
Daning LinksDonald E. Knuth, Stanford UniversityMy purpose is to disuss an extremely simple tehnique that deserves to be better known.Suppose x points to an element of a doubly linked list; let L[x℄ and R[x℄ point to thepredeessor and suessor of that element. Then the operationsL�R[x℄� L[x℄; R�L[x℄� R[x℄ (1)remove x from the list; every programmer knows this. But omparatively few programmershave realized that the subsequent operationsL�R[x℄� x; R�L[x℄� x (2)will put x bak into the list again.This fat is, of ourse, obvious, one it has been pointed out. Yet I remember feelinga de�nite sense of \Aha!" when I �rst realized that (2) would work, beause the values ofL[x℄ and R[x℄ no longer have their former semanti signi�ane after x has been removedfrom its list. Indeed, a tidy programmer might want to lean up the data struture bysetting L[x℄ and R[x℄ both equal to x, or to some null value, after x has been deleted.Danger sometimes lurks when objets are allowed to point into a list from the outside;suh pointers an, for example, interfere with garbage olletion.Why, therefore, am I suÆiently fond of operation (2) that I am motivated to write anentire paper about it? The element denoted by x has been deleted from its list; why wouldanybody want to put it bak again? Well, I admit that updates to a data struture areusually intended to be permanent. But there are also many oasions when they are not.For example, an interative program may need to revert to a former state when the userwants to undo an operation or a sequene of operations. Another typial appliation arisesin baktrak programs [16℄, whih enumerate all solutions to a given set of onstraints.Baktraking, also alled depth-�rst searh, will be the fous of the present paper.The idea of (2) was introdued in 1979 by Hitotumatu and Noshita [22℄, who showedthat it makes Dijkstra's well-known program for the N queens problem [6, pages 72{82℄run nearly twie as fast without making the program signi�antly more ompliated.Floyd's elegant disussion of the onnetion between baktraking and nondeterminis-ti algorithms [11℄ inludes a preise method for updating data strutures before hoosingbetween alternative lines of omputation, and for downdating the data when it is time toexplore another line. In general, the key problem of baktrak programming an be re-garded as the task of deiding how to narrow the searh and at the same time to organizethe data that ontrols the deisions. Eah step in the solution to a multistep problemhanges the remaining problem to be solved.In simple situations we an simply maintain a stak that ontains snapshots of therelevant state information at all anestors of the urrent node in the searh tree. But thetask of opying the entire state at eah level might take too muh time. Therefore we oftenneed to work with global data strutures, whih are modi�ed whenever the searh entersa new level and restored when the searh returns to a previous level.1

For example, Dijkstra's reursive proedure for the queens problem kept the urrentstate in three global Boolean arrays, representing the olumns, the diagonals, and thereverse diagonals of a hessboard; Hitotumatu and Noshita's program kept it in a doublylinked list of available olumns together with Boolean arrays for both kinds of diagonals.When Dijkstra tentatively plaed a queen, he hanged one entry of eah Boolean arrayfrom true to false; then he made the entry true again when baktraking. Hitotumatuand Noshita used (1) to remove a olumn and (2) to restore it again; this meant that theyould �nd an empty olumn without having to searh for it. Eah program strove to reordthe state information in suh a way that the plaing and subsequent unplaing of a queenwould be eÆient.The beauty of (2) is that operation (1) an be undone by knowing only the value of x.General shemes for undoing assignments require us to reord the identity of the left-handside together with its previous value (see [11℄; see also [25℄, pages 268{284). But in thisase only the single quantity x is needed, and baktrak programs often know the valueof x impliitly as a byprodut of their normal operation.We an apply (1) and (2) repeatedly in omplex data strutures that involve largenumbers of interating doubly linked lists. The program logi that traverses those listsand deides what elements should be deleted an often be run in reverse, thereby deidingwhat elements should be undeleted. And undeletion restores links that allow us to ontinuerunning the program logi bakwards until we're ready to go forward again.This proess auses the pointer variables inside the global data struture to exeute anexquisitely horeographed dane; hene I like to all (1) and (2) the tehnique of daninglinks.The exat over problem. One way to illustrate the power of daning links is to onsidera general problem that an be desribed abstratly as follows: Given a matrix of 0s and1s, does it have a set of rows ontaining exatly one 1 in eah olumn?For example, the matrix 0BBBBB� 0 0 1 0 1 1 01 0 0 1 0 0 10 1 1 0 0 1 01 0 0 1 0 0 00 1 0 0 0 0 10 0 0 1 1 0 1
1CCCCCA (3)

