================ ONNX with Python ================ Next sections highlight the main functions used to build an ONNX graph with the :ref:`Python API ` :epkg:`onnx` offers. .. contents:: :local: .. _l-onnx-linear-regression-onnx-api: A simple example: a linear regression ===================================== The linear regression is the most simple model in machine learning described by the following expression :math:`Y = XA + B`. We can see it as a function of three variables :math:`Y = f(X, A, B)` decomposed into `y = Add(MatMul(X, A), B)`. That what's we need to represent with ONNX operators. The first thing is to implement a function with :ref:`ONNX operators `. ONNX is strongly typed. Shape and type must be defined for both input and output of the function. That said, we need four functions to build the graph among the :ref:`l-onnx-make-function`: * `make_tensor_value_info`: declares a variable (input or output) given its shape and type * `make_node`: creates a node defined by an operation (an operator type), its inputs and outputs * `make_graph`: a function to create an ONNX graph with the objects created by the two previous functions * `make_model`: a last function with merges the graph and additional metadata All along the creation, we need to give a name to every input, output of every node of the graph. Input and output of the graph are defined by :epkg:`onnx` objects, strings are used to refer to intermediate results. This is how it looks like. .. runpython:: :showcode: :toggle: out :warningout: DeprecationWarning # imports import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from mlprodict.plotting.text_plot import onnx_simple_text_plot # inputs # 'X' is the name, TensorProto.FLOAT the type, [None, None] the shape X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) # outputs, the shape is left undefined Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) # nodes # It creates a node defined by the operator type MatMul, # 'X', 'A' are the inputs of the node, 'XA' the output. node1 = make_node('MatMul', ['X', 'A'], ['XA']) node2 = make_node('Add', ['XA', 'B'], ['Y']) # from nodes to graph # the graph is built from the list of nodes, the list of inputs, # the list of outputs and a name. graph = make_graph([node1, node2], # nodes 'lr', # a name [X, A, B], # inputs [Y]) # outputs # onnx graph # there is no metadata in this case. onnx_model = make_model(graph) # Let's check the model is consistent, # this function is described in section # Checker and Shape Inference. check_model(onnx_model) # the work is done, let's display it... print(onnx_simple_text_plot(onnx_model)) .. gdot:: :script: DOT-SECTION from mlprodict.testing.einsum import decompose_einsum_equation import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from mlprodict.onnxrt import OnnxInference from mlprodict.plotting.text_plot import onnx_simple_text_plot X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node1 = make_node('MatMul', ['X', 'A'], ['XA']) node2 = make_node('Add', ['XA', 'B'], ['Y']) graph = make_graph([node1, node2], 'lr', [X, A, B], [Y]) onnx_model = make_model(graph) print("DOT-SECTION", OnnxInference(onnx_model).to_dot()) An empty shape (`None`) means any shape, a shape defined as `[None, None]` tells this object is a tensor with two dimensions without any further precision. The ONNX graph can also be inspected by looking into the fields of each object of the graph. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from mlprodict.plotting.text_plot import onnx_simple_text_plot def shape2tuple(shape): return tuple(getattr(d, 'dim_value', 0) for d in shape.dim) X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node1 = make_node('MatMul', ['X', 'A'], ['XA']) node2 = make_node('Add', ['XA', 'B'], ['Y']) graph = make_graph([node1, node2], 'lr', [X, A, B], [Y]) onnx_model = make_model(graph) check_model(onnx_model) # the list of inputs print('** inputs **') print(onnx_model.graph.input) # in a more nicely format print('** inputs **') for obj in onnx_model.graph.input: print("name=%r dtype=%r shape=%r" % ( obj.name, obj.type.tensor_type.elem_type, shape2tuple(obj.type.tensor_type.shape))) # the list of outputs print('** outputs **') print(onnx_model.graph.output) # in a more nicely format print('** outputs **') for obj in onnx_model.graph.output: print("name=%r dtype=%r shape=%r" % ( obj.name, obj.type.tensor_type.elem_type, shape2tuple(obj.type.tensor_type.shape))) # the list of nodes print('** nodes **') print(onnx_model.graph.node) # in a more nicely format print('** nodes **') for node in onnx_model.graph.node: print("name=%r type=%r input=%r output=%r" % ( node.name, node.op_type, node.input, node.output)) The tensor type is an integer (= 1). The following array gives the equivalent type with :epkg:`numpy`. .. runpython:: :showcode: import pprint from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE pprint.pprint(TENSOR_TYPE_TO_NP_TYPE) Serialization ============= :epkg:`ONNX` is built on the top of protobuf. It adds the necessary definitions to describe a machine learned model and most of the time, :epkg:`ONNX` is used to serialize or deserialize a model. First section addresses this need. Second section introduces the serialization and deserialization of data such as tensors, sparse tensors... Model Serialization +++++++++++++++++++ The model needs to be saved to be deployed. ONNX is based on :epkg:`protobuf`. It minimizes the space needed to save the graph on disk. Every object (see :ref:`l-onnx-classes`) in :epkg:`onnx` can be serialized with method `SerializeToString`. That's the case for the whole model. