
Dan
ing LinksDonald E. Knuth, Stanford UniversityMy purpose is to dis
uss an extremely simple te
hnique that deserves to be better known.Suppose x points to an element of a doubly linked list; let L[x℄ and R[x℄ point to theprede
essor and su

essor of that element. Then the operationsL�R[x℄� L[x℄; R�L[x℄� R[x℄ (1)remove x from the list; every programmer knows this. But 
omparatively few programmershave realized that the subsequent operationsL�R[x℄� x; R�L[x℄� x (2)will put x ba
k into the list again.This fa
t is, of 
ourse, obvious, on
e it has been pointed out. Yet I remember feelinga de�nite sense of \Aha!" when I �rst realized that (2) would work, be
ause the values ofL[x℄ and R[x℄ no longer have their former semanti
 signi�
an
e after x has been removedfrom its list. Indeed, a tidy programmer might want to 
lean up the data stru
ture bysetting L[x℄ and R[x℄ both equal to x, or to some null value, after x has been deleted.Danger sometimes lurks when obje
ts are allowed to point into a list from the outside;su
h pointers 
an, for example, interfere with garbage 
olle
tion.Why, therefore, am I suÆ
iently fond of operation (2) that I am motivated to write anentire paper about it? The element denoted by x has been deleted from its list; why wouldanybody want to put it ba
k again? Well, I admit that updates to a data stru
ture areusually intended to be permanent. But there are also many o

asions when they are not.For example, an intera
tive program may need to revert to a former state when the userwants to undo an operation or a sequen
e of operations. Another typi
al appli
ation arisesin ba
ktra
k programs [16℄, whi
h enumerate all solutions to a given set of 
onstraints.Ba
ktra
king, also 
alled depth-�rst sear
h, will be the fo
us of the present paper.The idea of (2) was introdu
ed in 1979 by Hitotumatu and Noshita [22℄, who showedthat it makes Dijkstra's well-known program for the N queens problem [6, pages 72{82℄run nearly twi
e as fast without making the program signi�
antly more 
ompli
ated.Floyd's elegant dis
ussion of the 
onne
tion between ba
ktra
king and nondeterminis-ti
 algorithms [11℄ in
ludes a pre
ise method for updating data stru
tures before 
hoosingbetween alternative lines of 
omputation, and for downdating the data when it is time toexplore another line. In general, the key problem of ba
ktra
k programming 
an be re-garded as the task of de
iding how to narrow the sear
h and at the same time to organizethe data that 
ontrols the de
isions. Ea
h step in the solution to a multistep problem
hanges the remaining problem to be solved.In simple situations we 
an simply maintain a sta
k that 
ontains snapshots of therelevant state information at all an
estors of the 
urrent node in the sear
h tree. But thetask of 
opying the entire state at ea
h level might take too mu
h time. Therefore we oftenneed to work with global data stru
tures, whi
h are modi�ed whenever the sear
h entersa new level and restored when the sear
h returns to a previous level.1



For example, Dijkstra's re
ursive pro
edure for the queens problem kept the 
urrentstate in three global Boolean arrays, representing the 
olumns, the diagonals, and thereverse diagonals of a 
hessboard; Hitotumatu and Noshita's program kept it in a doublylinked list of available 
olumns together with Boolean arrays for both kinds of diagonals.When Dijkstra tentatively pla
ed a queen, he 
hanged one entry of ea
h Boolean arrayfrom true to false; then he made the entry true again when ba
ktra
king. Hitotumatuand Noshita used (1) to remove a 
olumn and (2) to restore it again; this meant that they
ould �nd an empty 
olumn without having to sear
h for it. Ea
h program strove to re
ordthe state information in su
h a way that the pla
ing and subsequent unpla
ing of a queenwould be eÆ
ient.The beauty of (2) is that operation (1) 
an be undone by knowing only the value of x.General s
hemes for undoing assignments require us to re
ord the identity of the left-handside together with its previous value (see [11℄; see also [25℄, pages 268{284). But in this
ase only the single quantity x is needed, and ba
ktra
k programs often know the valueof x impli
itly as a byprodu
t of their normal operation.We 
an apply (1) and (2) repeatedly in 
omplex data stru
tures that involve largenumbers of intera
ting doubly linked lists. The program logi
 that traverses those listsand de
ides what elements should be deleted 
an often be run in reverse, thereby de
idingwhat elements should be undeleted. And undeletion restores links that allow us to 
ontinuerunning the program logi
 ba
kwards until we're ready to go forward again.This pro
ess 
auses the pointer variables inside the global data stru
ture to exe
ute anexquisitely 
horeographed dan
e; hen
e I like to 
all (1) and (2) the te
hnique of dan
inglinks.The exa
t 
over problem. One way to illustrate the power of dan
ing links is to 
onsidera general problem that 
an be des
ribed abstra
tly as follows: Given a matrix of 0s and1s, does it have a set of rows 
ontaining exa
tly one 1 in ea
h 
olumn?For example, the matrix 0BBBBB� 0 0 1 0 1 1 01 0 0 1 0 0 10 1 1 0 0 1 01 0 0 1 0 0 00 1 0 0 0 0 10 0 0 1 1 0 1
1CCCCCA (3)

has su
h a set (rows 1, 4, and 5). We 
an think of the 
olumns as elements of a universe,and the rows as subsets of the universe; then the problem is to 
over the universe withdisjoint subsets. Or we 
an think of the rows as elements of a universe, and the 
olumns assubsets of that universe; then the problem is to �nd a 
olle
tion of elements that interse
tea
h subset in exa
tly one point. Either way, it's a potentially tough problem, well knownto be NP-
omplete even when ea
h row 
ontains exa
tly three 1s [13, page 221℄. And it isa natural 
andidate for ba
ktra
king.Dana S
ott 
ondu
ted one of the �rst experiments on ba
ktra
k programming in 1958,when he was a graduate student at Prin
eton University [34℄. His program, written for theIAS \MANIAC" 
omputer with the help of Hale F. Trotter, produ
ed the �rst listing of all2



ways to pla
e the 12 pentominoes into a 
hessboard leaving the 
enter four squares va
ant.For example, one of the 65 solutions is shown in Figure 1. (Pentominoes are the 
ase n = 5of n-ominoes, whi
h are 
onne
ted n-square subsets of an in�nite board; see [15℄. S
ottwas probably inspired by Golomb's paper [14℄ and some extensions reported by MartinGardner [12℄.)

