ORTModule and HierarchicalORTModule

ORTModule

class onnxruntime.training.ORTModule(module, debug_options=None)[source]

Bases: Module

Extends user’s torch.nn.Module model to leverage ONNX Runtime super fast training engine.

ORTModule specializes the user’s torch.nn.Module model, providing forward(), backward() along with all others torch.nn.Module’s APIs.

Parameters:
  • module (torch.nn.Module) – User’s PyTorch module that ORTModule specializes

  • debug_options (DebugOptions, optional) – debugging options for ORTModule.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(*inputs, **kwargs)[source]

Delegate the forward() pass of PyTorch training to ONNX Runtime.

The first call to forward performs setup and checking steps. During this call, ORTModule determines whether the module can be trained with ONNX Runtime. For this reason, the first forward call execution takes longer than subsequent calls. Execution is interupted if ONNX Runtime cannot process the model for training.

Parameters:
  • positional (variable) –

  • positional

  • keyword

  • forward (and variable keyword arguments defined in the user's PyTorch module's) –

  • types. (method. Values can be torch tensors and primitive) –

Returns:

The output as expected from the forward method defined by the user’s PyTorch module. Output values supported include tensors, nested sequences of tensors and nested dictionaries of tensor values.

add_module(name: str, module: Optional[Module]) None[source]

Raises a ORTModuleTorchModelException exception since ORTModule does not support adding modules to it

property module

The original torch.nn.Module that this module wraps.

This property provides access to methods and properties on the original module.

apply(fn: Callable[[Module], None]) T[source]

Override apply() to delegate execution to ONNX Runtime

train(mode: bool = True) T[source]

Override train() to delegate execution to ONNX Runtime

state_dict(destination=None, prefix='', keep_vars=False)[source]

Override state_dict() to delegate execution to ONNX Runtime

load_state_dict(state_dict: OrderedDict[str, Tensor], strict: bool = True)[source]

Override load_state_dict() to delegate execution to ONNX Runtime

register_buffer(name: str, tensor: Optional[Tensor], persistent: bool = True) None[source]

Override register_buffer()

register_parameter(name: str, param: Optional[Parameter]) None[source]

Override register_parameter()

get_parameter(target: str) Parameter[source]

Override get_parameter()

get_buffer(target: str) Tensor[source]

Override get_buffer()

parameters(recurse: bool = True) Iterator[Parameter][source]

Override parameters()

named_parameters(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, Parameter]][source]

Override named_parameters()

buffers(recurse: bool = True) Iterator[Tensor][source]

Override buffers()

named_buffers(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, Tensor]][source]

Override named_buffers()

named_children() Iterator[Tuple[str, Module]][source]

Override named_children()

modules() Iterator[Module][source]

Override modules()

named_modules(*args, **kwargs)[source]

Override named_modules()

bfloat16() T

Casts all floating point parameters and buffers to bfloat16 datatype.

Note

This method modifies the module in-place.

Returns:

self

Return type:

Module

children() Iterator[Module]

Returns an iterator over immediate children modules.

Yields:

Module – a child module

cpu() T

Moves all model parameters and buffers to the CPU.

Note

This method modifies the module in-place.

Returns:

self

Return type:

Module

cuda(device: Optional[Union[int, device]] = None) T

Moves all model parameters and buffers to the GPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

Note

This method modifies the module in-place.

Parameters:

device (int, optional) – if specified, all parameters will be copied to that device

Returns:

self

Return type:

Module

double() T

Casts all floating point parameters and buffers to double datatype.

Note

This method modifies the module in-place.

Returns:

self

Return type:

Module

dump_patches: bool = False

This allows better BC support for load_state_dict(). In state_dict(), the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See _load_from_state_dict on how to use this information in loading.

If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.

eval() T

Sets the module in evaluation mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm, etc.

This is equivalent with self.train(False).

See Locally disabling gradient computation for a comparison between .eval() and several similar mechanisms that may be confused with it.

Returns:

self

Return type:

Module

extra_repr() str

Set the extra representation of the module

To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.

float() T

Casts all floating point parameters and buffers to float datatype.

Note

This method modifies the module in-place.

Returns:

self

Return type:

Module

get_extra_state() Any

Returns any extra state to include in the module’s state_dict. Implement this and a corresponding set_extra_state() for your module if you need to store extra state. This function is called when building the module’s state_dict().

Note that extra state should be pickleable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.

Returns:

Any extra state to store in the module’s state_dict

Return type:

object

get_submodule(target: str) Module

Returns the submodule given by target if it exists, otherwise throws an error.