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from mlprodict.plotting.text_plot import onnx_simple_text_plot def shape2tuple(shape): return tuple(getattr(d, 'dim_value', 0) for d in shape.dim) X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node1 = make_node('MatMul', ['X', 'A'], ['XA']) node2 = make_node('Add', ['XA', 'B'], ['Y']) graph = make_graph([node1, node2], 'lr', [X, A, B], [Y]) onnx_model = make_model(graph) check_model(onnx_model) # The serialization with open("linear_regression.onnx", "wb") as f: f.write(onnx_model.SerializeToString()) # display print(onnx_simple_text_plot(onnx_model)) The graph can be restored with function `load`: .. runpython:: :showcode: from onnx import load from mlprodict.plotting.text_plot import onnx_simple_text_plot with open("linear_regression.onnx", "rb") as f: onnx_model = load(f) # display print(onnx_simple_text_plot(onnx_model)) It looks exactly the same. Any model can be serialized this way unless they are bigger than 2 Gb. :epkg:`protobuf` is limited to size smaller than this threshold. Next sections will show how to overcome that limit. Data Serialization ++++++++++++++++++ The serialization of tensor usually happens like the following: .. runpython:: :showcode: import numpy from onnx import TensorProto from onnx.numpy_helper import from_array numpy_tensor = numpy.array([0, 1, 4, 5, 3], dtype=numpy.float32) print(type(numpy_tensor)) onnx_tensor = from_array(numpy_tensor) print(type(onnx_tensor)) serialized_tensor = onnx_tensor.SerializeToString() print(type(serialized_tensor)) with open("saved_tensor.pb", "wb") as f: f.write(serialized_tensor) And the deserialization like: .. runpython:: :showcode: import numpy from onnx import TensorProto from onnx.numpy_helper import to_array with open("saved_tensor.pb", "rb") as f: serialized_tensor = f.read() print(type(serialized_tensor)) onnx_tensor = TensorProto() onnx_tensor.ParseFromString(serialized_tensor) print(type(onnx_tensor)) numpy_tensor = to_array(onnx_tensor) print(numpy_tensor) The same schema can be used for :epkg:`TensorProto` but not only: .. runpython:: :showcode: import onnx import pprint pprint.pprint([p for p in dir(onnx) if p.endswith('Proto') and p[0] != '_']) This code can be simplified with function :epkg:`load_tensor_from_string` (see :ref:`l-onnx-load-data`). .. runpython:: :showcode: from onnx import load_tensor_from_string with open("saved_tensor.pb", "rb") as f: serialized = f.read() proto = load_tensor_from_string(serialized) print(type(proto)) .. _l-onnx-linear-regression-onnx-api-init: Initializer, default value ========================== The previous model assumed the coefficients of the linear regression were also input of the model. That's not very convenient. They should be part of the model itself as constant or **initializer** to follow onnx semantic. Next example modifies the previous one to change inputs `A` and `B` into initializers. The package implements two functions to convert from :epkg:`numpy` into :epkg:`onnx` and the other way around (see :ref:`l-numpy-helper-onnx-array`). * ``onnx.numpy_helper.to_array``: converts from onnx to numpy * ``onnx.numpy_helper.from_array``: converts from numpy to onnx .. runpython:: :showcode: :warningout: DeprecationWarning import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from mlprodict.plotting.text_plot import onnx_simple_text_plot # initializers value = numpy.array([0.5, -0.6], dtype=numpy.float32) A = numpy_helper.from_array(value, name='A') value = numpy.array([0.4], dtype=numpy.float32) C = numpy_helper.from_array(value, name='C') # the part which does not change X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node1 = make_node('MatMul', ['X', 'A'], ['AX']) node2 = make_node('Add', ['AX', 'C'], ['Y']) graph = make_graph([node1, node2], 'lr', [X], [Y], [A, C]) onnx_model = make_model(graph) check_model(onnx_model) print(onnx_simple_text_plot(onnx_model)) .. gdot:: :script: DOT-SECTION from mlprodict.testing.einsum import decompose_einsum_equation import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from mlprodict.onnxrt import OnnxInference from mlprodict.plotting.text_plot import onnx_simple_text_plot value = numpy.array([0.5, -0.6], dtype=numpy.float32) A = numpy_helper.from_array(value, name='A') value = numpy.array([0.4], dtype=numpy.float32) C = numpy_helper.from_array(value, name='C') X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node1 = make_node('MatMul', ['X', 'A'], ['AX']) node2 = make_node('Add', ['AX', 'C'], ['Y']) graph = make_graph([node1, node2], 'lr', [X], [Y], [A, C]) onnx_model = make_model(graph) print("DOT-SECTION", OnnxInference(onnx_model).to_dot()) Again, it is possible to go through the onnx structure to check how the initializers look like. .. runpython:: :showcode: :warningout: DeprecationWarning import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from mlprodict.plotting.text_plot import onnx_simple_text_plot # initializers value = numpy.array([0.5, -0.6], dtype=numpy.float32) A = numpy_helper.from_array(value, name='A') value = numpy.array([0.4], dtype=numpy.float32) C = numpy_helper.from_array(value, name='C') # the part which does not change X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node1 = make_node('MatMul', ['X', 'A'], ['AX']) node2 = make_node('Add', ['AX', 'C'], ['Y']) graph = make_graph([node1, node2], 'lr', [X], [Y], [A, C]) onnx_model = make_model(graph) check_model(onnx_model) print('** initializer **') for init in onnx_model.graph.initializer: print(init) The type is defined as integer as well with the same meaning. In this second example, there is only one input left. Input `A` and `B` were removed. They could be kept. In that case, they are optional: every initiliazer sharing the same name as input is considered as a default value. It replaces the input if this one is not given. Attributes ========== Some operators need attributes such as :epkg:`Transpose` operator. Let's build the graph for expression :math:`y = XA' + B` or `y = Add(MatMul(X, Transpose(A)) + B)`. Tranpose needs an attribute defining the permutation of axes: `perm=[1, 0]`. It is added as a named attribute in function `make_node`. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from mlprodict.plotting.text_plot import onnx_simple_text_plot # unchanged X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) # added node_transpose = make_node('Transpose', ['A'], ['tA'], perm=[1, 0]) # unchanged except A is replaced by tA node1 = make_node('MatMul', ['X', 'tA'], ['XA']) node2 = make_node('Add', ['XA', 'B'], ['Y']) # node_transpose is added to the list graph = make_graph([node_transpose, node1, node2], 'lr', [X, A, B], [Y]) onnx_model = make_model(graph) check_model(onnx_model) # the work is done, let's display it... print(onnx_simple_text_plot(onnx_model)) .. gdot:: :script: DOT-SECTION from mlprodict.testing.einsum import decompose_einsum_equation import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from mlprodict.onnxrt import OnnxInference from mlprodict.plotting.text_plot import onnx_simple_text_plot X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node_transpose = make_node('Transpose', ['A'], ['tA'], perm=[1, 0]) node1 = make_node('MatMul', ['X', 'tA'], ['XA']) node2 = make_node('Add', ['XA', 'B'], ['Y']) graph = make_graph([node_transpose, node1, node2], 'lr', [X, A, B], [Y]) onnx_model = make_model(graph) print("DOT-SECTION", OnnxInference(onnx_model).to_dot()) The whole list of *make* functions is the following. Many of them are described in section :ref:`l-onnx-make-function`. .. runpython:: :showcode: import onnx import pprint pprint.pprint([k for k in dir(onnx.helper) if k.startswith('make')]) Opset and metadata ================== Let's load the ONNX file previously created and check what kind of metadata it has. .. runpython:: :showcode: from onnx import load with open("linear_regression.onnx", "rb") as f: onnx_model = load(f) for field in ['doc_string', 'domain', 'functions', 'ir_version', 'metadata_props', 'model_version', 'opset_import', 'producer_name', 'producer_version', 'training_info']: print(field, getattr(onnx_model, field)) Most of them are empty because it was not filled when the ONNX graph was created. Two of them have a value: .. runpython:: :showcode: from onnx import load with open("linear_regression.onnx", "rb") as f: onnx_model = load(f) print("ir_version:", onnx_model.ir_version) for opset in onnx_model.opset_import: print("opset domain=%r version=%r" % (opset.domain, opset.version)) :epkg:`IR` defined the version of ONNX language. Opset defines the version of operators being used. Without any precision, ONNX uses the latest version available coming from the installed package. Another one can be used. .. runpython:: :showcode: from onnx import load with open("linear_regression.onnx", "rb") as f: onnx_model = load(f) del onnx_model.opset_import[:] opset = onnx_model.opset_import.add() opset.domain = '' opset.version = 14 for opset in onnx_model.opset_import: print("opset domain=%r version=%r" % (opset.domain, opset.version)) Any opset can be used as long as all operators are defined the way ONNX specifies it. Version 5 of operator *Reshape* defines the shape as an input and not as an attribute like in version 1. The opset tells which specifications is followed while describing the graph. The other metadata can be used to store any information, to store information about the way the model was generated, a way to distinguish a model from another one with a version number. .. runpython:: :showcode: from onnx import load, helper, TrainingInfoProto with open("linear_regression.onnx", "rb") as f: onnx_model = load(f) onnx_model.model_version = 15 onnx_model.producer_name = "something" onnx_model.producer_version = "some other thing" onnx_model.doc_string = "documentation about this model" prop = onnx_model.metadata_props data = dict(key1="value1", key2="value2") helper.set_model_props(onnx_model, data) print(onnx_model) Field `training_info` can be used to store additional graphs. See `training_tool_test.py `_ to see how it works. Subgraph: test and loops ======================== They are usually grouped in a category called *control flow*. It is usually better to avoid them as they are not as efficient as the matrix operation are much faster and optimized. If ++ A test can be implemented with operator :epkg:`If`. It executes one subgraph or another depending on one boolean. This is not used very often as a function usually needs the result of many comparisons in a batch. The following example computes the sum of all floats in a matrix based on the sign, returns 1 or -1. .. runpython:: :showcode: :warningout: DeprecationWarning import numpy import onnx from onnx.helper import ( make_node, make_graph, make_model, make_tensor_value_info) from onnx.numpy_helper import from_array from onnx.checker import check_model from onnxruntime import InferenceSession from mlprodict.plotting.text_plot import onnx_simple_text_plot # initializers value = numpy.array([0], dtype=numpy.float32) zero = from_array(value, name='zero') # Same as before, X is the input, Y is the output. X = make_tensor_value_info('X', onnx.TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', onnx.TensorProto.FLOAT, [None]) # The