has suh a set (rows 1, 4, and 5). We an think of the olumns as elements of a universe,and the rows as subsets of the universe; then the problem is to over the universe withdisjoint subsets. Or we an think of the rows as elements of a universe, and the olumns assubsets of that universe; then the problem is to �nd a olletion of elements that interseteah subset in exatly one point. Either way, it's a potentially tough problem, well knownto be NP-omplete even when eah row ontains exatly three 1s [13, page 221℄. And it isa natural andidate for baktraking.Dana Sott onduted one of the �rst experiments on baktrak programming in 1958,when he was a graduate student at Prineton University [34℄. His program, written for theIAS \MANIAC" omputer with the help of Hale F. Trotter, produed the �rst listing of all2

ways to plae the 12 pentominoes into a hessboard leaving the enter four squares vaant.For example, one of the 65 solutions is shown in Figure 1. (Pentominoes are the ase n = 5of n-ominoes, whih are onneted n-square subsets of an in�nite board; see [15℄. Sottwas probably inspired by Golomb's paper [14℄ and some extensions reported by MartinGardner [12℄.)

Figure 1. Sott's pentomino problem.This problem is a speial ase of the exat over problem. Imagine a matrix thathas 72 olumns, one for eah of the 12 pentominoes and one for eah of the 60 ells ofthe hessboard-minus-its-enter. Construt all possible rows representing a way to plaea pentomino on the board; eah row ontains a 1 in the olumn identifying the piee, and�ve 1s in the olumns identifying its positions. (There are exatly 1568 suh rows.) We anname the �rst twelve olumns F I LPNTUVWXYZ, following Golomb's reommendednames for the pentominoes [15, page 7℄, and we an use two digits ij to name the olumnorresponding to rank i and �le j of the board; eah row is onveniently represented bygiving the names of the olumns where 1s appear. For example, Figure 1 is the exat overorresponding to the twelve rowsI 11 12 13 14 15N 16 26 27 37 47L 17 18 28 38 48U 21 22 31 41 42X 23 32 33 34 43W 24 25 35 36 46P 51 52 53 62 63F 56 64 65 66 75Z 57 58 67 76 77T 61 71 72 73 81V 68 78 86 87 88Y 74 82 83 84 85 .Solving an exat over problem. The following nondeterministi algorithm, whih Iwill all algorithm X for lak of a better name, �nds all solutions to the exat over problemde�ned by any given matrix A of 0s and 1s. Algorithm X is simply a statement of theobvious trial-and-error approah. (Indeed, I an't think of any other reasonable way to dothe job, in general.) 3

If A is empty, the problem is solved; terminate suessfully.Otherwise hoose a olumn, (deterministially).Choose a row, r, suh that A[r; ℄ = 1 (nondeterministially).Inlude r in the partial solution.For eah j suh that A[r; j℄ = 1,delete olumn j from matrix A;for eah i suh that A[i; j℄ = 1,delete row i from matrix A.Repeat this algorithm reursively on the redued matrix A.The nondeterministi hoie of r means that the algorithm essentially lones itself intoindependent subalgorithms; eah subalgorithm inherits the urrent matrix A, but reduesit with respet to a di�erent row r. If olumn is entirely zero, there are no subalgorithmsand the proess terminates unsuessfully.The subalgorithms form a searh tree in a natural way, with the original problem atthe root and with level k ontaining eah subalgorithm that orresponds to k hosen rows.Baktraking is the proess of traversing the tree in preorder, \depth �rst."Any systemati rule for hoosing olumn in this proedure will �nd all solutions,but some rules work muh better than others. For example, Sott [34℄ said that his initialinlination was to plae the �rst pentomino �rst, then the seond pentomino, and so on;this would orrespond to hoosing olumn F �rst, then olumn I, et., in the orrespondingexat over problem. But he soon realized that suh an approah would be hopelessly slow:There are 192 ways to plae the F, and for eah of these there are approximately 34 waysto plae the I. The Monte Carlo estimation proedure desribed in [24℄ suggests that thesearh tree for this sheme has roughly 2 � 1012 nodes! By ontrast, the alternative ofhoosing olumn 11 �rst (the olumn orresponding to rank 1 and �le 1 of the board),and in general hoosing the lexiographially �rst unovered olumn, leads to a searh treewith 9,015,751 nodes.Even better is the strategy that Sott �nally adopted [34℄: He realized that piee Xhas only 3 essentially di�erent positions, namely entered at 23, 24, and 33. Furthermore,if the X is at 33, we an assume that the P pentomino is not \turned over," so that it takesonly four of its eight orientations. Then we get eah of the 65 essentially di�erent solutionsexatly one, and the full set of 8� 65 = 520 solutions is easily obtained by rotation andreetion. These onstraints on X and P lead to three independent problems, with103;005 nodes and 19 solutions (X at 23);106;232 nodes and 20 solutions (X at 24);126;636 nodes and 26 solutions (X at 33; P not ipped);when olumns are hosen lexiographially.Golomb and Baumert [16℄ suggested hoosing, at eah stage of a baktrak proedure,a subproblem that leads to the fewest branhes, whenever this an be done eÆiently. Inthe ase of an exat over problem, this means that we want to hoose at eah stage aolumn with fewest 1s in the urrent matrix A. Fortunately we will see that the tehnique4

