estimators 8 jobs, RandomForestClassifier - ort depth 12 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict depth 6 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict depth 8 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict depth 10 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict depth 12 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict2 depth 6 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict2 depth 8 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict2 depth 10 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict2 depth 12 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict3 depth 6 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict3 depth 8 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict3 depth 10 - 30 features 100 estimators 8 jobs, RandomForestClassifier - mlprodict3 depth 12 - 30 features 100 estimators 8 jobs :srcset: /gyexamples/images/sphx_glr_plot_opml_random_forest_cls_multi_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none bench 1 : {'n_obs': 1, 'nfeat': 30, 'max_depth': 6, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.046824001273224974, 'time_ort': 8.112872654402798e-05, 'time_mlprodict': 0.00659822559365156, 'time_mlprodict2': 0.00011165159098296003, 'time_mlprodict3': 0.012211281679232012} bench 2 : {'n_obs': 10, 'nfeat': 30, 'max_depth': 6, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.047844640810840895, 'time_ort': 0.00043181847736594223, 'time_mlprodict': 0.0004922768622193308, 'time_mlprodict2': 0.0003770684790132301, 'time_mlprodict3': 0.01223254852396037} bench 3 : {'n_obs': 100, 'nfeat': 30, 'max_depth': 6, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.054239802264706476, 'time_ort': 0.0019677445280218593, 'time_mlprodict': 0.0073170982068404555, 'time_mlprodict2': 0.007085977949349112, 'time_mlprodict3': 0.012463190739876345} bench 4 : {'n_obs': 1000, 'nfeat': 30, 'max_depth': 6, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.08971791425331806, 'time_ort': 0.002335551088132585, 'time_mlprodict': 0.014738206499411413, 'time_mlprodict2': 0.01276848916313611, 'time_mlprodict3': 0.01461859032860957} bench 5 : {'n_obs': 10000, 'nfeat': 30, 'max_depth': 6, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.12816017463046592, 'time_ort': 0.022938828740734607, 'time_mlprodict': 0.13100947038037702, 'time_mlprodict2': 0.1356982148718089, 'time_mlprodict3': 0.03585509386903141} bench 6 : {'n_obs': 1, 'nfeat': 30, 'max_depth': 8, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.04706538513577967, 'time_ort': 8.58868165364997e-05, 'time_mlprodict': 0.006275462997357615, 'time_mlprodict2': 0.00013614131603389978, 'time_mlprodict3': 0.01229259363820099} bench 7 : {'n_obs': 10, 'nfeat': 30, 'max_depth': 8, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.04836662452379685, 'time_ort': 0.0007203845251795082, 'time_mlprodict': 0.0007675139987397762, 'time_mlprodict2': 0.0007580103341578727, 'time_mlprodict3': 0.012285356049514598} bench 8 : {'n_obs': 100, 'nfeat': 30, 'max_depth': 8, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.054783546102331264, 'time_ort': 0.0011283658432627195, 'time_mlprodict': 0.008060571100366743, 'time_mlprodict2': 0.005916006207515143, 'time_mlprodict3': 0.01293493589190276} bench 9 : {'n_obs': 1000, 'nfeat': 30, 'max_depth': 8, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.09015101817203686, 'time_ort': 0.0035813540841142335, 'time_mlprodict': 0.022949589911149815, 'time_mlprodict2': 0.022991571992558118, 'time_mlprodict3': 0.015744912835846964} bench 10 : {'n_obs': 10000, 'nfeat': 30, 'max_depth': 8, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.12918856274336576, 'time_ort': 0.02982376936415676, 'time_mlprodict': 0.17005822800274473, 'time_mlprodict2': 0.17033570000785403, 'time_mlprodict3': 0.03915524261537939} bench 11 : {'n_obs': 1, 'nfeat': 30, 'max_depth': 10, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.046970076091714545, 'time_ort': 7.950827288864689e-05, 'time_mlprodict': 0.006540170272769915, 'time_mlprodict2': 0.00017123731826855376, 'time_mlprodict3': 0.003804267410569909} bench 12 : {'n_obs': 10, 'nfeat': 30, 