node building the condition. The first one # sum over all axes. rsum = make_node('ReduceSum', ['X'], ['rsum']) # The second compares the result to 0. cond = make_node('Greater', ['rsum', 'zero'], ['cond']) # Builds the graph is the condition is True. # Input for then then_out = make_tensor_value_info( 'then_out', onnx.TensorProto.FLOAT, None) # The constant to return. then_cst = from_array(numpy.array([1]).astype(numpy.float32)) # The only node. then_const_node = make_node( 'Constant', inputs=[], outputs=['then_out'], value=then_cst, name='cst1') # And the graph wrapping these elements. then_body = make_graph( [then_const_node], 'then_body', [], [then_out]) # Same process for the else branch. else_out = make_tensor_value_info( 'else_out', onnx.TensorProto.FLOAT, [5]) else_cst = from_array(numpy.array([-1]).astype(numpy.float32)) else_const_node = make_node( 'Constant', inputs=[], outputs=['else_out'], value=else_cst, name='cst2') else_body = make_graph( [else_const_node], 'else_body', [], [else_out]) # Finally the node If taking both graphs as attributes. if_node = onnx.helper.make_node( 'If', ['cond'], ['Y'], then_branch=then_body, else_branch=else_body) # The final graph. graph = make_graph([rsum, cond, if_node], 'if', [X], [Y], [zero]) onnx_model = make_model(graph) check_model(onnx_model) # Let's freeze the opset. del onnx_model.opset_import[:] opset = onnx_model.opset_import.add() opset.domain = '' opset.version = 15 # Save. with open("onnx_if_sign.onnx", "wb") as f: f.write(onnx_model.SerializeToString()) # Let's see the output. sess = InferenceSession(onnx_model.SerializeToString()) x = numpy.ones((3, 2), dtype=numpy.float32) res = sess.run(None, {'X': x}) # It works. print("result", res) print() # Some display. print(onnx_simple_text_plot(onnx_model)) The whole is easier to visualize with the following image. .. gdot:: :script: DOT-SECTION import onnx from mlprodict.onnxrt import OnnxInference with open("onnx_if_sign.onnx", "rb") as f: onnx_model = onnx.load(f) print("DOT-SECTION", OnnxInference(onnx_model).to_dot(recursive=True)) Both else and then branches are very simple. Node *If* could even be replaced with a node *Where* and that would be faster. It becomes interesting when both branches are bigger and skipping one is more efficient. Scan ++++ :epkg:`Scan` seems quite complex when reading the specifications. It is useful to loop over one dimension of a tensor and store the results in a preallocated tensor. The following example implements a classic nearest neighbors for a regression problem. The first step consists in computing the pairwise distances between the input features *X* and the training set *W*: :math:`dist(X,W) = (M_{ij}) = (\norm{X_i - W_j}^2)_{ij}`. It is followed by an operator :epkg:`TopK` which extracts the *k* nearest neighbors. .. runpython:: :showcode: :warningout: DeprecationWarning import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from mlprodict.plotting.text_plot import onnx_simple_text_plot # subgraph initializers = [] nodes = [] inputs = [] outputs = [] value = make_tensor_value_info('next_in', 1, [None, 4]) inputs.append(value) value = make_tensor_value_info('next', 1, [None]) inputs.append(value) value = make_tensor_value_info('next_out', 1, [None, None]) outputs.append(value) value = make_tensor_value_info('scan_out', 1, [None]) outputs.append(value) node = make_node( 'Identity', ['next_in'], ['next_out'], name='cdistd_17_Identity', domain='') nodes.append(node) node = make_node( 'Sub', ['next_in', 'next'], ['cdistdf_17_C0'], name='cdistdf_17_Sub', domain='') nodes.append(node) node = make_node( 'ReduceSumSquare', ['cdistdf_17_C0'], ['cdistdf_17_reduced0'], name='cdistdf_17_ReduceSumSquare', axes=[1], keepdims=0, domain='') nodes.append(node) node = make_node( 'Identity', ['cdistdf_17_reduced0'], ['scan_out'], name='cdistdf_17_Identity', domain='') nodes.append(node) graph = make_graph(nodes, 'OnnxIdentity', inputs, outputs, initializers) # main graph initializers = [] nodes = [] inputs = [] outputs = [] opsets = {'': 15, 'ai.onnx.ml': 15} target_opset = 15 # subgraphs # initializers list_value = [23.29599822460675, -120.86516699239603, -144.70495899914215, -260.08772982740413, 154.65272105889147, -122.23295157108991, 247.45232560871727, -182.83789715805776, -132.92727431421793, 147.48710175784703, 88.27761768038069, -14.87785569894749, 111.71487894705504, 301.0518319089629, -29.64235742280055, -113.78493504731911, -204.41218591022718, 112.26561056133608, 66.04032954135549, -229.5428380626701, -33.549262642481615, -140.95737409864623, -87.8145187836131, -90.61397011283958, 57.185488100413366, 56.864151796743855, 77.09054590340892, -187.72501631246712, -42.779503579806025, -21.642642730674076, -44.58517761667535, 78.56025104939847, -23.92423223842056, 234.9166231927213, -73.73512816431007, -10.150864499514297, -70.37105466673813, 65.5755688281476, 108.68676290979731, -78.36748960443065] value = numpy.array(list_value, dtype=numpy.float64).reshape((2, 20)) tensor = numpy_helper.from_array( value, name='knny_ArrayFeatureExtractorcst') initializers.append(tensor) list_value = [1.1394007205963135, -0.6848101019859314, -1.234825849533081, 0.4023416340351105, 0.17742614448070526, 0.46278226375579834, -0.4017809331417084, -1.630198359489441, -0.5096521973609924, 0.7774903774261475, -0.4380742907524109, -1.2527953386306763, -1.0485529899597168, 1.950775384902954, -1.420017957687378, -1.7062702178955078, 1.8675580024719238, -0.15135720372200012, -0.9772778749465942, 0.9500884413719177, -2.5529897212982178, -0.7421650290489197, 0.653618574142456, 0.8644362092018127, 1.5327792167663574, 