of daning links allows us to do this quite niely; the searh trees for Sott's pentominoproblem then have only 10;421 nodes (X at 23);12;900 nodes (X at 24);14;045 nodes (X at 33; P not ipped);respetively.The dane steps. One good way to implement algorithm X is to represent eah 1 in thematrix A as a data objet x with �ve �elds L[x℄; R[x℄; U [x℄; D[x℄; C[x℄. Rows of the matrixare doubly linked as irular lists via the L and R �elds (\left" and \right"); olumns aredoubly linked as irular lists via the U and D �elds (\up" and \down"). Eah olumnlist also inludes a speial data objet alled its list header.The list headers are part of a larger objet alled a olumn objet. Eah olumn ob-jet y ontains the �elds L[y℄; R[y℄; U [y℄; D[y℄, and C[y℄ of a data objet and two additional�elds, S[y℄ (\size") and N [y℄ (\name"); the size is the number of 1s in the olumn, and thename is a symboli identi�er for printing the answers. The C �eld of eah objet pointsto the olumn objet at the head of the relevant olumn.The L and R �elds of the list headers link together all olumns that still need to beovered. This irular list also inludes a speial olumn objet alled the root, h, whihserves as a master header for all the ative headers. The �elds U [h℄; D[h℄; C[h℄; S[h℄, andN [h℄ are not used.For example, the 0-1 matrix of (3) would be represented by the objets shown inFigure 2, if we name the olumns A, B, C, D, E, F, and G. (This diagram \wraps around"toroidally at the top, bottom, left, and right. The C links are not shown beause theywould lutter up the piture; eah C �eld points to the topmost element in its olumn.)Our nondeterministi algorithm to �nd all exat overs an now be ast in the followingexpliit, deterministi form as a reursive proedure searh(k), whih is invoked initiallywith k = 0:If R[h℄ = h, print the urrent solution (see below) and return.Otherwise hoose a olumn objet (see below).Cover olumn (see below).For eah r D[℄, D�D[℄�, : : : , while r 6= ,set Ok r;for eah j R[r℄, R�R[r℄�, : : : , while j 6= r,over olumn C[j℄ (see below);searh(k + 1);set r Ok and C[r℄;for eah j L[r℄, L�L[r℄�, : : : , while j 6= r,unover olumn C[j℄ (see below).Unover olumn (see below) and return.The operation of printing the urrent solution is easy: We suessively print the rowsontaining O0, O1, : : : , Ok�1, where the row ontaining data objet O is printed byprinting N�C[O℄�, N�C[R[O℄℄�, N�C[R[R[O℄℄℄�, et.5

h A2 B2 C2 D3 E2 F2 G3

Figure 2. Four-way-linked representation of the exat over problem (3).To hoose a olumn objet , we ould simply set R[h℄; this is the leftmostunovered olumn. Or if we want to minimize the branhing fator, we ould set s 1and then for eah j R[h℄, R�R[h℄�, : : : , while j 6= h,if S[j℄ < s set j and s S[j℄.Then is a olumn with the smallest number of 1s. (The S �elds are not needed unlesswe want to minimize branhing in this way.)The operation of overing olumn is more interesting: It removes from the headerlist and removes all rows in 's own list from the other olumn lists they are in.Set L�R[℄� L[℄ and R�L[℄� R[℄.For eah i D[℄, D�D[℄�, : : : , while i 6= ,for eah j R[i℄, R�R[i℄�, : : : , while j 6= i,set U�D[j℄� U [j℄, D�U [j℄� D[j℄,and set S�C[j℄� S�C[j℄�� 1.Operation (1), whih I mentioned at the outset of this paper, is used here to remove objetsin both the horizontal and vertial diretions.Finally, we get to the point of this whole algorithm, the operation of unovering a givenolumn . Here is where the links do their dane:For eah i = U [℄, U�U [℄�, : : : , while i 6= ,for eah j L[i℄, L�L[i℄�, : : : , while j 6= i,set S�C[j℄� S�C[j℄�+ 1,and set U�D[j℄� j, D�U [j℄� j.Set L�R[℄� and R�L[℄� . 6

Notie that unovering takes plae in preisely the reverse order of the overing operation,using the fat that (2) undoes (1). (Atually we need not adhere so stritly to the prinipleof \last done, �rst undone" in this ase, sine j ould run through row i in any order. Butwe must be areful to unremove the rows from bottom to top, beause we removed themfrom top to bottom. Similarly, it is important to unover the olumns of row r from rightto left, beause we overed them from left to right.)
h A2 B2 C2 D1 E2 F2 G2h A2 B2 C2 D1 E2 F2 G2