Figure 1. S
ott's pentomino problem.This problem is a spe
ial 
ase of the exa
t 
over problem. Imagine a matrix thathas 72 
olumns, one for ea
h of the 12 pentominoes and one for ea
h of the 60 
ells ofthe 
hessboard-minus-its-
enter. Constru
t all possible rows representing a way to pla
ea pentomino on the board; ea
h row 
ontains a 1 in the 
olumn identifying the pie
e, and�ve 1s in the 
olumns identifying its positions. (There are exa
tly 1568 su
h rows.) We 
anname the �rst twelve 
olumns F I LPNTUVWXYZ, following Golomb's re
ommendednames for the pentominoes [15, page 7℄, and we 
an use two digits ij to name the 
olumn
orresponding to rank i and �le j of the board; ea
h row is 
onveniently represented bygiving the names of the 
olumns where 1s appear. For example, Figure 1 is the exa
t 
over
orresponding to the twelve rowsI 11 12 13 14 15N 16 26 27 37 47L 17 18 28 38 48U 21 22 31 41 42X 23 32 33 34 43W 24 25 35 36 46P 51 52 53 62 63F 56 64 65 66 75Z 57 58 67 76 77T 61 71 72 73 81V 68 78 86 87 88Y 74 82 83 84 85 .Solving an exa
t 
over problem. The following nondeterministi
 algorithm, whi
h Iwill 
all algorithm X for la
k of a better name, �nds all solutions to the exa
t 
over problemde�ned by any given matrix A of 0s and 1s. Algorithm X is simply a statement of theobvious trial-and-error approa
h. (Indeed, I 
an't think of any other reasonable way to dothe job, in general.) 3



If A is empty, the problem is solved; terminate su

essfully.Otherwise 
hoose a 
olumn, 
 (deterministi
ally).Choose a row, r, su
h that A[r; 
℄ = 1 (nondeterministi
ally).In
lude r in the partial solution.For ea
h j su
h that A[r; j℄ = 1,delete 
olumn j from matrix A;for ea
h i su
h that A[i; j℄ = 1,delete row i from matrix A.Repeat this algorithm re
ursively on the redu
ed matrix A.The nondeterministi
 
hoi
e of r means that the algorithm essentially 
lones itself intoindependent subalgorithms; ea
h subalgorithm inherits the 
urrent matrix A, but redu
esit with respe
t to a di�erent row r. If 
olumn 
 is entirely zero, there are no subalgorithmsand the pro
ess terminates unsu

essfully.The subalgorithms form a sear
h tree in a natural way, with the original problem atthe root and with level k 
ontaining ea
h subalgorithm that 
orresponds to k 
hosen rows.Ba
ktra
king is the pro
ess of traversing the tree in preorder, \depth �rst."Any systemati
 rule for 
hoosing 
olumn 
 in this pro
edure will �nd all solutions,but some rules work mu
h better than others. For example, S
ott [34℄ said that his initialin
lination was to pla
e the �rst pentomino �rst, then the se
ond pentomino, and so on;this would 
orrespond to 
hoosing 
olumn F �rst, then 
olumn I, et
., in the 
orrespondingexa
t 
over problem. But he soon realized that su
h an approa
h would be hopelessly slow:There are 192 ways to pla
e the F, and for ea
h of these there are approximately 34 waysto pla
e the I. The Monte Carlo estimation pro
edure des
ribed in [24℄ suggests that thesear
h tree for this s
heme has roughly 2 � 1012 nodes! By 
ontrast, the alternative of
hoosing 
olumn 11 �rst (the 
olumn 
orresponding to rank 1 and �le 1 of the board),and in general 
hoosing the lexi
ographi
ally �rst un
overed 
olumn, leads to a sear
h treewith 9,015,751 nodes.Even better is the strategy that S
ott �nally adopted [34℄: He realized that pie
e Xhas only 3 essentially di�erent positions, namely 
entered at 23, 24, and 33. Furthermore,if the X is at 33, we 
an assume that the P pentomino is not \turned over," so that it takesonly four of its eight orientations. Then we get ea
h of the 65 essentially di�erent solutionsexa
tly on
e, and the full set of 8� 65 = 520 solutions is easily obtained by rotation andre
e
tion. These 
onstraints on X and P lead to three independent problems, with103;005 nodes and 19 solutions (X at 23);106;232 nodes and 20 solutions (X at 24);126;636 nodes and 26 solutions (X at 33; P not 
ipped);when 
olumns are 
hosen lexi
ographi
ally.Golomb and Baumert [16℄ suggested 
hoosing, at ea
h stage of a ba
ktra
k pro
edure,a subproblem that leads to the fewest bran
hes, whenever this 
an be done eÆ
iently. Inthe 
ase of an exa
t 
over problem, this means that we want to 
hoose at ea
h stage a
olumn with fewest 1s in the 
urrent matrix A. Fortunately we will see that the te
hnique4



of dan
ing links allows us to do this quite ni
ely; the sear
h trees for S
ott's pentominoproblem then have only 10;421 nodes (X at 23);12;900 nodes (X at 24);14;045 nodes (X at 33; P not 
ipped);respe
tively.The dan
e steps. One good way to implement algorithm X is to represent ea
h 1 in thematrix A as a data obje
t x with �ve �elds L[x℄; R[x℄; U [x℄; D[x℄; C[x℄. Rows of the matrixare doubly linked as 
ir
ular lists via the L and R �elds (\left" and \right"); 
olumns aredoubly linked as 
ir
ular lists via the U and D �elds (\up" and \down"). Ea
h 
olumnlist also in
ludes a spe
ial data obje
t 
alled its list header.The list headers are part of a larger obje
t 
alled a 
olumn obje
t. Ea
h 
olumn ob-je
t y 
ontains the �elds L[y℄; R[y℄; U [y℄; D[y℄, and C[y℄ of a data obje
t and two additional�elds, S[y℄ (\size") and N [y℄ (\name"); the size is the number of 1s in the 
olumn, and thename is a symboli
 identi�er for printing the answers. The C �eld of ea
h obje
t pointsto the 
olumn obje
t at the head of the relevant 
olumn.The L and R �elds of the list headers link together all 
olumns that still need to be
overed. This 
ir
ular list also in
ludes a spe
ial 
olumn obje
t 
alled the root, h, whi
hserves as a master header for all the a
tive headers. The �elds U [h℄; D[h℄; C[h℄; S[h℄, andN [h℄ are not used.For example, the 0-1 matrix of (3) would be represented by the obje
ts shown inFigure 2, if we name the 
olumns A, B, C, D, E, F, and G. (This diagram \wraps around"toroidally at the top, bottom, left, and right. The C links are not shown be
ause theywould 
lutter up the pi
ture; ea
h C �eld points to the topmost element in its 
olumn.)Our nondeterministi
 algorithm to �nd all exa
t 
overs 
an now be 
ast in the followingexpli
it, deterministi
 form as a re
ursive pro
edure sear
h(k), whi
h is invoked initiallywith k = 0:If R[h℄ = h, print the 
urrent solution (see below) and return.Otherwise 
hoose a 
olumn obje
t 
 (see below).Cover 
olumn 
 (see below).For ea
h r  D[
℄, D�D[
℄�, : : : , while r 6= 
,set Ok  r;for ea
h j  R[r℄, R�R[r℄�, : : : , while j 6= r,
over 
olumn C[j℄ (see below);sear
h(k + 1);set r Ok and 
 C[r℄;for ea
h j  L[r℄, L�L[r℄�, : : : , while j 6= r,un
over 
olumn C[j℄ (see below).Un
over 
olumn 
 (see below) and return.The operation of printing the 
urrent solution is easy: We su