0.37816253304481506, 1.4693588018417358, 0.154947429895401, -0.6724604368209839, -1.7262825965881348, -0.35955315828323364, -0.8131462931632996, -0.8707971572875977, 0.056165341287851334, -0.5788496732711792, -0.3115525245666504, 1.2302906513214111, -0.302302747964859, 1.202379822731018, -0.38732680678367615, 2.269754648208618, -0.18718385696411133, -1.4543657302856445, 0.04575851559638977, -0.9072983860969543, 0.12898291647434235, 0.05194539576768875, 0.7290905714035034, 1.4940791130065918, -0.8540957570075989, -0.2051582634449005, 0.3130677044391632, 1.764052391052246, 2.2408931255340576, 0.40015721321105957, 0.978738009929657, 0.06651721894741058, -0.3627411723136902, 0.30247190594673157, -0.6343221068382263, -0.5108051300048828, 0.4283318817615509, -1.18063223361969, -0.02818222902715206, -1.6138978004455566, 0.38690251111984253, -0.21274028718471527, -0.8954665660858154, 0.7610377073287964, 0.3336743414402008, 0.12167501449584961, 0.44386324286460876, -0.10321885347366333, 1.4542734622955322, 0.4105985164642334, 0.14404356479644775, -0.8877857327461243, 0.15634897351264954, -1.980796456336975, -0.34791216254234314] value = numpy.array(list_value, dtype=numpy.float32).reshape((20, 4)) tensor = numpy_helper.from_array(value, name='Sc_Scancst') initializers.append(tensor) value = numpy.array([2], dtype=numpy.int64) tensor = numpy_helper.from_array(value, name='To_TopKcst') initializers.append(tensor) value = numpy.array([2, -1, 2], dtype=numpy.int64) tensor = numpy_helper.from_array(value, name='knny_Reshapecst') initializers.append(tensor) # inputs value = make_tensor_value_info('input', 1, [None, 4]) inputs.append(value) # outputs value = make_tensor_value_info('variable', 1, [None, 2]) outputs.append(value) # nodes node = make_node( 'Scan', ['input', 'Sc_Scancst'], ['UU032UU', 'UU033UU'], name='Sc_Scan', body=graph, num_scan_inputs=1, domain='') nodes.append(node) node = make_node( 'Transpose', ['UU033UU'], ['Tr_transposed0'], name='Tr_Transpose', perm=[1, 0], domain='') nodes.append(node) node = make_node( 'Sqrt', ['Tr_transposed0'], ['Sq_Y0'], name='Sq_Sqrt', domain='') nodes.append(node) node = make_node( 'TopK', ['Sq_Y0', 'To_TopKcst'], ['To_Values0', 'To_Indices1'], name='To_TopK', largest=0, sorted=1, domain='') nodes.append(node) node = make_node( 'Flatten', ['To_Indices1'], ['knny_output0'], name='knny_Flatten', domain='') nodes.append(node) node = make_node( 'ArrayFeatureExtractor', ['knny_ArrayFeatureExtractorcst', 'knny_output0'], ['knny_Z0'], name='knny_ArrayFeatureExtractor', domain='ai.onnx.ml') nodes.append(node) node = make_node( 'Reshape', ['knny_Z0', 'knny_Reshapecst'], ['knny_reshaped0'], name='knny_Reshape', allowzero=0, domain='') nodes.append(node) node = make_node( 'Transpose', ['knny_reshaped0'], ['knny_transposed0'], name='knny_Transpose', perm=[1, 0, 2], domain='') nodes.append(node) node = make_node( 'Cast', ['knny_transposed0'], ['Ca_output0'], name='Ca_Cast', to=TensorProto.FLOAT, domain='') nodes.append(node) node = make_node( 'ReduceMean', ['Ca_output0'], ['variable'], name='Re_ReduceMean', axes=[2], keepdims=0, domain='') nodes.append(node) # graph graph = make_graph(nodes, 'KNN regressor', inputs, outputs, initializers) # model onnx_model = make_model(graph) onnx_model.ir_version = 8 onnx_model.producer_name = 'skl2onnx' onnx_model.producer_version = '' onnx_model.domain = 'ai.onnx' onnx_model.model_version = 0 onnx_model.doc_string = '' set_model_props(onnx_model, {}) # opsets del onnx_model.opset_import[:] # pylint: disable=E1101 for dom, value in opsets.items(): op_set = onnx_model.opset_import.add() op_set.domain = dom op_set.version = value check_model(onnx_model) with open("knnr.onnx", "wb") as f: f.write(onnx_model.SerializeToString()) print(onnx_simple_text_plot(onnx_model)) Visually it looks like the following: .. gdot:: :script: DOT-SECTION import onnx from mlprodict.onnxrt import OnnxInference with open("knnr.onnx", "rb") as f: onnx_model = onnx.load(f) print("DOT-SECTION", OnnxInference(onnx_model).to_dot(recursive=True)) The subgraph is executed by operator :epkg:`Scan`. In this case, there is one *scan* input meaning the operator only builds one output. :: node = make_node( 'Scan', ['X1', 'X2'], ['Y1', 'Y2'], name='Sc_Scan', body=graph, num_scan_inputs=1, domain='') At the first iteration, the subgraph gets *X1* and the first row of *X2*. The graph produces two outputs. The first one replaces *X1* in the next iteration, the second one is store in a container to form *Y2*. At the second iteration, second input of the subgraph is the second row of *X2*. Here is a short summary. Green is the first iteration, blue the second. .. image:: images/scanop.png :width: 400 Functions ========= As mentioned in previous chapter, functions can be used to shorten the code to build the model and offer more possibilities to the runtime running predictions to be faster if there exists a specific implementation of this function. If it is not the case, the runtime can still use the default implementation based on existing operators. Function `make_function` is used to define a function. It works like a graph with less types. It is more like a template. This API may evolve. It does not include initializers either. A function with no attribute ++++++++++++++++++++++++++++ That's the more simple case. Every input of the function is a dynamic object known at execution time. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info, make_opsetid, make_function) from onnx.checker import check_model from mlprodict.plotting.text_plot import onnx_simple_text_plot new_domain = 'custom' opset_imports = [make_opsetid("", 14), make_opsetid(new_domain, 1)] # Let's define a function for a linear regression node1 = make_node('MatMul', ['X', 'A'], ['XA']) node2 = make_node('Add', ['XA', 'B'], ['Y']) linear_regression = make_function( new_domain, # domain name 'LinearRegression', # function name ['X', 'A', 'B'], # input names ['Y'], # output names [node1, node2], # nodes opset_imports, # opsets []) # attribute names # Let's use it in a graph. X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) graph = make_graph( [make_node('LinearRegression', ['X', 'A', 'B'], ['Y1'], domain=new_domain), make_node('Abs', ['Y1'], ['Y'])], 'example', [X, A, B], [Y]) onnx_model = make_model( graph, opset_imports=opset_imports, functions=[linear_regression]) # functions to add) check_model(onnx_model) # the work is done, let's display it... print(onnx_simple_text_plot(onnx_model)) A function with attributes ++++++++++++++++++++++++++ .. index:: ref_attr_name The following functions are equivalent to the previous one except one input, *B*, was converted into an argument named *bias*. The code is almost the same except the bias is now a constant. Inside the function definition, a node *Constant* is created to insert the argument as a result. It is linked to the argument with the attribute `ref_attr_name`. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto, AttributeProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info, make_opsetid, make_function) from onnx.checker import check_model from mlprodict.plotting.text_plot import onnx_simple_text_plot new_domain = 'custom' opset_imports = [make_opsetid("", 14), make_opsetid(new_domain, 1)] # Let's define a function for a linear regression # The first step consists in creating a constant # equal to the input parameter of the function. cst = make_node('Constant', [], ['B']) att = AttributeProto() att.name = "value" # This line indicates the value comes from the argument # named 'bias' the function is given. att.ref_attr_name = "bias" att.type = AttributeProto.TENSOR cst.attribute.append(att) node1 = make_node('MatMul', ['X', 'A'], ['XA']) node2 = make_node('Add', ['XA', 'B'], ['Y']) linear_regression = make_function( new_domain, # domain name 'LinearRegression', # function name ['X', 'A'], # input names ['Y'], # output names [cst, node1, node2], # nodes opset_imports, # opsets ["bias"]) # attribute names # Let's use it in a graph. X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) graph = make_graph( [make_node('LinearRegression', ['X', 'A'], ['Y1'], domain=new_domain, # bias is now an argument of the function and is defined as a tensor bias=make_tensor('former_B', TensorProto.FLOAT, [1], [0.67])), make_node('Abs', ['Y1'], ['Y'])], 'example', [X, A], [Y]) onnx_model = make_model( graph, opset_imports=opset_imports, functions=[linear_regression]) # functions to add) check_model(onnx_model) # the work is done, let's display it... print(onnx_simple_text_plot(onnx_model)) Parsing ======= Module :epkg:`onnx` provides a faster way to define a graph and is easier to read. That's easy to use when the graph is built in a single function, less easy when the graph is built from many different functions converting each piece of a machine learning pipeline. .. runpython:: :showcode: import onnx.parser from onnx.checker import check_model from mlprodict.plotting.text_plot import onnx_simple_text_plot input = ''' < ir_version: 8, opset_import: [ "" : 15] > agraph (float[I,J] X, float[I] A, float[I] B) => (float[I] Y) { XA = MatMul(X, A) Y = Add(XA, B) } ''' onnx_model = onnx.parser.parse_model(input) check_model(onnx_model) print(onnx_simple_text_plot(onnx_model)) This way is used to create small models but it is rarely used in converting libraries. Checker and Shape Inference =========================== :epkg:`onnx` provides a function to check the model is valid. It checks input type or shapes whenever it can detect inconsistency. The following example multiplies two matrices of different types which is not allowed. .. runpython:: :showcode: :exception: import onnx.parser import onnx.checker input = ''' < ir_version: 8, opset_import: [ "" : 15] > agraph (float[I,4] X, float[4,2] A, int[4] B) => (float[I] Y) { XA = MatMul(X, A) Y = Add(XA, B) } ''' onnx_model = onnx.parser.parse_model(input) onnx.checker.check_model(onnx_model) `check_model` raises an error due to that inconsistency. This work for all operators defined in the main domain or the ML domain. It remains silent for any custom operator not defined in any specification. Shape inference serves one purpose: estimate the shape and the type of intermediate results. If known, the runtime can estimate the memory consumption beforehand and optimize the computation. It can fuse some operators, it can do the computation inplace... .. runpython:: :showcode: import onnx.parser from onnx import helper, shape_inference input = ''' < ir_version: 8, opset_import: [ "" : 15] > agraph (float[I,4] X, float[4,2] A, float[4] B) => (float[I] Y) { XA = MatMul(X, A) Y = Add(XA, B) } ''' onnx_model = onnx.parser.parse_model(input) inferred_model = shape_inference.infer_shapes(onnx_model) print(inferred_model) There is a new attribute `value_info` which stores the inferred shapes. Letter `I` in ``dim_param: "I"`` can be seen as a variable. It depends on the inputs but the function is able to tell which intermediate result will share the same dimension. Shape inference does not work all the time. For example, a Reshape operator. Shape inference only works if the shape is constant. If not constant, the shape cannot be easily inferred unless the following nodes expect specific shape. Evaluation and Runtime ====================== An ONNX model can be used to move a model from one library to another or it can be directly evaluated with an ONNX runtime. :epkg:`onnxruntime` is one efficient option. It is available in many platforms. It is optimized for fast inference. Its coverage can be tracked on :epkg:`ONNX Backend Dashboard`. :epkg:`onnx` implements a python runtime useful to help understand a model. Evaluation of a linear regression +++++++++++++++++++++++++++++++++ Full API is described at :ref:`l-reference-implementation`. It takes a model (a :epkg:`ModelProto`, a filename, ...). Method `run` returns the outputs for a given set of inputs specified in a dictionary. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from onnx.reference import ReferenceEvaluator X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node1 = make_node('MatMul', ['X', 'A'], ['XA']) node2 = make_node('Add', ['XA', 'B'], ['Y']) graph = make_graph([node1, node2], 'lr', [X, A, B], [Y]) onnx_model = make_model(graph) check_model(onnx_model) sess = ReferenceEvaluator(onnx_model) x = numpy.random.randn(4, 2).astype(numpy.float32) a = numpy.random.randn(2, 1).astype(numpy.float32) b = numpy.random.randn(1, 1).astype(numpy.float32) feeds = {'X': x, 'A': a, 'B': b} print(sess.run(None, feeds)) Evaluation of a node ++++++++++++++++++++ The evaluator can also evaluate a simple node to check how an operator behaves on a specific input. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto from onnx.helper import make_node from onnx.reference import ReferenceEvaluator node = make_node('EyeLike', ['X'], ['Y']) sess = ReferenceEvaluator(node) x = numpy.random.randn(4, 2).astype(numpy.float32) feeds = {'X': x} print(sess.run(None, feeds)) Similar code would also work on :epkg:`GraphProto` or :epkg:`FunctionProto`. Evaluation Step by Step +++++++++++++++++++++++ A converting library takes an existing model trained with a machine learning framework (:epkg:`pytorch`, :epkg:`scikit-learn`, ...) and converts the model into an ONNX graph. Complex models usually do not work on the first try and seeing intermediate results may help to find the part incorrectly converted. Parameter `verbose` displays information about intermediate results. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from onnx.reference import ReferenceEvaluator X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node1 = make_node('MatMul', ['X', 'A'], ['XA']) node2 = make_node('Add', ['XA', 'B'], ['Y']) graph = make_graph([node1, node2], 'lr', [X, A, B], [Y]) onnx_model = make_model(graph) check_model(onnx_model) for verbose in [1, 2, 3, 4]: print() print(f"------ verbose={verbose}") print() sess = ReferenceEvaluator(onnx_model, verbose=verbose) x = numpy.random.randn(4, 2).astype(numpy.float32) a = numpy.random.randn(2, 1).astype(numpy.float32) b = numpy.random.randn(1, 1).astype(numpy.float32) feeds = {'X': x, 'A': a, 'B': b} print(sess.run(None, feeds)) Evaluate a custom node ++++++++++++++++++++++ The following example still implements a linear regression but adds the identity matrix to *A*: :math:`Y = X(A + I) + B`. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info) from onnx.checker import check_model from onnx.reference import ReferenceEvaluator X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node0 = make_node('EyeLike', ['A'], ['Eye']) node1 = make_node('Add', ['A', 'Eye'], ['A1']) node2 = make_node('MatMul', ['X', 'A1'], ['XA1']) node3 = make_node('Add', ['XA1', 'B'], ['Y']) graph = make_graph([node0, node1, node2, node3], 'lr', [X, A, B], [Y]) onnx_model = make_model(graph) check_model(onnx_model) with open("linear_regression.onnx", "wb") as f: f.write(onnx_model.SerializeToString()) sess = ReferenceEvaluator(onnx_model, verbose=2) x = numpy.random.randn(4, 2).astype(numpy.float32) a = numpy.random.randn(2, 2).astype(numpy.float32) / 10 b = numpy.random.randn(1, 2).astype(numpy.float32) feeds = {'X': x, 'A': a, 'B': b} print(sess.run(None, feeds)) What if we combine operators *EyeLike* and *Add* into *AddEyeLike* to make it more efficient. Next example replaces these two operators by a single one from domain `'optimized'`. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info, make_opsetid) from onnx.checker import check_model X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None]) A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None]) B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None]) Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None]) node01 = make_node('AddEyeLike', ['A'], ['A1'], domain='optimized') node2 = make_node('MatMul', ['X', 'A1'], ['XA1']) node3 = make_node('Add', ['XA1', 'B'], ['Y']) graph = make_graph([node01, node2, node3], 'lr', [X, A, B], [Y]) onnx_model = make_model(graph, opset_imports=[ make_opsetid('', 18), make_opsetid('optimized', 1) ]) check_model(onnx_model) with open("linear_regression_improved.onnx", "wb") as f: f.write(onnx_model.SerializeToString()) We need to evaluate this model is equivalent to the first one. This requires an implementation for this particular node. .. runpython:: :showcode: import numpy from onnx.reference import ReferenceEvaluator from onnx.reference.op_run import OpRun class AddEyeLike(OpRun): op_domain = "optimized" def _run(self, X, alpha=1.): assert len(X.shape) == 2 assert X.shape[0] == X.shape[1] X = X.copy() ind = numpy.diag_indices(X.shape[0]) X[ind] += alpha return (X,) sess = ReferenceEvaluator("linear_regression_improved.onnx", verbose=2, new_ops=[AddEyeLike]) x = numpy.random.randn(4, 2).astype(numpy.float32) a = numpy.random.randn(2, 2).astype(numpy.float32) / 