Figure 3. The links after olumn A in Figure 2 has been overed.Consider, for example, what happens when searh(0) is applied to the data of (3) asrepresented by Figure 2. Column A is overed by removing both of its rows from theirother olumns; the struture now takes the form of Figure 3. Notie the asymmetry of thelinks that now appear in olumn D: The upper element was deleted �rst, so it still points toits original neighbors, but the other deleted element points upward to the olumn header.Continuing searh(0), when r points to the A element of row (A;D;G), we also overolumns D and G. Figure 4 shows the status as we enter searh(1); this data struturerepresents the redued matrix �B C E F0 1 1 11 1 0 1 �: (4)Now searh(1) will over olumn B, and there will be no 1s left in olumn E. Sosearh(2) will �nd nothing. Then searh(1) will return, having found no solutions, andthe state of Figure 4 will be restored. The outer level routine, searh(0), will proeed toonvert Figure 4 bak to Figure 3, and it will advane r to the A element of row (A;D).7

h A2 B1 C2 D1 E1 F2 G1h A2 B1 C2 D1 E1 F2 G1

Figure 4. The links after olumns D and G in Figure 3 have been overed.Soon the solution will be found. It will be printed asA DB GC E Fif the S �elds are ignored in the hoie of , or asA DE F CB Gif the shortest olumn is hosen at eah step. (The �rst item printed in eah row list is thename of the olumn on whih branhing was done.) Readers who play through the ationof this algorithm on some examples will understand why I hose the title of this paper.EÆieny onsiderations. When algorithm X is implemented in terms of daning links,let's all it algorithm DLX. The running time of algorithm DLX is essentially proportionalto the number of times it applies operation (1) to remove an objet from a list; this is alsothe number of times it applies operation (2) to unremove an objet. Let's say that thisquantity is the number of updates. A total of 28 updates are performed during the solutionof (3) if we repeatedly hoose the shortest olumn: 10 updates are made on level 0, 14 onlevel 1, and 4 on level 2. Alternatively, if we ignore the S heuristi, the algorithm makes16 updates on level 1 and 7 updates on level 2, for a total of 33. But in the latter aseeah update will go notieably faster, sine the statements S�C[j℄� S�C[j℄� � 1 anbe omitted; hene the overall running time will probably be less. Of ourse we need to8

Figure 5. The searh tree for one ase of Sott's pentomino problem.study larger examples before drawing any general onlusions about the desirability of theS heuristi.A baktrak program usually spends most of its time on only a few levels of the searhtree (see [24℄). For example, Figure 5 shows the searh tree for the ase X = 23 of DanaSott's pentomino problem using the S heuristi; it has the following pro�le:Level Nodes Updates Updates per node0 1 (0%) 2,031 (0%) 2031.01 2 (0%) 1,676 (0%) 838.02 22 (0%) 28,492 (1%) 1295.13 77 (1%) 77,687 (2%) 1008.94 219 (2%) 152,957 (4%) 698.45 518 (5%) 367,939 (10%) 710.36 1,395 (13%) 853,788 (24%) 612.07 2,483 (24%) 941,265 (26%) 379.18 2,574 (25%) 740,523 (20%) 287.79 2,475 (24%) 418,334 (12%) 169.010 636 (6%) 32,205 (1%) 50.611 19 (0%) 826 (0%) 43.5Total 10,421 (100%) 3,617,723 (100%) 347.2(The number of updates shown for level k is the number of times an element was removedfrom a doubly linked list during the alulations between levels k�1 and k. The 2,031 up-dates on level 0 orrespond to removing olumn X from the header list and then removing2030=5 = 406 rows from their other olumns; these are the rows that overlap with the9

plaement of X at 23. A slight optimization was made when tabulating this data: Col-umn was not overed and unovered in trivial ases when it ontained no rows.) Notiethat more than half of the nodes lie on levels � 8, but more than half of the updates ouron the way to level 7. Extra work on the lower levels has redued the need for hard workat the higher levels.The orresponding statistis look like this when the same problem is run without theordering heuristi based on S �elds:Level Nodes Updates Updates per node0 1 (0%) 2,031 (0%) 2031.01 6 (0%) 5,606 (0%) 934.32 24 (0%) 30,111 (0%) 1254.63 256 (0%) 249,904 (1%) 976.24 581 (1%) 432,471 (2%) 744.45 1,533 (1%) 1,256,556 (7%) 819.76 3,422 (3%) 2,290,338 (13%) 669.37 10,381 (10%) 4,442,572 (25%) 428.08 26,238 (25%) 5,804,161 (33%) 221.29 46,609 (45%) 3,006,418 (17%) 64.510 13,935 (14%) 284,459 (2%) 20.411 19 (0%) 14,125 (0%) 743.4Total 103,005 (100%) 17,818,752 (100%) 173.0Eah update involves about 14 memory aesses when the S heuristi is used, and about8 aesses when S is ignored. Thus the S heuristi multiplies the total number of memoryaesses by a fator of approximately (14 � 3;617;723)=(8 � 17;818;752) � 36% in thisexample. The heuristi is even more e�etive in larger problems, beause it tends toredue the total number of nodes by a fator that is exponential in the number of levelswhile the ost of applying it grows only linearly.Assuming that the S heuristi is good in large trees but not so good in small ones,I tried a hybrid sheme that uses S at low levels but not at high levels. This experimentwas, however, unsuessful. If, for example, S was ignored after level 7, the statistis forlevels 8{11 were as follows: Level Nodes Updates8 18,300 5,672,2589 28,624 2,654,31010 9,989 213,94411 19 10,179And if the hange was applied after level 8, the statistis wereLevel Nodes Updates9 11,562 1,495,05410 6,113 148,16211 19 6,303Therefore I deided to retain the S heuristi at all levels of algorithm DLX.10

