.. _einsumdecompositionrst: ==================== Einsum decomposition ==================== .. only:: html **Links:** :download:`notebook `, :downloadlink:`html `, :download:`PDF `, :download:`python `, :downloadlink:`slides `, :githublink:`GitHub|_doc/notebooks/einsum_decomposition.ipynb|*` This notebook shows a way to decompose `einsum `__ into a subset of operations (expand_dims, squeeze, transpose, extended matrix multiplication). .. code:: ipython3 from jyquickhelper import add_notebook_menu add_notebook_menu() .. contents:: :local: .. code:: ipython3 %load_ext mlprodict Operator explanation with equation ``bac,cd,def=ebc`` ----------------------------------------------------- The operator einsum takes an equation and some inputs. Every letter involved in the equation is a loop. Let’s see on one example. .. code:: ipython3 import numpy m1 = numpy.arange(0, 8).astype(numpy.float32).reshape((2, 2, 2)) + 10 m2 = numpy.arange(0, 4).astype(numpy.float32).reshape((2, 2)) + 100 m3 = numpy.arange(0, 8).astype(numpy.float32).reshape((2, 2, 2)) + 1000 equation = "bac,cd,def->ebc" truth = numpy.einsum(equation, m1, m2, m3) truth .. parsed-literal:: array([[[ 8866198., 9864696.], [12090270., 13152928.]], [[ 8883886., 9884376.], [12114390., 13179168.]]], dtype=float32) This summation is equalent to: .. code:: ipython3 res = numpy.zeros((2, 2, 2)) for a in range(0, 2): for b in range(0, 2): for c in range(0, 2): for d in range(0, 2): for e in range(0, 2): for f in range(0, 2): res[e, b, c] += m1[b, a, c] * m2[c, d] * m3[d, e, f] res .. parsed-literal:: array([[[ 8866198., 9864696.], [12090270., 13152928.]], [[ 8883886., 9884376.], [12114390., 13179168.]]]) Theoritically, this summation is in this case has a cost of :math:`O(N^6)`. However this simple computation is usually much longer than using matrix multiplications along the path. :math:`O(N^4)` is the cost of the heaviest matrix multiplication in this case). But to do that, the equation needs to be decomposed into a sequence of matrix multiplications. Decomposition of ``bac,cd,def=ebc`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 import numpy from mlprodict.testing.einsum import ( decompose_einsum_equation, apply_einsum_sequence) .. code:: ipython3 m1 = numpy.arange(0, 8).astype(numpy.float32).reshape((2, 2, 2)) + 10 m2 = numpy.arange(0, 4).astype(numpy.float32).reshape((2, 2)) + 100 m3 = numpy.arange(0, 8).astype(numpy.float32).reshape((2, 2, 2)) + 1000 .. code:: ipython3 seq = decompose_einsum_equation("bac,cd,def->ebc") .. code:: ipython3 from jyquickhelper import RenderJsDot RenderJsDot(seq.to_dot(size=7)) .. raw:: html
Then the result can be obtained as follows: .. code:: ipython3 apply_einsum_sequence(seq, m1, m2, m3) .. parsed-literal:: array([[[ 8866198., 9864696.], [12090270., 13152928.]], [[ 8883886., 9884376.], [12114390., 13179168.]]], dtype=float32) operator matmul ~~~~~~~~~~~~~~~ This operator can be used to represent either a multiplication, either a matrix multiplication but it applies only on arrays with the same number of dimensions. It can be broken into multiplication of matrix multiplication. .. code:: ipython3 seq_clean = decompose_einsum_equation("bac,cd,def->ebc", strategy='numpy', clean=True) RenderJsDot(seq_clean.to_dot(size=7)) .. raw:: html
