module ml.logreg
#
Short summary#
module mlstatpy.ml.logreg
Helpers on logistic regression.
Functions#
function |
truncated documentation |
---|---|
Computes Gini, information gain, likelihood on a dataset with two features assuming the first coordinates is used to … |
|
Computes Gini, information gain, likelihood on a dataset with two features assuming the first coordinates is used to … |
|
Computes |
|
Computes |
|
Computes |
|
Plots a dataset, X is a dataset with two features, y contains the binary labels. |
|
Builds a random dataset as describes in example Arbre d’indécision. |
Documentation#
Helpers on logistic regression.
- mlstatpy.ml.logreg.criteria(X, y)#
Computes Gini, information gain, likelihood on a dataset with two features assuming the first coordinates is used to classify.
- Paramètres:
X – 2D matrix
y – binary labels
- Renvoie:
dataframe
- mlstatpy.ml.logreg.criteria2(X, y)#
Computes Gini, information gain, likelihood on a dataset with two features assuming the first coordinates is used to classify.
- Paramètres:
X – 2D matrix
y – binary labels
- Renvoie:
dataframe
- mlstatpy.ml.logreg.likelihood(x, y, theta=1.0, th=0.0)#
Computes
where
is
.
- mlstatpy.ml.logreg.logistic(x)#
Computes
.
- mlstatpy.ml.logreg.plog2(p)#
Computes
.
- mlstatpy.ml.logreg.plot_ds(X, y, ax=None, title=None)#
Plots a dataset, X is a dataset with two features, y contains the binary labels.
- mlstatpy.ml.logreg.random_set_1d(n, kind)#
Builds a random dataset as describes in example Arbre d’indécision.
- Paramètres:
n – number of observations
kind – 2, 3, 4 (see example)
- Renvoie:
array 2D