essively print the rows
ontaining O0, O1, : : : , Ok�1, where the row 
ontaining data obje
t O is printed byprinting N�C[O℄�, N�C[R[O℄℄�, N�C[R[R[O℄℄℄�, et
.5



h A2 B2 C2 D3 E2 F2 G3

Figure 2. Four-way-linked representation of the exa
t 
over problem (3).To 
hoose a 
olumn obje
t 
, we 
ould simply set 
  R[h℄; this is the leftmostun
overed 
olumn. Or if we want to minimize the bran
hing fa
tor, we 
ould set s  1and then for ea
h j  R[h℄, R�R[h℄�, : : : , while j 6= h,if S[j℄ < s set 
 j and s S[j℄.Then 
 is a 
olumn with the smallest number of 1s. (The S �elds are not needed unlesswe want to minimize bran
hing in this way.)The operation of 
overing 
olumn 
 is more interesting: It removes 
 from the headerlist and removes all rows in 
's own list from the other 
olumn lists they are in.Set L�R[
℄� L[
℄ and R�L[
℄� R[
℄.For ea
h i D[
℄, D�D[
℄�, : : : , while i 6= 
,for ea
h j  R[i℄, R�R[i℄�, : : : , while j 6= i,set U�D[j℄� U [j℄, D�U [j℄� D[j℄,and set S�C[j℄� S�C[j℄�� 1.Operation (1), whi
h I mentioned at the outset of this paper, is used here to remove obje
tsin both the horizontal and verti
al dire
tions.Finally, we get to the point of this whole algorithm, the operation of un
overing a given
olumn 
. Here is where the links do their dan
e:For ea
h i = U [
℄, U�U [
℄�, : : : , while i 6= 
,for ea
h j  L[i℄, L�L[i℄�, : : : , while j 6= i,set S�C[j℄� S�C[j℄�+ 1,and set U�D[j℄� j, D�U [j℄� j.Set L�R[
℄� 
 and R�L[
℄� 
. 6



Noti
e that un
overing takes pla
e in pre
isely the reverse order of the 
overing operation,using the fa
t that (2) undoes (1). (A
tually we need not adhere so stri
tly to the prin
ipleof \last done, �rst undone" in this 
ase, sin
e j 
ould run through row i in any order. Butwe must be 
areful to unremove the rows from bottom to top, be
ause we removed themfrom top to bottom. Similarly, it is important to un
over the 
olumns of row r from rightto left, be
ause we 
overed them from left to right.)
h A2 B2 C2 D1 E2 F2 G2h A2 B2 C2 D1 E2 F2 G2

Figure 3. The links after 
olumn A in Figure 2 has been 
overed.Consider, for example, what happens when sear
h(0) is applied to the data of (3) asrepresented by Figure 2. Column A is 
overed by removing both of its rows from theirother 
olumns; the stru
ture now takes the form of Figure 3. Noti
e the asymmetry of thelinks that now appear in 
olumn D: The upper element was deleted �rst, so it still points toits original neighbors, but the other deleted element points upward to the 
olumn header.Continuing sear
h(0), when r points to the A element of row (A;D;G), we also 
over
olumns D and G. Figure 4 shows the status as we enter sear
h(1); this data stru
turerepresents the redu
ed matrix �B C E F0 1 1 11 1 0 1 �: (4)Now sear
h(1) will 
over 
olumn B, and there will be no 1s left in 
olumn E. Sosear
h(2) will �nd nothing. Then sear
h(1) will return, having found no solutions, andthe state of Figure 4 will be restored. The outer level routine, sear
h(0), will pro
eed to
onvert Figure 4 ba
k to Figure 3, and it will advan
e r to the A element of row (A;D).7



h A2 B1 C2 D1 E1 F2 G1h A2 B1 C2 D1 E1 F2 G1

Figure 4. The links after 
olumns D and G in Figure 3 have been 
overed.Soon the solution will be found. It will be printed asA DB GC E Fif the S �elds are ignored in the 
hoi
e of 
, or asA DE F CB Gif the shortest 
olumn is 
hosen at ea
h step. (The �rst item printed in ea
h row list is thename of the 
olumn on whi
h bran
hing was done.) Readers who play through the a
tionof this algorithm on some examples will understand why I 
hose the title of this paper.EÆ
ien
y 
onsiderations. When algorithm X is implemented in terms of dan
ing links,let's 
all it algorithm DLX. The running time of algorithm DLX is essentially proportionalto the number of times it applies operation (1) to remove an obje
t from a list; this is alsothe number of times it applies operation (2) to unremove an obje
t. Let's say that thisquantity is the number of updates. A total of 28 updates are performed during the solutionof (3) if we repeatedly 
hoose the shortest 
olumn: 10 updates are made on level 0, 14 onlevel 1, and 4 on level 2. Alternatively, if we ignore the S heuristi
, the algorithm makes16 updates on level 1 and 7 updates on level 2, for a total of 33. But in the latter 
aseea
h update will go noti
eably faster, sin
e the statements S�C[j℄�  S�C[j℄� � 1 
anbe omitted; hen
e the overall running time will probably be less. Of 
ourse we need to8