Operator *transpose_mm* is a regular transposition, it takes two inputs but only tranposes the first input before returning it. Operator *batch_dot* is a matrix multiplication. It is left that way on purpose as it may be implemented with function dot or gemm. The operator distinguishes between 3 kind of axes: batch axes, kept axes, sum(mation) axes. It then reshapes both input matrices with 3D tensors, batch axis, row axis, column axis to use function `numpy.dot `__. ONNX ~~~~ The previous graph can be converted into ONNX. .. code:: ipython3 onx = seq_clean.to_onnx("Y", "X1", "X2", "X3", dtype=numpy.float32) # with open("einsum.onnx", "wb") as f: # f.write(onx.SerializeToString()) %onnxview onx .. raw:: html
.. code:: ipython3 from onnxruntime import InferenceSession sess = InferenceSession(onx.SerializeToString()) sess.run(None, {'X1': m1.astype(numpy.float32), 'X2': m2.astype(numpy.float32), 'X3': m3.astype(numpy.float32)})[0] .. parsed-literal:: array([[[ 8866198., 9864696.], [12090270., 13152928.]], [[ 8883886., 9884376.], [12114390., 13179168.]]], dtype=float32) onnxruntime ~~~~~~~~~~~ .. code:: ipython3 import onnx from onnx import helper, numpy_helper from onnxruntime import InferenceSession def make_model1(equation): model = helper.make_model( opset_imports=[helper.make_operatorsetid('', 13)], graph=helper.make_graph( name='einsum_test', inputs=[helper.make_tensor_value_info("X", onnx.TensorProto.FLOAT, None), helper.make_tensor_value_info("Y", onnx.TensorProto.FLOAT, None), helper.make_tensor_value_info("Z", onnx.TensorProto.FLOAT, None)], outputs=[helper.make_tensor_value_info("A", onnx.TensorProto.FLOAT, None)], nodes=[ helper.make_node("Einsum", ["X", "Y", "Z"], ["A"], equation=equation) ] ) ) return model model = make_model1("bac,cd,def->ebc") sess = InferenceSession(model.SerializeToString()) .. code:: ipython3 sess.run(None, {'X': m1.astype(numpy.float32), 'Y': m2.astype(numpy.float32), 'Z': m3.astype(numpy.float32)})[0] .. parsed-literal:: array([[[ 8866198., 9864696.], [12090270., 13152928.]], [[ 8883886., 9884376.], [12114390., 13179168.]]], dtype=float32) Benchmark ~~~~~~~~~ It clearly shows the summation done with the basic algorithm is the slowest. .. code:: ipython3 from mlprodict.onnxrt.validate.validate_helper import measure_time from tqdm import tqdm from pandas import DataFrame def raw_product(m1, m2, m3): N = m1.shape[0] res = numpy.zeros((N, N, N)) for a in range(0, N): for b in range(0, N): for c in range(0, N): for d in range(0, N): for e in range(0, N): for f in range(0, N): res[e, b, c] += m1[b, a, c] * m2[c, d] * m3[d, e, f] return res def benchmark0(equation): sess = None sess2 = None seq = None seq2 = None results = [] for N in tqdm([2, 3, 4, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60]): m1 = numpy.random.randn(N, N, N) m2 = numpy.random.randn(N, N) m3 = numpy.random.randn(N, N, N) if seq is None: seq = decompose_einsum_equation(equation, clean=True) if