Benchmark ONNX conversion

Example Train and deploy a scikit-learn pipeline converts a simple model. This example takes a similar example but on random data and compares the processing time required by each option to compute predictions.

Training a pipeline

import numpy
from pandas import DataFrame
from tqdm import tqdm
from sklearn import config_context
from sklearn.datasets import make_regression
from sklearn.ensemble import (
    GradientBoostingRegressor, RandomForestRegressor,
    VotingRegressor)
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from mlprodict.onnxrt import OnnxInference
from onnxruntime import InferenceSession
from skl2onnx import to_onnx
from onnxcustom.utils import measure_time


N = 11000
X, y = make_regression(N, n_features=10)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, train_size=0.01)
print("Train shape", X_train.shape)
print("Test shape", X_test.shape)

reg1 = GradientBoostingRegressor(random_state=1)
reg2 = RandomForestRegressor(random_state=1)
reg3 = LinearRegression()
ereg = VotingRegressor([('gb', reg1), ('rf', reg2), ('lr', reg3)])
ereg.fit(X_train, y_train)

Out:

Train shape (110, 10)
Test shape (10890, 10)

VotingRegressor(estimators=[('gb', GradientBoostingRegressor(random_state=1)),
                            ('rf', RandomForestRegressor(random_state=1)),
                            ('lr', LinearRegression())])

Measure the processing time

We use function onnxcustom.utils.measure_time(). The page about assume_finite may be useful if you need to optimize the prediction. We measure the processing time per observation whether or not an observation belongs to a batch or is a single one.

sizes = [(1, 50), (10, 50), (1000, 10), (10000, 5)]

with config_context(assume_finite=True):
    obs = []
    for batch_size, repeat in tqdm(sizes):
        context = {"ereg": ereg, 'X': X_test[:batch_size]}
        mt = measure_time(
            "ereg.predict(X)", context, div_by_number=True,
            number=10, repeat=repeat)
        mt['size'] = context['X'].shape[0]
        mt['mean_obs'] = mt['average'] / mt['size']
        obs.append(mt)

df_skl = DataFrame(obs)
df_skl

Out:

  0%|          | 0/4 [00:00<?, ?it/s]
 25%|##5       | 1/4 [00:23<01:09, 23.00s/it]
 50%|#####     | 2/4 [00:45<00:45, 22.87s/it]
 75%|#######5  | 3/4 [00:52<00:15, 15.39s/it]
100%|##########| 4/4 [01:03<00:00, 13.86s/it]
100%|##########| 4/4 [01:03<00:00, 15.95s/it]
average deviation min_exec max_exec repeat number size mean_obs
0 0.045983 0.000208 0.045755 0.046876 50 10 1 0.045983
1 0.045538 0.000105 0.045349 0.045724 50 10 10 0.004554
2 0.064788 0.000276 0.064599 0.065574 10 10 1000 0.000065
3 0.230436 0.000118 0.230340 0.230657 5 10 10000 0.000023


Graphe.

df_skl.set_index('size')[['mean_obs']].plot(
    title="scikit-learn", logx=True, logy=True)
scikit-learn

ONNX runtime

The same is done with the two ONNX runtime available.

onx = to_onnx(ereg, X_train[:1].astype(numpy.float32))
sess = InferenceSession(onx.SerializeToString())
oinf = OnnxInference(onx, runtime="python_compiled")

obs = []
for batch_size, repeat in tqdm(sizes):

    # scikit-learn
    context = {"ereg": ereg, 'X': X_test[:batch_size].astype(numpy.float32)}
    mt = measure_time(
        "ereg.predict(X)", context, div_by_number=True,
        number=10, repeat=repeat)
    mt['size'] = context['X'].shape[0]
    mt['skl'] = mt['average'] / mt['size']

    # onnxruntime
    context = {"sess": sess, 'X': X_test[:batch_size].astype(numpy.float32)}
    mt2 = measure_time(
        "sess.run(None, {'X': X})[0]", context, div_by_number=True,
        number=10, repeat=repeat)
    mt['ort'] = mt2['average'] / mt['size']

    # mlprodict
    context = {"oinf": oinf, 'X': X_test[:batch_size].astype(numpy.float32)}
    mt2 = measure_time(
        "oinf.run({'X': X})['variable']", context, div_by_number=True,
        number=10, repeat=repeat)
    mt['pyrt'] = mt2['average'] / mt['size']

    # end
    obs.append(mt)


df = DataFrame(obs)
df

Out:

  0%|          | 0/4 [00:00<?, ?it/s]
 25%|##5       | 1/4 [00:24<01:14, 24.74s/it]
 50%|#####     | 2/4 [00:50<00:50, 25.24s/it]
 75%|#######5  | 3/4 [01:11<00:23, 23.51s/it]
100%|##########| 4/4 [01:42<00:00, 26.28s/it]
100%|##########| 4/4 [01:42<00:00, 25.58s/it]
average deviation min_exec max_exec repeat number size skl ort pyrt
0 0.046501 0.000190 0.046270 0.047331 50 10 1 0.046501 0.000332 0.002612
1 0.046235 0.000145 0.046030 0.046850 50 10 10 0.004624 0.000143 0.000348
2 0.065743 0.000228 0.065444 0.066315 10 10 1000 0.000066 0.000009 0.000140
3 0.233349 0.001563 0.231904 0.236348 5 10 10000 0.000023 0.000006 0.000031


Graph.

df.set_index('size')[['skl', 'ort', 'pyrt']].plot(
    title="Average prediction time per runtime",
    logx=True, logy=True)
Average prediction time per runtime

ONNX runtimes are much faster than scikit-learn to predict one observation. scikit-learn is optimized for training, for batch prediction. That explains why scikit-learn and ONNX runtimes seem to converge for big batches. They use similar implementation, parallelization and languages (C++, openmp).

Total running time of the script: ( 3 minutes 3.698 seconds)

Gallery generated by Sphinx-Gallery