Figure 5. The sear
h tree for one 
ase of S
ott's pentomino problem.study larger examples before drawing any general 
on
lusions about the desirability of theS heuristi
.A ba
ktra
k program usually spends most of its time on only a few levels of the sear
htree (see [24℄). For example, Figure 5 shows the sear
h tree for the 
ase X = 23 of DanaS
ott's pentomino problem using the S heuristi
; it has the following pro�le:Level Nodes Updates Updates per node0 1 ( 0%) 2,031 ( 0%) 2031.01 2 ( 0%) 1,676 ( 0%) 838.02 22 ( 0%) 28,492 ( 1%) 1295.13 77 ( 1%) 77,687 ( 2%) 1008.94 219 ( 2%) 152,957 ( 4%) 698.45 518 ( 5%) 367,939 (10%) 710.36 1,395 (13%) 853,788 (24%) 612.07 2,483 (24%) 941,265 (26%) 379.18 2,574 (25%) 740,523 (20%) 287.79 2,475 (24%) 418,334 (12%) 169.010 636 ( 6%) 32,205 ( 1%) 50.611 19 ( 0%) 826 ( 0%) 43.5Total 10,421 (100%) 3,617,723 (100%) 347.2(The number of updates shown for level k is the number of times an element was removedfrom a doubly linked list during the 
al
ulations between levels k�1 and k. The 2,031 up-dates on level 0 
orrespond to removing 
olumn X from the header list and then removing2030=5 = 406 rows from their other 
olumns; these are the rows that overlap with the9



pla
ement of X at 23. A slight optimization was made when tabulating this data: Col-umn 
 was not 
overed and un
overed in trivial 
ases when it 
ontained no rows.) Noti
ethat more than half of the nodes lie on levels � 8, but more than half of the updates o

uron the way to level 7. Extra work on the lower levels has redu
ed the need for hard workat the higher levels.The 
orresponding statisti
s look like this when the same problem is run without theordering heuristi
 based on S �elds:Level Nodes Updates Updates per node0 1 ( 0%) 2,031 ( 0%) 2031.01 6 ( 0%) 5,606 ( 0%) 934.32 24 ( 0%) 30,111 ( 0%) 1254.63 256 ( 0%) 249,904 ( 1%) 976.24 581 ( 1%) 432,471 ( 2%) 744.45 1,533 ( 1%) 1,256,556 ( 7%) 819.76 3,422 ( 3%) 2,290,338 (13%) 669.37 10,381 (10%) 4,442,572 (25%) 428.08 26,238 (25%) 5,804,161 (33%) 221.29 46,609 (45%) 3,006,418 (17%) 64.510 13,935 (14%) 284,459 ( 2%) 20.411 19 ( 0%) 14,125 ( 0%) 743.4Total 103,005 (100%) 17,818,752 (100%) 173.0Ea
h update involves about 14 memory a

esses when the S heuristi
 is used, and about8 a

esses when S is ignored. Thus the S heuristi
 multiplies the total number of memorya

esses by a fa
tor of approximately (14 � 3;617;723)=(8 � 17;818;752) � 36% in thisexample. The heuristi
 is even more e�e
tive in larger problems, be
ause it tends toredu
e the total number of nodes by a fa
tor that is exponential in the number of levelswhile the 
ost of applying it grows only linearly.Assuming that the S heuristi
 is good in large trees but not so good in small ones,I tried a hybrid s
heme that uses S at low levels but not at high levels. This experimentwas, however, unsu

essful. If, for example, S was ignored after level 7, the statisti
s forlevels 8{11 were as follows: Level Nodes Updates8 18,300 5,672,2589 28,624 2,654,31010 9,989 213,94411 19 10,179And if the 
hange was applied after level 8, the statisti
s wereLevel Nodes Updates9 11,562 1,495,05410 6,113 148,16211 19 6,303Therefore I de
ided to retain the S heuristi
 at all levels of algorithm DLX.10



My trusty old SPARCstation 2 
omputer, vintage 1992, is able to perform approxi-mately 0.39 mega-updates per se
ond when working on large problems and maintaining theS �elds. The 120 MHz Pentium I 
omputer that Stanford 
omputer s
ien
e fa
ulty weregiven in 1996 did 1.21 mega-updates per se
ond, and my new 500 MHz Pentium III does5.94. Thus the running time de
reases as te
hnology advan
es; but it remains essentiallyproportional to the number of updates, whi
h is the number of times the links do theirdan
e. Therefore I prefer to measure the performan
e of algorithm DLX by 
ounting thenumber of updates, not by 
ounting the number of elapsed se
onds.S
ott [34℄ was pleased to dis
over that his program for the MANIAC solved the pen-tomino problem in about 3.5 hours. The MANIAC exe
uted approximately 4000 instru
-tions per se
ond, so this represented roughly 50 million instru
tions. He and H. F. Trotterfound a ni
e way to use the \bitwise-and" instru
tions of the MANIAC, whi
h had 40-bitregisters. Their 
ode, whi
h exe
uted about 50;000;000=(103;005+106;232+154;921) � 140instru
tions per node of the sear
h tree, was quite eÆ
ient in spite of the fa
t that theyhad to deal with about ten times as many nodes as would be produ
ed by the order-ing heuristi
. Indeed, the linked-list approa
h of algorithm DLX performs a total of3;617;723 + 4;547;186 + 5;526;988 = 13;691;897 updates, or about 192 million memorya

esses; and it would never �t in the 5120-byte memory of the MANIAC! From this stand-point the te
hnique of dan
ing links is a
tually a step ba
kward from S
ott's 40-year-oldmethod, although of 
ourse that method works only for very spe
ial types of exa
t 
overproblems in whi
h simple geometri
 stru
ture 
an be exploited.The task of �nding all ways to pa
k the set of pentominoes into a 6� 10 re
tangle ismore diÆ
ult than S
ott's 8� 8� 2� 2 problem, be
ause the ba
ktra
k tree for the 6� 10problem is larger and there are 2339 essentially di�erent solutions [21℄. In this 
ase welimit the X pentomino to the upper left quarter of the board; our linked-memory algorithmgenerates 902,631 nodes and 309,134,131 updates (or 28,320,810 nodes and 4,107,105,935updates without the S heuristi
). This solves the problem in less than a minute on a Pen-tium III; however, again I should point out that the spe
ial 
hara
teristi
s of pentominoesallow a faster approa
h.John G. Flet
her needed only ten minutes to solve the 6�10 problem on an IBM 7094in 1965, using a highly optimized program that had 765 instru
tions in its inner loop [10℄.The 7094 had a 
lo
k rate of 0.7 MHz, and it 
ould a

ess two 36-bit words in a single 
lo
k
y
le. Flet
her's program required only about 600� 700;000=28;320;810 � 15 
lo
k 
y
lesper node of the sear
h tree; so it was superior to the bitwise method of S
ott and Trotter,and it remains the fastest algorithm known for problems that involve pla
ing the twelvepentominoes. (N. G. de Bruijn dis
overed an almost identi
al method independently;see [7℄.)With a few extensions to the 0-1 matrix for Dana S
ott's problem, we 
an solve themore general problem of 
overing a 
hessboard with twelve pentominoes and one squaretetromino, without insisting that the tetromino o

upy the 
enter. This is essentially the
lassi
 problem of Dudeney, who invented pentominoes in 1907 [9℄. The total number ofsu
h 
hessboard disse
tions has apparently never appeared in the literature; algorithmDLXneeds 1,526,279,783 updates to determine that it is exa
tly 16,146.Many people have written about polyomino problems, in
luding distinguished math-emati
ians su
h as Golomb [15℄, de Bruijn [7, 8℄, Berlekamp, Conway and Guy [4℄. Their11