seq2 is None: seq2 = decompose_einsum_equation(equation, clean=True, strategy='numpy') if sess is None: model = make_model1(equation) sess = InferenceSession(model.SerializeToString()) if sess2 is None: onx = seq2.to_onnx("Y", "X1", "X2", "X3", dtype=numpy.float32) sess2 = InferenceSession(onx.SerializeToString()) res = measure_time(lambda x: numpy.einsum(equation, *x, optimize=True), [m1, m2, m3], repeat=10, number=10) res['name'] = "numpy.einsum" res["N"] = N results.append(res) if N <= 4: res = measure_time(lambda x: raw_product(*x), [m1, m2, m3], repeat=10, number=10) res['name'] = "raw_product" res["N"] = N results.append(res) res = measure_time(lambda x: apply_einsum_sequence(seq, *x), [m1, m2, m3], repeat=10, number=10) res['name'] = "custom_einsum" res["N"] = N results.append(res) res = measure_time(lambda x: apply_einsum_sequence(seq, *x, matmul_impl="pyf"), [m1, m2, m3], repeat=10, number=10) res['name'] = "dec-matmul" res["N"] = N results.append(res) res = measure_time(lambda x: apply_einsum_sequence(seq2, *x, matmul_impl="pyf"), [m1, m2, m3], repeat=10, number=10) res['name'] = "dec-batch_dot" res["N"] = N results.append(res) res = measure_time(lambda x: sess.run(None, {'X': x[0], 'Y': x[1], 'Z': x[2]}), [m1.astype(numpy.float32), m2.astype(numpy.float32), m3.astype(numpy.float32)], repeat=10, number=10) res['name'] = "ort-einsum" res["N"] = N results.append(res) res = measure_time(lambda x: sess2.run(None, {'X1': x[0], 'X2': x[1], 'X3': x[2]}), [m1.astype(numpy.float32), m2.astype(numpy.float32), m3.astype(numpy.float32)], repeat=10, number=10) res['name'] = "ort-matmul" res["N"] = N results.append(res) return DataFrame(results) df = benchmark0("bac,cd,def->ebc") df.tail() .. parsed-literal:: C:\xavierdupre\__home_\github_fork\scikit-learn\sklearn\experimental\enable_hist_gradient_boosting.py:16: UserWarning: Since version 1.0, it is not needed to import enable_hist_gradient_boosting anymore. HistGradientBoostingClassifier and HistGradientBoostingRegressor are now stable and can be normally imported from sklearn.ensemble. warnings.warn( 100%|██████████| 14/14 [00:20<00:00, 1.47s/it] .. raw:: html
average deviation min_exec max_exec repeat number total name N
82 0.065132 0.001338 0.063801 0.068927 10 10 0.651318 custom_einsum 60
83 0.051615 0.001206 0.049987 0.053465 10 10 0.516154 dec-matmul 60
84 0.062689 0.003658 0.058949 0.073073 10 10 0.626888 dec-batch_dot 60
85 0.009917 0.000274 0.009737 0.010686 10 10 0.099166 ort-einsum 60
86 0.015518 0.001107 0.014413 0.018179 10 10 0.155178 ort-matmul 60
.. code:: ipython3 import matplotlib.pyplot as plt piv = df.pivot("N", "name", "average") piv2 = piv.copy() np = piv["numpy.einsum"] for c in piv2.columns: piv2[c] /= np fig, ax = plt.subplots(1, 2, figsize=(14, 6)) piv.plot(logy=True, logx=True, ax=ax[0]) ax[0].set_title("Benchmark einsum function\nbac,cd,def->ebc") piv2.plot(logy=True, logx=True, ax=ax[1]) ax[1].set_title("Benchmark einsum function\n(ratio, baseline=numpy)"); .. image:: einsum_decomposition_26_0.png Version ``dec-matmul`` is an implementation based on the decomposition