module benchhelper.grid_benchmark
¶
Classes¶
class |
truncated documentation |
---|---|
Compares a couple of machine learning models. |
Properties¶
property |
truncated documentation |
---|---|
|
Returns the metrics. |
|
Returns images of graphs. |
|
Returns the metrics. |
|
Returns the metrics. |
|
Returns the name of the benchmark. |
Methods¶
method |
truncated documentation |
---|---|
run an experiment multiple times, parameter di is the dataset to use |
|
function to overload |
|
Skips it. |
|
initialisation |
|
function to overload |
|
split the dataset into train and test |
|
Runs the benchmark. |
Documentation¶
Grid benchmark.
-
class
pyquickhelper.benchhelper.grid_benchmark.
GridBenchMark
(name, datasets, clog=None, fLOG=<function noLOG>, path_to_images='.', cache_file=None, repetition=1, progressbar=None, **params)[source][source]¶ Bases:
pyquickhelper.benchhelper.benchmark.BenchMark
Compares a couple of machine learning models.
- Parameters
name – name of the test
datasets – list of dictionary of dataframes
clog – see
CustomLog
or stringfLOG – logging function
params – extra parameters
path_to_images – path to images
cache_file – cache file
repetition – repetition of the experiment (to get confidence interval)
progressbar – relies on tqdm, example tnrange
If cache_file is specified, the class will store the results of the method
bench
. On a second run, the function load the cache and run modified or new run (in param_list).datasets should be a dictionary with dataframes a values with the following keys:
'X'
: features'Y'
: labels (optional)
-
__init__
(name, datasets, clog=None, fLOG=<function noLOG>, path_to_images='.', cache_file=None, repetition=1, progressbar=None, **params)[source][source]¶ - Parameters
name – name of the test
datasets – list of dictionary of dataframes
clog – see
CustomLog
or stringfLOG – logging function
params – extra parameters
path_to_images – path to images
cache_file – cache file
repetition – repetition of the experiment (to get confidence interval)
progressbar – relies on tqdm, example tnrange
If cache_file is specified, the class will store the results of the method
bench
. On a second run, the function load the cache and run modified or new run (in param_list).datasets should be a dictionary with dataframes a values with the following keys:
'X'
: features'Y'
: labels (optional)
-
bench
(**params)[source][source]¶ run an experiment multiple times, parameter di is the dataset to use
-
bench_experiment
(info, **params)[source][source]¶ function to overload
- Parameters
info – dictionary with at least key
'X'
params – additional parameters
- Returns
output of the experiment
-
predict_score_experiment
(info, output, **params)[source][source]¶ function to overload
- Parameters
info – dictionary with at least key
'X'
output – output of the benchmar
params – additional parameters
- Returns
output of the experiment, tuple of dictionaries
-
preprocess_dataset
(dsi, **params)[source][source]¶ split the dataset into train and test
- Parameters
dsi – dataset index
params – additional parameters
- Returns
list of (dataset (like info), dictionary for metrics, parameters)