92 solutions, 14,352,556 nodes, 1,764,631,796 updates 100 solutions, 10,258,180 nodes, 1,318,478,396 updates

20 solutions, 6,375,335 nodes, 806,699,079 updates 0 solutions, 1,234,485 nodes, 162,017,125 updatesFigure 6. Pa
king 45 Y pentominoes into a square.arguments for pla
ing the pie
es are sometimes based on enumerating the number of waysa 
ertain 
ell on the board 
an be �lled, sometimes on the number of ways a 
ertain pie
e
an be pla
ed. But as far as I know, nobody has previously pointed out that su
h problemsare a
tually exa
t 
over problems, in whi
h there is perfe
t symmetry between 
ells andpie
es. Algorithm DLX will bran
h on the ways to �ll a 
ell if some 
ell is diÆ
ult to �ll,or on the ways to pla
e a pie
e if some pie
e is diÆ
ult to pla
e. It knows no di�eren
e,be
ause pie
es and 
ells are simply 
olumns of the given input matrix.Algorithm DLX begins to outperform other pentomino-pla
ing pro
edures in problemswhere the sear
h tree has many levels. For example, let's 
onsider the problem of pa
king45 Y pentominoes into a 15� 15 square. Jenifer Haselgrove studied this with the help ofa ma
hine 
alled the ICS Multum|whi
h quali�ed as a \fast mini
omputer" in 1973 [20℄.The Multum produ
ed an answer after more than an hour, but she remained un
ertainwhether other solutions were possible. Now, with the dan
ing links approa
h des
ribedabove, we 
an obtain several solutions almost instantly, and the total number of solutionsturns out to be 212. The solutions fall into four 
lasses, depending on the behavior at thefour 
orners; representatives of ea
h a
hievable 
lass are shown in Figure 6.12



Appli
ations to hexiamonds. In the late 1950s, T. H. O'Beirne introdu
ed a pleasantvariation on polyominoes by substituting triangles for squares. He named the resultingshapes polyiamonds: moniamonds, diamonds, triamonds, tetriamonds, pentiamonds, hex-iamonds, et
. The twelve hexiamonds were independently dis
overed by J. E. Reeve andJ. A. Tyrell [32℄, who found more than forty ways to arrange them into a 6� 6 rhombus.Figure 7 shows one su
h arrangement, together with some arrow disse
tions that I 
ouldn'tresist trying when I �rst learned about hexiamonds. The 6 � 6 rhombus 
an be tiled bythe twelve hexiamonds in exa
tly 156 ways. (This fa
t was �rst proved by P. J. Torbijn[35℄, who worked without a 
omputer; algorithm DLX 
on�rms his result after making37,313,405 updates, if we restri
t the \sphinx" to only 3 of its 12 orientations.)

4 solutions, 6,677 nodes, 4,687,159 updates 0 solutions, 7,603 nodes, 3,115,387 updates

156 solutions, 70,505 nodes, 37,313,405 updates
41 solutions, 35,332 nodes, 14,948,759 updates 3 solutions, 5546 nodes, 3,604,817 updatesFigure 7. The twelve hexiamonds, pa
ked intoa rhombus and into various arrowlike shapes.13



O'Beirne was parti
ularly fas
inated by the fa
t that seven of the twelve hexiamondshave di�erent shapes when they are 
ipped over, and that the resulting 19 one-sided hexi-amonds have the 
orre
t number of triangles to form a hexagon: a hexagon of hexiamonds(see Figure 8). In November of 1959, after three months of trials, he found a solution; andtwo years later he 
hallenged the readers of New S
ientist to mat
h this feat [28, 29, 30℄.Meanwhile he had shown the puzzle to Ri
hard Guy and his family. The Guys pub-lished several solutions in a journal published in Singapore, where Ri
hard was a professor[17℄. Guy, who has told the story of this fas
inating re
reation in [18℄, says that whenO'Beirne �rst des
ribed the puzzle, \Everyone wanted to try it at on
e. No one went tobed for about 48 hours."A 19-level ba
ktra
k tree with many possibilities at ea
h level makes an ex
ellenttest 
ase for the dan
ing links approa
h to 
overing, so I fed O'Beirne's problem to myprogram. I broke the general 
ase into seven sub
ases, depending on the distan
e of thehexagon pie
e from the 
enter; furthermore, when that distan
e was zero, I 
onsidered twosub
ases depending on the position of the \
rown." Figure 8 shows a representative ofea
h of the seven 
ases, together with statisti
s about the sear
h. The total number ofupdates performed was 134,425,768,494.My goal was not only to 
ount the solutions, but also to �nd arrangements that wereas symmetri
al as possible|in response to a problem that was stated in Berlekamp, Guy,and Conway's bookWinning Ways [4, page 788℄. Let us de�ne the horizontal symmetry ofa 
on�guration to be the number of edges between pie
es that also are edges between pie
esin the left-right re
e
tion of that 
on�guration. The overall hexagon has 156 internal edges,and the 19 one-sided hexiamonds have 96 internal non-edges. Therefore if an arrangementwere perfe
tly symmetri
al|un
hanged by left-right re
e
tion|its horizontal symmetrywould be 60. But no su
h perfe
tly symmetri
 solution is possible.The verti
al symmetry of a 
on�guration is de�ned similarly, but with respe
t to top-bottom re
e
tion. A solution to the hexiamond problem is maximally symmetri
 if it hasthe highest horizontal or verti
al symmetry s
ore, and if the smaller s
ore is as large aspossible 
onsistent with the larger s
ore. Ea
h of the solutions shown in Figure 8 is, infa
t, maximally symmetri
 in its 
lass. (And so is the solution to Dana S
ott's problemthat is shown in Figure 1: It has verti
al symmetry 36 and horizontal symmetry 30.)The largest possible verti
al symmetry s
ore is 50; it is a
hieved in Figure 8(
), and inseven other solutions obtained by independently rearranging three of its symmetri
al sub-parts. Four of the eight have a horizontal symmetry s
ore of 32; the others have horizontalsymmetry 24. John Conway found these solutions by hand in 1964 and 
onje
tured thatthey were maximally symmetri
 overall. But that honor belongs uniquely to the solutionin Figure 8(f), at least by my de�nition, be
ause Figure 8(f) has horizontal symmetry 52and verti
al symmetry 27. The only other ways to a
hieve horizontal symmetry 52 haveverti
al symmetry s
ores of 20, 22, and 24. (Two of those other ways do, however, havethe surprising property that 13 of their 19 pie
es are un
hanged by horizontal re
e
tion;this is symmetry of entire pie
es, not just of edges.)After I had done this enumeration, I read Guy's paper [18℄ for the �rst time and learnedthat Mar
 M. Paulhus had already enumerated all solutions in May 1996 [31℄. Good, ourindependent 
omputations would 
on�rm the results. But no|my program found 124,519solutions, while his had found 124,518! He reran his program in 1999 and now we agree.14