For example, let’s say you have an nn.Module A that looks like this:

(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)

To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").

The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.

Parameters:

target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)

Returns:

The submodule referenced by target

Return type:

torch.nn.Module

Raises:

AttributeError – If the target string references an invalid path or resolves to something that is not an nn.Module

half() T

Casts all floating point parameters and buffers to half datatype.

Note

This method modifies the module in-place.

Returns:

self

Return type:

Module

register_backward_hook(hook: Callable[[Module, Union[Tuple[Tensor, ...], Tensor], Union[Tuple[Tensor, ...], Tensor]], Union[None, Tensor]]) RemovableHandle

Registers a backward hook on the module.

This function is deprecated in favor of register_full_backward_hook() and the behavior of this function will change in future versions.

Returns:

a handle that can be used to remove the added hook by calling handle.remove()

Return type:

torch.utils.hooks.RemovableHandle

register_forward_hook(hook: Callable[[...], None]) RemovableHandle

Registers a forward hook on the module.

The hook will be called every time after forward() has computed an output. It should have the following signature:

hook(module, input, output) -> None or modified output

The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward() is called.

Returns:

a handle that can be used to remove the added hook by calling handle.remove()

Return type:

torch.utils.hooks.RemovableHandle

register_forward_pre_hook(hook: Callable[[...], None]) RemovableHandle

Registers a forward pre-hook on the module.

The hook will be called every time before forward() is invoked. It should have the following signature:

hook(module, input) -> None or modified input

The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).

Returns:

a handle that can be used to remove the added hook by calling handle.remove()

Return type:

torch.utils.hooks.RemovableHandle

register_full_backward_hook(hook: Callable[[Module, Union[Tuple[Tensor, ...], Tensor], Union[Tuple[Tensor, ...], Tensor]], Union[None, Tensor]]) RemovableHandle

Registers a backward hook on the module.

The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature:

hook(module, grad_input, grad_output) -> tuple(Tensor) or None

The grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.

For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.

Warning

Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.

Returns:

a handle that can be used to remove the added hook by calling handle.remove()

Return type:

torch.utils.hooks.RemovableHandle

register_module(name: str, module: Optional[Module]) None

Alias for add_module().

requires_grad_(requires_grad: bool = True) T

Change if autograd should record operations on parameters in this module.

This method sets the parameters’ requires_grad attributes in-place.

This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).

See Locally disabling gradient computation for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.

Parameters:

requires_grad (bool) – whether autograd should record operations on parameters in this module. Default: True.

Returns:

self

Return type:

Module

set_extra_state(state: Any)

This function is called from load_state_dict() to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state() for your module if you need to store extra state within its state_dict.

Parameters:

state (dict) – Extra state from the state_dict

share_memory() T

See torch.Tensor.share_memory_()

to(*args, **kwargs)

Moves and/or casts the parameters and buffers.

This can be called as

to(device=None, dtype=None, non_blocking=False)
to(dtype, non_blocking=False)
to(tensor, non_blocking=False)
to(memory_format=torch.channels_last)

Its signature is similar to torch.Tensor.to(), but only accepts floating point or complex dtypes. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

Note

This method modifies the module in-place.

Parameters:
  • device (torch.device) – the desired device of the parameters and buffers in this module

  • dtype (torch.dtype) – the desired floating point or complex dtype of the parameters and buffers in this module

  • tensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module

  • memory_format (torch.memory_format) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)

Returns:

self

Return type:

Module

Examples:

>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]], dtype=torch.float64)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16)

>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j,  0.2382+0.j],
        [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
to_empty(*, device: Union[str, device]) T

Moves the parameters and buffers to the specified device without copying storage.

Parameters:

device (torch.device) – The desired device of the parameters and buffers in this module.

Returns:

self

Return type:

Module

type(dst_type: Union[dtype, str]) T

Casts all parameters and buffers to dst_type.

Note

This method modifies the module in-place.

Parameters:

dst_type (type or string) – the desired type

Returns:

self

Return type:

Module

xpu(device: Optional[Union[int, device]] = None) T

Moves all model parameters and buffers to the XPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.

Note

This method modifies the module in-place.

Parameters:

device (int, optional) – if specified, all parameters will be copied to that device

Returns:

self

Return type:

Module

zero_grad(set_to_none: bool = False) None

Sets gradients of all model parameters to zero. See similar function under torch.optim.Optimizer for more context.

Parameters:

set_to_none (bool) – instead of setting to zero, set the grads to None. See torch.optim.Optimizer.zero_grad() for details.