10 b = numpy.random.randn(1, 2).astype(numpy.float32) feeds = {'X': x, 'A': a, 'B': b} print(sess.run(None, feeds)) # Let's check with the previous model. sess0 = ReferenceEvaluator("linear_regression.onnx",) sess1 = ReferenceEvaluator("linear_regression_improved.onnx", new_ops=[AddEyeLike]) y0 = sess0.run(None, feeds)[0] y1 = sess1.run(None, feeds)[0] print(y0) print(y1) print(f"difference: {numpy.abs(y0 - y1).max()}") Predictions are the same. Let's compare the performance on a matrix big enough to see a significant difference. .. runpython:: :showcode: import timeit import numpy from onnx.reference import ReferenceEvaluator from onnx.reference.op_run import OpRun class AddEyeLike(OpRun): op_domain = "optimized" def _run(self, X, alpha=1.): assert len(X.shape) == 2 assert X.shape[0] == X.shape[1] X = X.copy() ind = numpy.diag_indices(X.shape[0]) X[ind] += alpha return (X,) sess = ReferenceEvaluator("linear_regression_improved.onnx", verbose=2, new_ops=[AddEyeLike]) x = numpy.random.randn(4, 100).astype(numpy.float32) a = numpy.random.randn(100, 100).astype(numpy.float32) / 10 b = numpy.random.randn(1, 100).astype(numpy.float32) feeds = {'X': x, 'A': a, 'B': b} sess0 = ReferenceEvaluator("linear_regression.onnx") sess1 = ReferenceEvaluator("linear_regression_improved.onnx", new_ops=[AddEyeLike]) y0 = sess0.run(None, feeds)[0] y1 = sess1.run(None, feeds)[0] print(f"difference: {numpy.abs(y0 - y1).max()}") print(f"time with EyeLike+Add: {timeit.timeit(lambda: sess0.run(None, feeds), number=1000)}") print(f"time with AddEyeLike: {timeit.timeit(lambda: sess1.run(None, feeds), number=1000)}") It seems worth adding an optimized node in this case. This kind of optimization is usually called *fusion*. Two consecutive operators are fused into an optimized version of both. Production usually relies on :epkg:`onnxruntime` but since the optimization uses basic matrix operation, it should bring the same performance gain on any other runtime. Implementation details ====================== Python and C++ ++++++++++++++ :epkg:`onnx` relies on :epkg:`protobuf` to define its type. You would assume that a python object is just a wrapper around a C pointer on the internal structure. Therefore, it should be possible to access internal data from a function receiving a python object of type `ModelProto`. But it is not. According to `Protobuf 4, changes `_, this is no longer possible after version 4 and it is safer to assume the only way to get a hold on the content is to serialize the model into bytes, give it the C function, then deserialize it. It is inefficient (see :ref:`l-benchmark-onnx-serialize`), so it should be avoided as much as possible. Functions like `check_model` or `shape_inference` are calling `SerializeToString` then `ParseFromString` before checking the model with a C code. Attributes and inputs +++++++++++++++++++++ There is a clear distinction between the two. Inputs are dynamic and may change at every execution. Attributes never changes and an optimizer can improve the execution graph assuming it never changes. Therefore, it is impossible to turn an input into an attribute. And the operator *Constant* is the only operator changing an attribute into an input. Shape or no shape +++++++++++++++++ :epkg:`onnx` usually expects a shape for every input or output assuming the rank (or the number of dimensions) is known. What if we need to create a valid graph for every dimension? This case is still puzzling. .. runpython:: :showcode: import numpy from onnx import numpy_helper, TensorProto, FunctionProto from onnx.helper import ( make_model, make_node, set_model_props, make_tensor, make_graph, make_tensor_value_info, make_opsetid, make_function) from onnx.checker import check_model from onnxruntime import InferenceSession def create_model(shapes): new_domain = 'custom' opset_imports = [make_opsetid("", 14), make_opsetid(new_domain, 1)] node1 = make_node('MatMul', ['X', 'A'], ['XA']) node2 = make_node('Add', ['XA', 'A'], ['Y']) X = make_tensor_value_info('X', TensorProto.FLOAT, shapes['X']) A = make_tensor_value_info('A', TensorProto.FLOAT, shapes['A']) Y = make_tensor_value_info('Y', TensorProto.FLOAT, shapes['Y']) graph = make_graph([node1, node2], 'example', [X, A], [Y]) onnx_model = make_model(graph, opset_imports=opset_imports) return onnx_model print("----------- case 1: 2D x 2D -> 2D") onnx_model = create_model({'X': [None, None], 'A': [None, None], 'Y': [None, None]}) check_model(onnx_model) sess = InferenceSession(onnx_model.SerializeToString()) res = sess.run(None, { 'X': numpy.random.randn(2, 2).astype(numpy.float32), 'A': numpy.random.randn(2, 2).astype(numpy.float32)}) print(res) print("----------- case 2: 2D x 1D -> 1D") onnx_model = create_model({'X': [None, None], 'A': [None], 'Y': [None]}) check_model(onnx_model) sess = InferenceSession(onnx_model.SerializeToString()) res = sess.run(None, { 'X': numpy.random.randn(2, 2).astype(numpy.float32), 'A': numpy.random.randn(2).astype(numpy.float32)}) print(res) print("----------- case 3: 2D x 0D -> 0D") onnx_model = create_model({'X': [None, None], 'A': [], 'Y': []}) check_model(onnx_model) try: InferenceSession(onnx_model.SerializeToString()) except Exception as e: print(e) print("----------- case 4: 2D x None -> None") onnx_model = create_model({'X': [None, None], 'A': None, 'Y': None}) try: check_model(onnx_model) except Exception as e: print(type(e), e) sess = InferenceSession(onnx_model.SerializeToString()) res = sess.run(None, { 'X': numpy.random.randn(2, 2).astype(numpy.float32), 'A': numpy.random.randn(2).astype(numpy.float32)}) print(res) print("----------- end")