of a simplified einsum into a sequence of transpose, reshape, (batch_)dot or mul operations. This decomposition is converted into ONNX and executed with *onnxruntime*, version ``ort-matmul``. Both versions are faster than the numpy optimized version. Another example with ``bsnh,btnh=bnts`` --------------------------------------- Another case, more frequent in deep learning. Decomposition of ``bsnh,btnh=bnts`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 seq2 = decompose_einsum_equation("bsnh,btnh->bnts", strategy='numpy', clean=True) RenderJsDot(seq2.to_dot(size=7)) .. raw:: html
ONNX version ~~~~~~~~~~~~ .. code:: ipython3 onx2 = seq2.to_onnx("Y", "X1", "X2", dtype=numpy.float32) %onnxview onx2 .. raw:: html
Benchmark ~~~~~~~~~ .. code:: ipython3 def make_model2(equation): model = helper.make_model( opset_imports=[helper.make_operatorsetid('', 13)], graph=helper.make_graph( name='einsum_test', inputs=[helper.make_tensor_value_info("X", onnx.TensorProto.FLOAT, None), helper.make_tensor_value_info("Y", onnx.TensorProto.FLOAT, None)], outputs=[helper.make_tensor_value_info("A", onnx.TensorProto.FLOAT, None)], nodes=[ helper.make_node("Einsum", ["X", "Y"], ["A"], equation=equation) ] ) ) return model def benchmark(equation, second_input_size=4): sess = None sess2 = None seq = None seq2 = None results = [] for N in tqdm([2, 3, 4, 10, 20, 30, 40]): m1 = numpy.random.randn(10, N, N, N) m2 = numpy.random.randn(10 * N ** (second_input_size-1)).reshape((10, ) + (N, ) * (second_input_size-1)) if seq is None: seq = decompose_einsum_equation(equation, clean=True) if seq2 is None: seq2 = decompose_einsum_equation(equation, clean=True, strategy='numpy') if sess is None: model = make_model2(equation) sess = InferenceSession(model.SerializeToString()) if sess2 is None: onx = seq2.to_onnx("Y", "X1", "X2", dtype=numpy.float32) sess2 = InferenceSession(onx.SerializeToString()) res = measure_time(lambda x: numpy.einsum(equation, *x, optimize=True), [m1, m2], repeat=10, number=10) res['name'] = "numpy.einsum" res["N"] = N results.append(res) res = measure_time(lambda x: apply_einsum_sequence(seq, *x), [m1, m2], repeat=10, number=10) res['name'] = "custom_einsum" res["N"] = N results.append(res) res = measure_time(lambda x: apply_einsum_sequence(seq, *x, matmul_impl="pyf"), [m1, m2], repeat=10, number=10) res['name'] = "dec-matmul" res["N"] = N results.append(res) res = measure_time(lambda x: apply_einsum_sequence(seq2, *x, matmul_impl="pyf"), [m1, m2], repeat=10, number=10) res['name'] = "dec-batch_dot" res["N"] = N results.append(res) res = measure_time(lambda x: sess.run(None, {'X': x[0], 'Y': x[1]}), [m1.astype(numpy.float32), m2.astype(numpy.float32), m3.astype(numpy.float32)], repeat=10, number=10) res['name'] = "ort-einsum" res["N"] = N results.append(res) res = measure_time(lambda x: sess2.run(None, {'X1': x[0], 'X2': x[1]}), [m1.astype(numpy.float32), m2.astype(numpy.float32), m3.astype(numpy.float32)], repeat=10, number=10) res['name'] = "ort-matmul" res["N"] = N results.append(res) return DataFrame(results) df = benchmark("bsnh,btnh->bnts") df.tail() .. parsed-literal:: 100%|██████████| 7/7 [00:13<00:00, 1.93s/it] .. raw:: html