(a)

(hsym = 51, vsym = 24)1,914 solutions, 4,239,132 nodes2,142,276,414 updates

(b)

(hsym = 52, vsym = 24)5,727 solutions, 21,583,173 nodes11,020,236,507 updates(
)

(hsym = 32, vsym = 50)11,447 solutions, 20,737,702 nodes10,315,775,812 updates

(d)

(hsym = 51, vsym = 22)7,549 solutions, 24,597,239 nodes12,639,698,345 updates

(e)

(hsym = 48, vsym = 30)6,675 solutions, 17,277,362 nodes8,976,245,858 updates(f)

(hsym = 52, vsym = 27)15,717 solutions, 43,265,607 nodes21,607,912,011 updates

(g)

(hsym = 48, vsym = 29)75,490 solutions, 137,594,347 nodes67,723,623,547 updatesFigure 8. Solutions to O'Beirne's hexiamond hexagon problem,with the small hexagon at various distan
es from the 
enter of the large one.15



O'Beirne [29℄ also suggested an analogous problem for pentominoes, sin
e there are18 one-sided pentominoes. He asked if they 
an be put into a 9 � 10 re
tangle, andGolomb provided an example in [15, Chapter 6℄. Jenifer Lee
h wrote a program to provethat there are exa
tly 46 di�erent ways to pa
k the one-sided pentominoes in a 3 � 30re
tangle; see [26℄. Figure 9 shows a maximally symmetri
 example (whi
h isn't reallyvery symmetri
al).
46 solutions, 605,440 nodes, 190,311,749 updates, hsym = 51, vsym = 48Figure 9. The one-sided pentominoes, pa
ked into a 3� 30 re
tangle.I set out to 
ount the solutions to the 9 � 10, �guring that an 18-stage exa
t 
overproblem with six 1s per row would be simpler than a 19-stage problem with seven 1s perrow. But I soon found that the task would be hopeless, unless I invented a mu
h betteralgorithm. The Monte Carlo estimation pro
edure of [24℄ suggests that about 19 quadrillionupdates will be needed, with 64 trillion nodes in the sear
h trees. If that estimate is 
orre
t,I 
ould have the result in a few months; but I'd rather try for a new Mersenne prime.I do, however, have a 
onje
ture about the solution that will have maximum horizontalsymmetry; see Figure 10.

hsym = 74, vsym = 49Figure 10. Is this the most symmetri
al wayto pa
k one-sided pentominoes into a re
tangle?A failed experiment. Spe
ial arguments based on \
oloring" often give important in-sights into tiling problems. For example, it is well known [5, pages 142 and 394℄ that if weremove two 
ells from opposite 
orners of a 
hessboard, there is no way to 
over the remain-ing 62 
ells with dominoes. The reason is that the mutilated 
hessboard has, say, 32 white
ells and 30 bla
k 
ells, but ea
h individual domino 
overs one 
ell of ea
h 
olor. If we16



present su
h a 
overing problem to algorithm DLX, it makes 4,780,846 updates (and �nds13,922 ways to pla
e 30 of the 31 dominoes) before 
on
luding that there is no solution.The 
ells of the hexiamond-hexagon problem 
an be 
olored bla
k and white in asimilar fashion: All triangles that point left are bla
k, say, and all that point right arewhite. Then �fteen of the one-sided hexiamonds 
over three triangles of ea
h 
olor; butthe remaining four, namely the \sphinx" and the \ya
ht" and their mirror images, ea
hhave a four-to-two 
olor bias. Therefore every solution to the problem must put exa
tlytwo of those four pie
es into positions that favor bla
k.I thought I'd speed things up by dividing the problem into six subproblems, onefor ea
h way to 
hoose the two pie
es that will favor bla
k. Ea
h of the subproblems wasexpe
ted to have about 1=6 as many solutions as the overall problem, and ea
h subproblemwas simpler be
ause it gave four of the pie
es only half as many options as before. ThusI expe
ted the subproblems to run up to 16 times as fast as the original problem, and Iexpe
ted the extra information about impossible 
orrelations of pie
e pla
ement to helpalgorithm DLX make intelligent 
hoi
es.But this turned out to be a 
ase where mathemati
s gave me bad advi
e. The overallproblem had 6675 solutions and required 8,976,245,858 updates (Figure 8(
)). The sixsubproblems turned out to have respe
tively 955, 1208, 1164, 1106, 1272, and 970 solutions,roughly as expe
ted; but they ea
h required between 1.7 and 2.2 billion updates, and thetotal work to solve all six subproblems was 11,519,571,784. So mu
h for that bright idea.Appli
ations to tetrasti
ks. Instead of making pie
es by joining squares or trianglestogether, Brian Barwell [3℄ 
onsidered making them from line segments or sti
ks. He
alled the resulting obje
ts polysti
ks, and noted that there are 2 disti
ks, 5 tristi
ks, and16 tetrasti
ks. The tetrasti
ks are espe
ially interesting from a re
reational standpoint; Ire
eived an attra
tive puzzle in 1993 that was equivalent to pla
ing ten of the tetrasti
ksin a 4� 4 square [1℄, and I spent many hours trying to psy
h it out.Barwell proved that the sixteen tetrasti
ks 
annot be assembled into any symmetri
alshape. But by leaving out any one of the �ve tetrasti
ks that have an ex
ess of horizontalor verti
al line segments, he found ways to �ll a 5�5 square. (See Figure 11.) Su
h puzzlesare quite diÆ
ult to do by hand, and he had found only �ve solutions at the time he wrotehis paper; he 
onje
tured that fewer than a hundred solutions would a
tually exist. (Theset of all solutions was �rst found by Wiezorke and Haubri
h [37℄, who invented the puzzleindependently after seeing [1℄.)Polysti
ks introdu
e a new feature that is not present in the polyomino and polyia-mond problems: The pie
es must not 
ross ea
h other. For example, Figure 12 shows anon-solution to the problem 
onsidered in Figure 11(
). Every line segment in the grid of5� 5 squares is 
overed, but the `V' tetrasti
k 
rosses the `Z'.We 
an handle this extra 
ompli
ation by generalizing the exa
t 
over problem. In-stead of requiring all 
olumns of a given 0-1 matrix to be 
overed by disjoint rows, wewill distinguish two kinds of 
olumns: primary and se
ondary. The generalized problemasks for a set of rows that 
overs every primary 
olumn exa
tly on
e and every se
ondary
olumn at most on
e.The tetrasti
k problem of Figure 11(
) 
an be set up as a generalized 
over problemin a natural way. First we introdu
e primary 
olumns F, H, I, J, N, O, P, R, S, U, V,17