My trusty old SPARCstation 2 omputer, vintage 1992, is able to perform approxi-mately 0.39 mega-updates per seond when working on large problems and maintaining theS �elds. The 120 MHz Pentium I omputer that Stanford omputer siene faulty weregiven in 1996 did 1.21 mega-updates per seond, and my new 500 MHz Pentium III does5.94. Thus the running time dereases as tehnology advanes; but it remains essentiallyproportional to the number of updates, whih is the number of times the links do theirdane. Therefore I prefer to measure the performane of algorithm DLX by ounting thenumber of updates, not by ounting the number of elapsed seonds.Sott [34℄ was pleased to disover that his program for the MANIAC solved the pen-tomino problem in about 3.5 hours. The MANIAC exeuted approximately 4000 instru-tions per seond, so this represented roughly 50 million instrutions. He and H. F. Trotterfound a nie way to use the \bitwise-and" instrutions of the MANIAC, whih had 40-bitregisters. Their ode, whih exeuted about 50;000;000=(103;005+106;232+154;921) � 140instrutions per node of the searh tree, was quite eÆient in spite of the fat that theyhad to deal with about ten times as many nodes as would be produed by the order-ing heuristi. Indeed, the linked-list approah of algorithm DLX performs a total of3;617;723 + 4;547;186 + 5;526;988 = 13;691;897 updates, or about 192 million memoryaesses; and it would never �t in the 5120-byte memory of the MANIAC! From this stand-point the tehnique of daning links is atually a step bakward from Sott's 40-year-oldmethod, although of ourse that method works only for very speial types of exat overproblems in whih simple geometri struture an be exploited.The task of �nding all ways to pak the set of pentominoes into a 6� 10 retangle ismore diÆult than Sott's 8� 8� 2� 2 problem, beause the baktrak tree for the 6� 10problem is larger and there are 2339 essentially di�erent solutions [21℄. In this ase welimit the X pentomino to the upper left quarter of the board; our linked-memory algorithmgenerates 902,631 nodes and 309,134,131 updates (or 28,320,810 nodes and 4,107,105,935updates without the S heuristi). This solves the problem in less than a minute on a Pen-tium III; however, again I should point out that the speial harateristis of pentominoesallow a faster approah.John G. Flether needed only ten minutes to solve the 6�10 problem on an IBM 7094in 1965, using a highly optimized program that had 765 instrutions in its inner loop [10℄.The 7094 had a lok rate of 0.7 MHz, and it ould aess two 36-bit words in a single lokyle. Flether's program required only about 600� 700;000=28;320;810 � 15 lok ylesper node of the searh tree; so it was superior to the bitwise method of Sott and Trotter,and it remains the fastest algorithm known for problems that involve plaing the twelvepentominoes. (N. G. de Bruijn disovered an almost idential method independently;see [7℄.)With a few extensions to the 0-1 matrix for Dana Sott's problem, we an solve themore general problem of overing a hessboard with twelve pentominoes and one squaretetromino, without insisting that the tetromino oupy the enter. This is essentially thelassi problem of Dudeney, who invented pentominoes in 1907 [9℄. The total number ofsuh hessboard dissetions has apparently never appeared in the literature; algorithmDLXneeds 1,526,279,783 updates to determine that it is exatly 16,146.Many people have written about polyomino problems, inluding distinguished math-ematiians suh as Golomb [15℄, de Bruijn [7, 8℄, Berlekamp, Conway and Guy [4℄. Their11

92 solutions, 14,352,556 nodes, 1,764,631,796 updates 100 solutions, 10,258,180 nodes, 1,318,478,396 updates