average deviation min_exec max_exec repeat number total name N
37 0.229418 0.020792 0.217997 0.291032 10 10 2.294175 custom_einsum 40
38 0.160575 0.005435 0.150772 0.167411 10 10 1.605746 dec-matmul 40
39 0.112844 0.011305 0.102173 0.141890 10 10 1.128436 dec-batch_dot 40
40 0.051181 0.003533 0.047244 0.057054 10 10 0.511815 ort-einsum 40
41 0.078827 0.008735 0.067893 0.099156 10 10 0.788271 ort-matmul 40
.. code:: ipython3 piv = df.pivot("N", "name", "average") piv2 = piv.copy() np = piv["numpy.einsum"] for c in piv2.columns: piv2[c] /= np fig, ax = plt.subplots(1, 2, figsize=(14, 6)) piv.plot(logy=True, logx=True, ax=ax[0]) ax[0].set_title("Benchmark einsum function\nbsnh,btnh->bnts") piv2.plot(logy=True, logx=True, ax=ax[1]) ax[1].set_title("Benchmark einsum function\n(ratio, baseline=numpy)"); .. image:: einsum_decomposition_35_0.png Permutation ~~~~~~~~~~~ Einsum’s algorithm started by aligning all matrices involved in the computation to the same dimension in the same order. But which order is the best, that’s the question. .. code:: ipython3 equation = "bsnh,btnh->bnts" letters = list(sorted(set([c for c in equation if "a" <= c < "z"]))) letters .. parsed-literal:: ['b', 'h', 'n', 's', 't'] .. code:: ipython3 from itertools import permutations def benchmark_perm(equation, number=5, second_input_size=4, repeat=3, N=15): def n_operator(seq, name): n = 0 for op in seq: if op.name == name: n += 1 return n def n_onnx_op(onx, name): n = 0 for op in onx.graph.node: if op.op_type == name: n += 1 return n def get_kind(seq): n = 0 for op in seq: if op.name == 'batch_dot': return op.get_dot_kind() return None m1 = numpy.random.randn(N, N, N, N) m2 = numpy.random.randn(N ** second_input_size).reshape((N, ) * second_input_size) results = [] for perm in tqdm(list(permutations(letters))): replace = {d: c for c, d in zip(letters, perm)} eq = equation for k, v in replace.items(): eq = eq.replace(k, v.upper()) eq = eq.lower() seq = decompose_einsum_equation(eq, clean=True) seq2 = decompose_einsum_equation(eq, clean=True, strategy='numpy') model = make_model2(eq) sess = InferenceSession(model.SerializeToString()) onx = seq2.to_onnx("Y", "X1", "X2", dtype=numpy.float32) sess2 = InferenceSession(onx.SerializeToString()) n_tra = n_operator(seq2, 'transpose') n_tra_onnx = n_onnx_op(onx, 'Transpose') n_gemm_onnx = n_onnx_op(onx, 'Gemm') kind = get_kind(seq2) res = measure_time(lambda x: numpy.einsum(eq, *x, optimize=True), [m1, m2], repeat=repeat, number=number) res['name'] = "numpy.einsum" res["N"] = N res["eq"] = eq results.append(res) res = measure_time(lambda x: apply_einsum_sequence(seq, *x), [m1, m2], repeat=repeat, number=number) res['name'] = "custom_einsum" res["N"] = N res["eq"] = eq res['transpose'] = n_tra res['kind'] = kind results.append(res) res = measure_time(lambda x: apply_einsum_sequence(seq, *x, matmul_impl="pyf"), [m1, m2], repeat=repeat, number=number) res['name'] = "dec-matmul" res["N"] = N res["eq"] = eq res['transpose'] = n_tra res['kind'] = kind results.append(res) res = measure_time(lambda x: apply_einsum_sequence(seq2, *x, matmul_impl="pyf"), [m1, m2], repeat=repeat, number=number) res['name'] = "dec-batch_dot" res["N"] = N res["eq"] = eq res['transpose'] = n_tra res['kind'] = kind results.append(res) res = measure_time(lambda x: sess.run(None, {'X': x[0], 'Y': x[1]}), [m1.astype(numpy.float32), m2.astype(numpy.float32), m3.astype(numpy.float32)], repeat=repeat, number=number) res['name'] = "ort-einsum" res["N"] = N res["eq"] = eq res['transpose'] = n_tra_onnx res['gemm'] = n_gemm_onnx results.append(res) res = measure_time(lambda x: sess2.run(None, {'X1': x[0], 'X2': x[1]}), [m1.astype(numpy.float32), m2.astype(numpy.float32), m3.astype(numpy.float32)], repeat=repeat, number=number) res['name'] = "ort-matmul" res["N"] = N res["eq"] = eq res['transpose'] = n_tra_onnx res['gemm'] = n_gemm_onnx results.append(res) return DataFrame(results) df = benchmark_perm("bsnh,btnh->bnts", number=4) df.tail() .. parsed-literal:: 100%|██████████| 120/120 [00:11<00:00, 10.23it/s] .. raw:: html
average deviation min_exec max_exec repeat number total name N eq transpose kind gemm
715 0.006162 0.000038 0.006128 0.006216 3 4 0.018485 custom_einsum 15 thns,tbns->tnbh 3.0 NN NaN
716 0.002343 0.000046 0.002294 0.002405 3 4 0.007029 dec-matmul 15 thns,tbns->tnbh 3.0 NN NaN
717 0.001645 0.000035 0.001610 0.001694 3 4 0.004934 dec-batch_dot 15 thns,tbns->tnbh 3.0 NN NaN
718 0.000833 0.000015 0.000820 0.000853 3 4 0.002498 ort-einsum 15 thns,tbns->tnbh 4.0 NaN 0.0
719 0.001251 0.000012 0.001238 0.001268 3 4 0.003753 ort-matmul 15 thns,tbns->tnbh 4.0 NaN 0.0
.. code:: ipython3 df = df.sort_values("average").reset_index(drop=True) df.head() .. raw:: html
average deviation min_exec max_exec repeat number total name N eq transpose kind gemm
0 0.000758 0.000015 0.000738 0.000771 3 4 0.002275 ort-matmul 15 hsnt,hbnt->hnbs 4.0 NaN 0.0
1 0.000770 0.000023 0.000739 0.000793 3 4 0.002310 ort-matmul 15 hnts,hbts->htbn 4.0 NaN 0.0
2 0.000778 0.000020 0.000758 0.000806 3 4 0.002334 ort-matmul 15 bnst,bhst->bshn 4.0 NaN 0.0
3 0.000783 0.000021 0.000760 0.000812 3 4 0.002350 ort-matmul 15 bnht,bsht->bhsn 4.0 NaN 0.0
4 0.000784 0.000011 0.000774 0.000799 3 4 0.002351 ort-matmul 15 hnst,hbst->hsbn 4.0 NaN 0.0
.. code:: ipython3 df.tail() .. raw:: html
average deviation min_exec max_exec repeat number total name N eq transpose kind gemm
715 0.011529 0.000882 0.010456 0.012617 3 4 0.034587 custom_einsum 15 sbnt,shnt->snhb 3.0 NN NaN
716 0.011548 0.000422 0.010967 0.011953 3 4 0.034644 custom_einsum 15 htsb,hnsb->hsnt 3.0 NN NaN
717 0.013971 0.001984 0.012279 0.016754 3 4 0.041912 custom_einsum 15 nbsh,ntsh->nstb 3.0 NN NaN
718 0.014765 0.001483 0.013366 0.016818 3 4 0.044295 numpy.einsum 15 bnsh,btsh->bstn NaN NaN NaN
719 0.015813 0.002921 0.012546 0.019636 3 4 0.047438 numpy.einsum 15 nbsh,ntsh->nstb NaN NaN NaN