(a)
72 solutions, 1,132,070 nodes283,814,227 updates

(b)
382 solutions, 3,422,455 nodes783,928,340 updates(
)

607 solutions, 2,681,188 nodes611,043,121 updates
(d)

530 solutions, 3,304,039 nodes760,578,623 updates
(e)

204 solutions, 1,779,356 nodes425,625,417 updatesFigure 11. Filling a 5� 5 grid with 15 of the 16 tetrasti
ks;we must leave out either the H, the J, the L, the N, or the Y.W, X, Y, Z representing the �fteen tetrasti
ks (ex
luding L), as well as 
olumns Hxyrepresenting the horizontal segments (x; y) �� (x+1; y) and Vxy representing the verti
alsegments (x; y) �� (x; y + 1), for 0 � x; y < 5. We also need se
ondary 
olumns Ixy torepresent interior jun
tion points (x; y), for 0 < x; y < 5. Ea
h row represents a possiblepla
ement of a pie
e, as in the polyomino and polyiamond problems; but if a pie
e has two
onse
utive horizontal or verti
al segments and does not lie on the edge of the diagram, itshould in
lude the 
orresponding interior jun
tion point as well.
Figure 12. Polysti
ks are not supposed to
ross ea
h other as they do here.

For example, the two rows 
orresponding to the pla
ement of V and Z in Figure 12are V H23 I33 H33 V43 I44 V44Z H24 V33 I33 V32 H32The 
ommon interior point I33 means that these rows 
ross ea
h other. On the other hand,18



I33 is not a primary 
olumn, be
ause we do not ne
essarily need to 
over it. The solutionin Figure 11(
) 
overs only the interior points I14, I21, I32, and I41.Fortunately, we 
an solve the generalized 
over problem by using almost the samealgorithm as before. The only di�eren
e is that we initialize the data stru
ture by makinga 
ir
ular list of the 
olumn headers for the primary 
olumns only. The header for ea
hse
ondary 
olumn should have L and R �elds that simply point to itself. The remainderof the algorithm pro
eeds exa
tly as before, so we will still 
all it algorithm DLX.A generalized 
over problem 
an be 
onverted to an equivalent exa
t 
over problemif we simply append one row for ea
h se
ondary 
olumn, 
ontaining a single 1 in that 
ol-umn. But we are better o� working with the generalized problem, be
ause the generalizedalgorithm is simpler and faster.I de
ided to experiment with the subset of welded tetrasti
ks, namely those that do notform a simple 
onne
ted path be
ause they 
ontain jun
tion points: F;H;R;T;X;Y. Thereare ten one-sided welded tetrasti
ks if we add the mirror images of the unsymmetri
al pie
esas we did for one-sided hexiamonds and pentominoes. And|aha|these ten tetrasti
ks 
anbe arranged in a 4� 4 grid. (See Figure 13.) Only three solutions are possible, in
ludingthe two perfe
tly symmetri
 solutions shown. I've de
ided not to show the third solution,whi
h has the X pie
e in the middle, be
ause I want readers to have the pleasure of �ndingit for themselves.
Figure 13. Two of the three ways to pa
k theone-sided welded tetrasti
ks into a square.There are �fteen one-sided unwelded tetrasti
ks, and I thought they would surely �tinto a 5� 5 grid in a similar way; but this turned out to be impossible. The reason is thatif, say, pie
e I is pla
ed verti
ally, four of the six pie
es J, J0, L, L0, N, N0 must be pla
edto favor the horizontal dire
tion, and this severely limits the possibilities. In fa
t, I havebeen unable to pa
k those �fteen pie
es into any simple symmetri
al shape; my best e�ortso far is the \oboe" shown in Figure 14.

Figure 14. The �fteen one-sided unwelded tetrasti
ks.19



Figure 15. Do all 25 one-sided tetrasti
ks�t in this shape?I also tried unsu

essfully to pa
k all 25 of the one-sided tetrasti
ks into the Azte
diamond pattern of Figure 15; but I see no way to prove that a solution is impossible. Anexhaustive sear
h seems out of the question at the present time.Appli
ations to queens. Now we 
an return to the problem that led Hitotumatu andNoshita to introdu
e dan
ing links in the �rst pla
e, namely the N queens problem, be-
ause that problem is a
tually a spe
ial 
ase of the generalized 
over problem in theprevious se
tion. For example, the 4 queens problem is just the task of 
overing eightprimary 
olumns (R0;R1;R2;R3;F0;F1;F2;F3) 
orresponding to ranks and �les, whileusing at most one element in ea
h of the se
ondary 
olumns (A0;A1;A2;A3;A4;A5;A6;B0;B1;B2;B3;B4;B5;B6) 
orresponding to diagonals, given the sixteen rowsR0 F0 A0 B3R0 F1 A1 B4R0 F2 A2 B5R0 F3 A3 B6R1 F0 A1 B2R1 F1 A2 B3R1 F2 A3 B4R1 F3 A4 B5R2 F0 A2 B1R2 F1 A3 B2R2 F2 A4 B3R2 F3 A5 B4R3 F0 A3 B0R3 F1 A4 B1R3 F2 A5 B2R3 F3 A6 B3 .In general, the rows of the 0-1 matrix for the N queens problem areRi Fj A(i+ j) B(N � 1� i+ j)for 0 � i; j < N . (Here Ri and Fj represent ranks and �les of a 
hessboard; Ak and B`represent diagonals and reverse diagonals. The se
ondary 
olumns A0;A(2N�2);B0, andB(2N � 2) ea
h arise in only one row of the matrix so they 
an be omitted.)When we apply algorithm DLX to this generalized 
over problem, it behaves quitedi�erently from the traditional algorithms for the N queens problem, be
ause it bran
hessometimes on di�erent ways to o

