Compares implementations of Where#

This example compares implementations of function numpy.where from numpy, onnxruntime. tensorflow and pytorch are included as well if available. The benchmark also compares the operator where to an equivalent implementation where(c, x, y) = x * c - y * (c - 1).

Available optimisation#

import numpy
import pandas
import matplotlib.pyplot as plt
from onnxruntime import InferenceSession
from skl2onnx.common.data_types import FloatTensorType, BooleanTensorType
from skl2onnx.algebra.onnx_ops import OnnxWhere, OnnxSub, OnnxMul
from cpyquickhelper.numbers import measure_time
from tqdm import tqdm
from mlprodict.testing.experimental_c_impl.experimental_c import code_optimisation
print(code_optimisation())

Out:

AVX-omp=8

Where: common code#

try:
    from tensorflow import where as tf_where, convert_to_tensor
except ImportError:
    tf_where = None
try:
    from torch import where as torch_where, from_numpy
except ImportError:
    torch_where = None


def build_ort_where(op_version=12):
    node = OnnxWhere('cond', 'x', 'y', op_version=op_version,
                     output_names=['z'])
    onx = node.to_onnx(inputs=[('cond', BooleanTensorType()),
                               ('x', FloatTensorType()),
                               ('y', FloatTensorType())],
                       target_opset=op_version)
    sess = InferenceSession(onx.SerializeToString())
    return lambda cond, x, y: sess.run(None, {'cond': cond, 'x': x, 'y': y})


def build_ort_where_add(op_version=12):
    node = OnnxSub(
        OnnxMul('x', 'cond', op_version=op_version),
        OnnxMul('y',
                OnnxSub('cond', numpy.array([1], dtype=numpy.float32),
                        op_version=op_version),
                op_version=op_version),
        op_version=op_version, output_names=['z'])
    onx = node.to_onnx(inputs=[('cond', FloatTensorType()),
                               ('x', FloatTensorType()),
                               ('y', FloatTensorType())],
                       target_opset=op_version)
    sess = InferenceSession(onx.SerializeToString())
    return lambda cond, x, y: sess.run(None, {'cond': cond, 'x': x, 'y': y})


def numpy_where_add(cond, x, y):
    cx = x * cond
    cy = cond - 1
    numpy.multiply(y, cy, out=y)
    numpy.subtract(cx, cy, out=cx)
    return cx


def loop_where(fct, conds, xs, ys):
    for cond, x, y in zip(conds, xs, ys):
        fct(cond, x, y)


def benchmark_equation():
    # equations
    ort_where = build_ort_where()
    ort_where_add = build_ort_where_add()
    res = []
    for dim in tqdm([8, 16, 32, 64, 100, 128, 200,
                     256, 500, 512, 1024, 2048]):
        repeat = 5
        number = 10

        conds = [(numpy.random.rand(dim, dim) < 0.5).astype(numpy.bool_)
                 for _ in range(repeat)]
        xs = [numpy.random.rand(dim, dim).astype(numpy.float32)
              for _ in range(repeat)]
        ys = [numpy.random.rand(dim, dim).astype(numpy.float32)
              for _ in range(repeat)]

        # numpy
        ctx = dict(conds=conds, xs=xs, ys=ys, where=numpy.where,
                   loop_where=loop_where)
        obs = measure_time(
            "loop_where(where, conds, xs, ys)",
            div_by_number=True, context=ctx, repeat=repeat, number=number)
        obs['dim'] = dim
        obs['fct'] = 'numpy.where'
        res.append(obs)

        # numpy add
        ctx['where'] = numpy_where_add
        obs = measure_time(
            "loop_where(where, conds, xs, ys)",
            div_by_number=True, context=ctx, repeat=repeat, number=number)
        obs['dim'] = dim
        obs['fct'] = 'numpy_where_add'
        res.append(obs)

        # onnxruntime
        ctx['where'] = ort_where
        obs = measure_time(
            "loop_where(where, conds, xs, ys)",
            div_by_number=True, context=ctx, repeat=repeat, number=number)
        obs['dim'] = dim
        obs['fct'] = 'ort_where'
        res.append(obs)