.. code:: ipython3 piv = df.pivot("eq", "name", "average").sort_values("numpy.einsum") fig, ax = plt.subplots(1, 1, figsize=(14, 6)) piv.plot(logy=True, logx=True, ax=ax) ax.set_title("Benchmark einsum function - bsnh,btnh->bnts"); .. image:: einsum_decomposition_41_0.png .. code:: ipython3 set(df['transpose'].dropna()), set(df['gemm'].dropna()), set(df['kind'].dropna()) .. parsed-literal:: ({3.0, 4.0}, {0.0}, {'NN'}) Decomposition of ``bsnh,ctnh=nts`` ---------------------------------- .. code:: ipython3 seq3 = decompose_einsum_equation("bsnh,ctnh->nts", strategy='numpy', clean=True) RenderJsDot(seq3.to_dot(size=7)) .. raw:: html
.. code:: ipython3 onx3 = seq3.to_onnx("Y", "X1", "X2", dtype=numpy.float32) %onnxview onx3 .. raw:: html
Benchmark size ~~~~~~~~~~~~~~ .. code:: ipython3 df = benchmark("bsnh,ctnh->nts") df.tail() .. parsed-literal:: 100%|██████████| 7/7 [00:39<00:00, 5.71s/it] .. raw:: html
average deviation min_exec max_exec repeat number total name N
37 0.043389 0.016879 0.030195 0.077480 10 10 0.433885 custom_einsum 40
38 0.015310 0.000222 0.014909 0.015622 10 10 0.153098 dec-matmul 40
39 0.013508 0.000425 0.013148 0.014576 10 10 0.135085 dec-batch_dot 40
40 0.032725 0.000266 0.032409 0.033212 10 10 0.327254 ort-einsum 40
41 0.057384 0.002703 0.053734 0.062845 10 10 0.573841 ort-matmul 40
.. code:: ipython3 piv = df.pivot("N", "name", "average") piv2 = piv.copy() np = piv["numpy.einsum"] for c in piv2.columns: piv2[c] /= np fig, ax = plt.subplots(1, 2, figsize=(14, 6)) piv.plot(logy=True, logx=True, ax=ax[0]) ax[0].set_title("Benchmark einsum function\nbsnh,ctnh->nts") piv2.plot(logy=True, logx=True, ax=ax[1]) ax[1].set_title("Benchmark einsum function\n(ratio, baseline=numpy)"); .. image:: einsum_decomposition_48_0.png Benchmark permutation ~~~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 df = benchmark_perm("bsnh,ctnh->nts", number=2, repeat=3, N=10) .. parsed-literal:: 100%|██████████| 120/120 [00:06<00:00, 17.41it/s] .. code:: ipython3 df = df.sort_values("average").reset_index(drop=True) df.head() .. raw:: html
average deviation min_exec max_exec repeat number total name N eq transpose kind gemm
0 0.000125 0.000008 0.000118 0.000136 3 2 0.000374 ort-matmul 10 bnst,chst->shn 4.0 NaN 0.0
1 0.000126 0.000007 0.000119 0.000136 3 2 0.000377 ort-matmul 10 bhst,cnst->snh 4.0 NaN 0.0
2 0.000141 0.000006 0.000136 0.000150 3 2 0.000422 ort-matmul 10 hbst,cnst->snb 5.0 NaN 0.0
3 0.000141 0.000007 0.000135 0.000151 3 2 0.000423 ort-matmul 10 nbst,chst->shb 5.0 NaN 0.0
4 0.000144 0.000007 0.000138 0.000154 3 2 0.000432 ort-matmul 10 btns,chns->nht 5.0 NaN 0.0
.. code:: ipython3 set(df['transpose'].dropna()), set(df['gemm'].dropna()), set(df['kind'].dropna()) .. parsed-literal:: ({3.0, 4.0, 5.0, 6.0}, {0.0}, {'NN'}) .. code:: ipython3 piv = df.pivot("eq", "name", "average").sort_values("numpy.einsum") fig, ax = plt.subplots(1, 1, figsize=(14, 6)) piv.plot(logy=True, logx=True, ax=ax) ax.set_title("Benchmark einsum function"); .. image:: einsum_decomposition_53_0.png Best permutation ~~~~~~~~~~~~~~~~ One of the best permutation is ``bnst,chst->shn``. .. code:: ipython3 seq4 = decompose_einsum_equation("bnst,chst->shn", strategy='numpy', clean=True) RenderJsDot(seq4.to_dot(size=7)) .. raw:: html
.. code:: ipython3 onx4 = seq4.to_onnx("Y", "X1", "X2", dtype=numpy.float32) %onnxview onx4 .. raw:: html