upy a rank of the 
hessboard and sometimes on di�erent20



ways to o

upy a �le. Furthermore, we gain eÆ
ien
y by paying attention to the order inwhi
h primary 
olumns of the 
over problem are 
onsidered when those 
olumns all havethe same S value (the same bran
hing fa
tor): It is better to pla
e queens near the middleof the board �rst, be
ause 
entral positions rule out more possibilities for later pla
ements.Consider, for example, the eight queens problem. Figure 16(a) shows an empty board,with 8 possible ways to o

upy ea
h rank and ea
h �le. Suppose we de
ide to pla
e a queenin R4 and F7, as shown in Figure 16(b). Then there are �ve ways to 
over F4; after 
hoosingR5 and F4, Figure 16(
), there are four ways to 
over R3, and so on. At ea
h stage we
hoose the most 
onstrained rank or �le, using the \organ pipe ordering"R4 F4 R3 F3 R5 F5 R2 F2 R6 F6 R1 F1 R7 F7 R0 F0to break ties. Pla
ing a queen in R2 and F3 after Figure 16(d) makes it impossible to
over F2, so ba
ktra
king will o

ur even though only four queens have been tentativelypla
ed. (a)
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Figure 16. Solving the 8 queens problem by treating ranks and �les symmetri
ally.21



The order in whi
h header nodes are linked together at the start of algorithm DLX 
anhave a signi�
ant e�e
t on the running time. For example, experiments on the 16 queensproblem show that the sear
h tree has 312,512,659 nodes and requires 5,801,583,789 up-dates, if the ordering R0 R1 : : : R15 F0 F1 : : : F15 is used, while the organ-pipe orderingR8 F8 R7 F7 R9 F9 : : : R0 F0 requires only about 54% as many updates. On the otherhand, the order in whi
h individual elements of a row or 
olumn are linked together hasno e�e
t on the algorithm's total running time.Here are some statisti
s observed when algorithm DLX solved small 
ases of theN queens problem using organ-pipe order, without redu
ing the number of solutions bytaking symmetries of the board into a

ount:N Solutions Nodes Updates R-Nodes R-Updates1 1 2 3 2 32 0 3 19 3 193 0 4 56 6 704 2 13 183 15 2075 10 46 572 50 6266 4 93 1,497 115 1,7657 40 334 5,066 376 5,5168 92 1,049 16,680 1,223 18,8499 352 3,440 54,818 4,640 71,74610 724 11,578 198,264 16,471 269,60511 2,680 45,393 783,140 67,706 1,123,57212 14,200 211,716 3,594,752 312,729 5,173,07113 73,712 1,046,319 17,463,157 1,589,968 26,071,14814 365,596 5,474,542 91,497,926 8,497,727 139,174,30715 2,279,184 31,214,675 513,013,152 49,404,260 800,756,88816 14,772,512 193,032,021 3,134,588,055 308,130,093 4,952,973,20117 95,815,104 1,242,589,512 20,010,116,070 2,015,702,907 32,248,234,86618 666,090,624 8,567,992,237 141,356,060,389 13,955,353,609 221,993,811,321Here \R-nodes" and \R-Updates" refer to the results when we 
onsider only R0, R1, : : : ,R(N � 1) to be primary 
olumns that need to be 
overed; 
olumns Fj are se
ondary. Inthis 
ase the algorithm redu
es to the usual pro
edure in whi
h bran
hing o

urs only onranks of the 
hessboard. The advantage of mixing rows with 
olumns be
omes evident asN in
reases, but I'm not sure whether the ratio of R-Updates to Updates will be unboundedor approa
h a limit as N goes to in�nity.I should point out that spe
ial methods are known for 
ounting the number of solutionsto the N queens problem without a
tually generating the queen pla
ements [33℄.Con
luding remarks. Algorithm DLX, whi
h uses dan
ing links to implement the \nat-ural" algorithm for exa
t 
over problems, is an e�e
tive way to enumerate all solutionsto su
h problems. On small 
ases it is nearly as fast as algorithms that have been tunedto solve parti
ular 
lasses of problems, like pentomino pa
king or the N queens problem,where geometri
 stru
ture 
an be exploited. On large 
ases it appears to run even faster22



than those spe
ial-purpose algorithms, be
ause of its ordering heuristi
. And as 
omputersget faster and faster, we are of 
ourse ta
kling larger and larger 
ases all the time.In this paper I have used the exa
t 
over problem to illustrate the versatility of dan
inglinks, but I 
ould have 
hosen many other ba
ktra
k appli
ations in whi
h the same ideasapply. For example, the approa
h works ni
ely with the Waltz �ltering algorithm [36℄;perhaps this fa
t has subliminally in
uen
ed my 
hoi
e of names. I re
ently used dan
inglinks together with a di
tionary of about 600 
ommon three-letter words of English to �ndword squares su
h as A T EW I NL E D B E DO A RW R Y O H MR U EB E T P E AU R NB A Y T W OI O NT E Ein whi
h ea
h row, 
olumn, and diagonal is a word; about 60 million updates produ
edall solutions. I believe that a terpsi
horean te
hnique is signi�
antly better than thealternative of 
opying the 
urrent state at every level, as 
onsidered in the pioneeringpaper by Harali
k and Elliott on 
onstraint satisfa
tion problems [19℄. Certainly the useof (1) and (2) is simple, useful, and fun.\What a dan
e / do they do / Lordy, I am tellin' you!" [2℄A
knowledgments. I wish to thank Sol Golomb, Ri
hard Guy, and Gene Freuder for thehelp they generously gave me as I was preparing this paper. Maggie M
Loughlin did anex
ellent job of translating my s
rawled manus
ript into a well-organized TEX do
ument.And I profoundly thank Tomas Roki
ki, who provided the new 
omputer on whi
h I didmost of the experiments, and on whi
h I hope to keep links dan
ing merrily for many years.Histori
al notes. (1) Although the IAS 
omputer was popularly known in Prin
etonas the \MANIAC," that title properly belonged only to a similar but di�erent series of
omputers built at Los Alamos. (See [27℄.) (2) George Jelliss [23℄ dis
overed that thegreat puzzle masters H. D. Benjamin and T. R. Dawson experimented with the 
on
eptof polysti
ks already in 1946{1948. However, they apparently did not publish any of theirwork. (3) My names for the tetrasti
ks are slightly di�erent from those originally proposedby Barwell [3℄: I prefer to use the letters J; R; and U for the pie
es he 
alled U, J, and C,respe
tively.Program notes. The implementation of algorithm DLX that I used when preparingthis paper is �le dan
e.w on webpage http://www-
s-fa
ulty.stanford.edu/~knuth/programs.html. See also the related �les polyominoes.w, polyiamonds.w, polysti
ks.w,and queens.w.
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