20 solutions, 6,375,335 nodes, 806,699,079 updates 0 solutions, 1,234,485 nodes, 162,017,125 updatesFigure 6. Paking 45 Y pentominoes into a square.arguments for plaing the piees are sometimes based on enumerating the number of waysa ertain ell on the board an be �lled, sometimes on the number of ways a ertain pieean be plaed. But as far as I know, nobody has previously pointed out that suh problemsare atually exat over problems, in whih there is perfet symmetry between ells andpiees. Algorithm DLX will branh on the ways to �ll a ell if some ell is diÆult to �ll,or on the ways to plae a piee if some piee is diÆult to plae. It knows no di�erene,beause piees and ells are simply olumns of the given input matrix.Algorithm DLX begins to outperform other pentomino-plaing proedures in problemswhere the searh tree has many levels. For example, let's onsider the problem of paking45 Y pentominoes into a 15� 15 square. Jenifer Haselgrove studied this with the help ofa mahine alled the ICS Multum|whih quali�ed as a \fast miniomputer" in 1973 [20℄.The Multum produed an answer after more than an hour, but she remained unertainwhether other solutions were possible. Now, with the daning links approah desribedabove, we an obtain several solutions almost instantly, and the total number of solutionsturns out to be 212. The solutions fall into four lasses, depending on the behavior at thefour orners; representatives of eah ahievable lass are shown in Figure 6.12

Appliations to hexiamonds. In the late 1950s, T. H. O'Beirne introdued a pleasantvariation on polyominoes by substituting triangles for squares. He named the resultingshapes polyiamonds: moniamonds, diamonds, triamonds, tetriamonds, pentiamonds, hex-iamonds, et. The twelve hexiamonds were independently disovered by J. E. Reeve andJ. A. Tyrell [32℄, who found more than forty ways to arrange them into a 6� 6 rhombus.Figure 7 shows one suh arrangement, together with some arrow dissetions that I ouldn'tresist trying when I �rst learned about hexiamonds. The 6 � 6 rhombus an be tiled bythe twelve hexiamonds in exatly 156 ways. (This fat was �rst proved by P. J. Torbijn[35℄, who worked without a omputer; algorithm DLX on�rms his result after making37,313,405 updates, if we restrit the \sphinx" to only 3 of its 12 orientations.)

4 solutions, 6,677 nodes, 4,687,159 updates 0 solutions, 7,603 nodes, 3,115,387 updates

156 solutions, 70,505 nodes, 37,313,405 updates
41 solutions, 35,332 nodes, 14,948,759 updates 3 solutions, 5546 nodes, 3,604,817 updatesFigure 7. The twelve hexiamonds, paked intoa rhombus and into various arrowlike shapes.13

O'Beirne was partiularly fasinated by the fat that seven of the twelve hexiamondshave di�erent shapes when they are ipped over, and that the resulting 19 one-sided hexi-amonds have the orret number of triangles to form a hexagon: a hexagon of hexiamonds(see Figure 8). In November of 1959, after three months of trials, he found a solution; andtwo years later he hallenged the readers of New Sientist to math this feat [28, 29, 30℄.Meanwhile he had shown the puzzle to Rihard Guy and his family. The Guys pub-lished several solutions in a journal published in Singapore, where Rihard was a professor[17℄. Guy, who has told the story of this fasinating rereation in [18℄, says that whenO'Beirne �rst desribed the puzzle, \Everyone wanted to try it at one. No one went tobed for about 48 hours."A 19-level baktrak tree with many possibilities at eah level makes an exellenttest ase for the daning links approah to overing, so I fed O'Beirne's problem to myprogram. I broke the general ase into seven subases, depending on the distane of thehexagon piee from the enter; furthermore, when that distane was zero, I onsidered twosubases depending on the position of the \rown." Figure 8 shows a representative ofeah of the seven ases, together with statistis about the searh. The total number ofupdates performed was 134,425,768,494.My goal was not only to ount the solutions, but also to �nd arrangements that wereas symmetrial as possible|in response to a problem that was stated in Berlekamp, Guy,and Conway's bookWinning Ways [4, page 788℄. Let us de�ne the horizontal symmetry ofa on�guration to be the number of edges between piees that also are edges between pieesin the left-right reetion of that on�guration. The overall hexagon has 156 internal edges,and the 19 one-sided hexiamonds have 96 internal non-edges. Therefore if an arrangementwere perfetly symmetrial|unhanged by left-right reetion|its horizontal symmetrywould be 60. But no suh perfetly symmetri solution is possible.The vertial symmetry of a on�guration is de�ned similarly, but with respet to top-bottom reetion. A solution to the hexiamond problem is maximally symmetri if it hasthe highest horizontal or vertial symmetry sore, and if the smaller sore is as large aspossible onsistent with the larger sore. Eah of the solutions shown in Figure 8 is, infat, maximally symmetri in its lass. (And so is the solution to Dana Sott's problemthat is shown in Figure 1: It has vertial symmetry 36 and horizontal symmetry 30.)The largest possible vertial symmetry sore is 50; it is ahieved in Figure 8(), and inseven other solutions obtained by independently rearranging three of its symmetrial sub-parts. Four of the eight have a horizontal symmetry sore of 32; the others have horizontalsymmetry 24. John Conway found these solutions by hand in 1964 and onjetured thatthey were maximally symmetri overall. But that honor belongs uniquely to the solutionin Figure 8(f), at least by my de�nition, beause Figure 8(f) has horizontal symmetry 52and vertial symmetry 27. The only other ways to ahieve horizontal symmetry 52 havevertial symmetry sores of 20, 22, and 24. (Two of those other ways do, however, havethe surprising property that 13 of their 19 piees are unhanged by horizontal reetion;this is symmetry of entire piees, not just of edges.)After I had done this enumeration, I read Guy's paper [18℄ for the �rst time and learnedthat Mar M. Paulhus had already enumerated all solutions in May 1996 [31℄. Good, ourindependent omputations would on�rm the results. But no|my program found 124,519solutions, while his had found 124,518! He reran his program in 1999 and now we agree.14