        # onnxruntime - 2
        ctx['where'] = ort_where_add
        ctx['conds'] = [c.astype(numpy.float32) for c in conds]
        obs = measure_time(
            "loop_where(where, conds, xs, ys)",
            div_by_number=True, context=ctx, repeat=repeat, number=number)
        obs['dim'] = dim
        obs['fct'] = 'ort_where_add'
        res.append(obs)

        if tf_where is not None:
            # tensorflow
            ctx['where'] = tf_where
            ctx['conds'] = [convert_to_tensor(c) for c in conds]
            ctx['xs'] = [convert_to_tensor(x) for x in xs]
            ctx['ys'] = [convert_to_tensor(y) for y in ys]
            obs = measure_time(
                "loop_where(where, conds, xs, ys)",
                div_by_number=True, context=ctx, repeat=repeat, number=number)
            obs['dim'] = dim
            obs['fct'] = 'tf_where'
            res.append(obs)

        if torch_where is not None:
            # torch
            ctx['where'] = torch_where
            ctx['conds'] = [from_numpy(c) for c in conds]
            ctx['xs'] = [from_numpy(x) for x in xs]
            ctx['ys'] = [from_numpy(y) for y in ys]
            obs = measure_time(
                "loop_where(where, conds, xs, ys)",
                div_by_number=True, context=ctx, repeat=repeat, number=number)
            obs['dim'] = dim
            obs['fct'] = 'torch_where'
            res.append(obs)

    # Dataframes
    df = pandas.DataFrame(res)
    piv = df.pivot('dim', 'fct', 'average')

    rs = piv.copy()
    rs['ort_where'] = rs['numpy.where'] / rs['ort_where']
    rs['numpy_where_add'] = rs['numpy.where'] / rs['numpy_where_add']
    rs['ort_where_add'] = rs['numpy.where'] / rs['ort_where_add']
    if 'tf_where' in rs.columns:
        rs['tf_where'] = rs['numpy.where'] / rs['tf_where']
    if 'torch_where' in rs.columns:
        rs['torch_where'] = rs['numpy.where'] / rs['torch_where']
    rs['numpy.where'] = 1.

    # Graphs.
    fig, ax = plt.subplots(1, 2, figsize=(12, 4))
    piv.plot(logx=True, logy=True, ax=ax[0],
             title="Where benchmark -- (N, N)\nlower better")
    ax[0].legend(prop={"size": 9})
    rs.plot(logx=True, logy=True, ax=ax[1],
            title="Where Speedup, baseline=numpy -- (N, N)\nhigher better")
    ax[1].plot([min(rs.index), max(rs.index)], [0.5, 0.5], 'g--')
    ax[1].plot([min(rs.index), max(rs.index)], [2., 2.], 'g--')
    ax[1].legend(prop={"size": 9})

    return df, rs, ax


############
# Benchmark
# +++++++++

df, piv, ax = benchmark_equation()
df.pivot("fct", "dim", "average")
dfs = [df]
Where benchmark -- (N, N) lower better, Where Speedup, baseline=numpy -- (N, N) higher better

Out:

  0%|          | 0/12 [00:00<?, ?it/s]
  8%|8         | 1/12 [00:00<00:01,  8.09it/s]
 25%|##5       | 3/12 [00:00<00:00, 12.09it/s]
 42%|####1     | 5/12 [00:00<00:00,  8.86it/s]
 50%|#####     | 6/12 [00:00<00:00,  6.60it/s]
 58%|#####8    | 7/12 [00:01<00:01,  3.64it/s]
 67%|######6   | 8/12 [00:02<00:01,  2.16it/s]
 75%|#######5  | 9/12 [00:05<00:03,  1.17s/it]
 83%|########3 | 10/12 [00:08<00:03,  1.73s/it]
 92%|#########1| 11/12 [00:20<00:04,  4.75s/it]
100%|##########| 12/12 [01:06<00:00, 17.10s/it]
100%|##########| 12/12 [01:06<00:00,  5.57s/it]

Conclusion#

The implementation of Where should be faster than the formula where(c, x, y) = x * c - y * (c - 1).

merged = pandas.concat(dfs)
name = "where"
merged.to_csv("plot_%s.csv" % name, index=False)
merged.to_excel("plot_%s.xlsx" % name, index=False)
plt.savefig("plot_%s.png" % name)

plt.show()
plot op where

Total running time of the script: ( 1 minutes 8.957 seconds)

Gallery generated by Sphinx-Gallery