'max_depth': 10, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.04925348875778062, 'time_ort': 0.0009040169506555511, 'time_mlprodict': 0.0009855637160528982, 'time_mlprodict2': 0.001074648523215382, 'time_mlprodict3': 0.012479823570521105} bench 13 : {'n_obs': 100, 'nfeat': 30, 'max_depth': 10, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.06369584306230536, 'time_ort': 0.0017485551870777272, 'time_mlprodict': 0.00862945475091692, 'time_mlprodict2': 0.008667226815305185, 'time_mlprodict3': 0.006903725559823215} bench 14 : {'n_obs': 1000, 'nfeat': 30, 'max_depth': 10, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.09190410490952093, 'time_ort': 0.0057887961791658945, 'time_mlprodict': 0.025684633281674574, 'time_mlprodict2': 0.028402211737226356, 'time_mlprodict3': 0.017606272457421503} bench 15 : {'n_obs': 10000, 'nfeat': 30, 'max_depth': 10, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.13303388337953947, 'time_ort': 0.042347337381215766, 'time_mlprodict': 0.20046561888011638, 'time_mlprodict2': 0.22357457838370465, 'time_mlprodict3': 0.04729508174932562} bench 16 : {'n_obs': 1, 'nfeat': 30, 'max_depth': 12, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.04843824328522065, 'time_ort': 0.0001065022356453396, 'time_mlprodict': 0.0063315499075023195, 'time_mlprodict2': 0.00020421790291688273, 'time_mlprodict3': 0.012155406432048906} bench 17 : {'n_obs': 10, 'nfeat': 30, 'max_depth': 12, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.051387542102020234, 'time_ort': 0.0010617911524605007, 'time_mlprodict': 0.001187512301839888, 'time_mlprodict2': 0.001325335947331041, 'time_mlprodict3': 0.012480162153951823} bench 18 : {'n_obs': 100, 'nfeat': 30, 'max_depth': 12, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.06676212206172447, 'time_ort': 0.0018776941346004606, 'time_mlprodict': 0.008858928534512719, 'time_mlprodict2': 0.009235445402252178, 'time_mlprodict3': 0.013766374338107805} bench 19 : {'n_obs': 1000, 'nfeat': 30, 'max_depth': 12, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.0972531319130212, 'time_ort': 0.008801296184008772, 'time_mlprodict': 0.030396176819604905, 'time_mlprodict2': 0.033091345547952435, 'time_mlprodict3': 0.02090568490199406} bench 20 : {'n_obs': 10000, 'nfeat': 30, 'max_depth': 12, 'n_estimators': 100, 'method': 'predict', 'n_jobs': 8, 'time_skl': 0.14401230756526015, 'time_ort': 0.06827092500004385, 'time_mlprodict': 0.24750996299553663, 'time_mlprodict2': 0.2744046502879688, 'time_mlprodict3': 0.06602232657106859} Total time = 221.675 sec cpu=8 15 16 17 18 19 n_obs 1 10 100 1000 10000 nfeat 30 30 30 30 30 max_depth 12 12 12 12 12 n_estimators 100 100 100 100 100 method predict predict predict predict predict n_jobs 8 8 8 8 8 time_skl 0.048438 0.051388 0.066762 0.097253 0.144012 time_ort 0.000107 0.001062 0.001878 0.008801 0.068271 time_mlprodict 0.006332 0.001188 0.008859 0.030396 0.24751 time_mlprodict2 0.000204 0.001325 0.009235 0.033091 0.274405 time_mlprodict3 0.012155 0.01248 0.013766 0.020906 0.066022 speedup_ort 454.809638 48.397034 35.555377 11.049865 2.109424 speedup_mlprodict 7.650298 43.273271 7.53614 3.199519 0.581844 speedup_mlprodict2 237.189015 38.77322 7.228901 2.93893 0.524817 speedup_mlprodict3 3.984914 4.117538 4.849652 4.651995 2.181267 somewhere/workspace/mlprodict/mlprodict_UT_39_std/_doc/examples/plot_opml_random_forest_cls_multi.py:299: MatplotlibDeprecationWarning: The label function was deprecated in Matplotlib 3.1 and will be removed in 3.8. Use Tick.label1 instead. tick.label.set_fontsize(8) somewhere/workspace/mlprodict/mlprodict_UT_39_std/_doc/examples/plot_opml_random_forest_cls_multi.py:301: MatplotlibDeprecationWarning: The label function was deprecated in Matplotlib 3.1 and will be removed in 3.8. Use Tick.label1 instead. tick.label.set_fontsize(8) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 3 minutes 53.542 seconds) .. _sphx_glr_download_gyexamples_plot_opml_random_forest_cls_multi.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_opml_random_forest_cls_multi.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_opml_random_forest_cls_multi.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_