(a)

(hsym = 51, vsym = 24)1,914 solutions, 4,239,132 nodes2,142,276,414 updates

(b)

(hsym = 52, vsym = 24)5,727 solutions, 21,583,173 nodes11,020,236,507 updates()

(hsym = 32, vsym = 50)11,447 solutions, 20,737,702 nodes10,315,775,812 updates

(d)

(hsym = 51, vsym = 22)7,549 solutions, 24,597,239 nodes12,639,698,345 updates

(e)

(hsym = 48, vsym = 30)6,675 solutions, 17,277,362 nodes8,976,245,858 updates(f)

(hsym = 52, vsym = 27)15,717 solutions, 43,265,607 nodes21,607,912,011 updates

(g)

(hsym = 48, vsym = 29)75,490 solutions, 137,594,347 nodes67,723,623,547 updatesFigure 8. Solutions to O'Beirne's hexiamond hexagon problem,with the small hexagon at various distanes from the enter of the large one.15

O'Beirne [29℄ also suggested an analogous problem for pentominoes, sine there are18 one-sided pentominoes. He asked if they an be put into a 9 � 10 retangle, andGolomb provided an example in [15, Chapter 6℄. Jenifer Leeh wrote a program to provethat there are exatly 46 di�erent ways to pak the one-sided pentominoes in a 3 � 30retangle; see [26℄. Figure 9 shows a maximally symmetri example (whih isn't reallyvery symmetrial).
46 solutions, 605,440 nodes, 190,311,749 updates, hsym = 51, vsym = 48Figure 9. The one-sided pentominoes, paked into a 3� 30 retangle.I set out to ount the solutions to the 9 � 10, �guring that an 18-stage exat overproblem with six 1s per row would be simpler than a 19-stage problem with seven 1s perrow. But I soon found that the task would be hopeless, unless I invented a muh betteralgorithm. The Monte Carlo estimation proedure of [24℄ suggests that about 19 quadrillionupdates will be needed, with 64 trillion nodes in the searh trees. If that estimate is orret,I ould have the result in a few months; but I'd rather try for a new Mersenne prime.I do, however, have a onjeture about the solution that will have maximum horizontalsymmetry; see Figure 10.

hsym = 74, vsym = 49Figure 10. Is this the most symmetrial wayto pak one-sided pentominoes into a retangle?A failed experiment. Speial arguments based on \oloring" often give important in-sights into tiling problems. For example, it is well known [5, pages 142 and 394℄ that if weremove two ells from opposite orners of a hessboard, there is no way to over the remain-ing 62 ells with dominoes. The reason is that the mutilated hessboard has, say, 32 whiteells and 30 blak ells, but eah individual domino overs one ell of eah olor. If we16

present suh a overing problem to algorithm DLX, it makes 4,780,846 updates (and �nds13,922 ways to plae 30 of the 31 dominoes) before onluding that there is no solution.The ells of the hexiamond-hexagon problem an be olored blak and white in asimilar fashion: All triangles that point left are blak, say, and all that point right arewhite. Then �fteen of the one-sided hexiamonds over three triangles of eah olor; butthe remaining four, namely the \sphinx" and the \yaht" and their mirror images, eahhave a four-to-two olor bias. Therefore every solution to the problem must put exatlytwo of those four piees into positions that favor blak.I thought I'd speed things up by dividing the problem into six subproblems, onefor eah way to hoose the two piees that will favor blak. Eah of the subproblems wasexpeted to have about 1=6 as many solutions as the overall problem, and eah subproblemwas simpler beause it gave four of the piees only half as many options as before. ThusI expeted the subproblems to run up to 16 times as fast as the original problem, and Iexpeted the extra information about impossible orrelations of piee plaement to helpalgorithm DLX make intelligent hoies.But this turned out to be a ase where mathematis gave me bad advie. The overallproblem had 6675 solutions and required 8,976,245,858 updates (Figure 8()). The sixsubproblems turned out to have respetively 955, 1208, 1164, 1106, 1272, and 970 solutions,roughly as expeted; but they eah required between 1.7 and 2.2 billion updates, and thetotal work to solve all six subproblems was 11,519,571,784. So muh for that bright idea.Appliations to tetrastiks. Instead of making piees by joining squares or trianglestogether, Brian Barwell [3℄ onsidered making them from line segments or stiks. Healled the resulting objets polystiks, and noted that there are 2 distiks, 5 tristiks, and16 tetrastiks. The tetrastiks are espeially interesting from a rereational standpoint; Ireeived an attrative puzzle in 1993 that was equivalent to plaing ten of the tetrastiksin a 4� 4 square [1℄, and I spent many hours trying to psyh it out.Barwell proved that the sixteen tetrastiks annot be assembled into any symmetrialshape. But by leaving out any one of the �ve tetrastiks that have an exess of horizontalor vertial line segments, he found ways to �ll a 5�5 square. (See Figure 11.) Suh puzzlesare quite diÆult to do by hand, and he had found only �ve solutions at the time he wrotehis paper; he onjetured that fewer than a hundred solutions would atually exist. (Theset of all solutions was �rst found by Wiezorke and Haubrih [37℄, who invented the puzzleindependently after seeing [1℄.)Polystiks introdue a new feature that is not present in the polyomino and polyia-mond problems: The piees must not ross eah other. For example, Figure 12 shows anon-solution to the problem onsidered in Figure 11(). Every line segment in the grid of5� 5 squares is overed, but the `V' tetrastik rosses the `Z'.We an handle this extra ompliation by generalizing the exat over problem. In-stead of requiring all olumns of a given 0-1 matrix to be overed by disjoint rows, wewill distinguish two kinds of olumns: primary and seondary. The generalized problemasks for a set of rows that overs every primary olumn exatly one and every seondaryolumn at most one.The tetrastik problem of Figure 11() an be set up as a generalized over problemin a natural way. First we introdue primary olumns F, H, I, J, N, O, P, R, S, U, V,17

(a)
72 solutions, 1,132,070 nodes283,814,227 updates

(b)
382 solutions, 3,422,455 nodes783,928,340 updates()

607 solutions, 2,681,188 nodes611,043,121 updates
(d)

530 solutions, 3,304,039 nodes760,578,623 updates
(e)

204 solutions, 1,779,356 nodes425,625,417 updatesFigure 11. Filling a 5� 5 grid with 15 of the 16 tetrastiks;we must leave out either the H, the J, the L, the N, or the Y.W, X, Y, Z representing the �fteen tetrastiks (exluding L), as well as olumns Hxyrepresenting the horizontal segments (x; y) �� (x+1; y) and Vxy representing the vertialsegments (x; y) �� (x; y + 1), for 0 � x; y < 5. We also need seondary olumns Ixy torepresent interior juntion points (x; y), for 0 < x; y < 5. Eah row represents a possibleplaement of a piee, as in the polyomino and polyiamond problems; but if a piee has twoonseutive horizontal or vertial segments and does not lie on the edge of the diagram, itshould inlude the orresponding interior juntion point as well.
Figure 12. Polystiks are not supposed toross eah other as they do here.

For example, the two rows orresponding to the plaement of V and Z in Figure 12are V H23 I33 H33 V43 I44 V44Z H24 V33 I33 V32 H32The ommon interior point I33 means that these rows ross eah other. On the other hand,18

I33 is not a primary olumn, beause we do not neessarily need to over it. The solutionin Figure 11() overs only the interior points I14, I21, I32, and I41.Fortunately, we an solve the generalized over problem by using almost the samealgorithm as before. The only di�erene is that we initialize the data struture by makinga irular list of the olumn headers for the primary olumns only. The header for eahseondary olumn should have L and R �elds that simply point to itself. The remainderof the algorithm proeeds exatly as before, so we will still all it algorithm DLX.A generalized over problem an be onverted to an equivalent exat over problemif we simply append one row for eah seondary olumn, ontaining a single 1 in that ol-umn. But we are better o� working with the generalized problem, beause the generalizedalgorithm is simpler and faster.I deided to experiment with the subset of welded tetrastiks, namely those that do notform a simple onneted path beause they ontain juntion points: F;H;R;T;X;Y. Thereare ten one-sided welded tetrastiks if we add the mirror images of the unsymmetrial pieesas we did for one-sided hexiamonds and pentominoes. And|aha|these ten tetrastiks anbe arranged in a 4� 4 grid. (See Figure 13.) Only three solutions are possible, inludingthe two perfetly symmetri solutions shown. I've deided not to show the third solution,whih has the X piee in the middle, beause I want readers to have the pleasure of �ndingit for themselves.
Figure 13. Two of the three ways to pak theone-sided welded tetrastiks into a square.There are �fteen one-sided unwelded tetrastiks, and I thought they would surely �tinto a 5� 5 grid in a similar way; but this turned out to be impossible. The reason is thatif, say, piee I is plaed vertially, four of the six piees J, J0, L, L0, N, N0 must be plaedto favor the horizontal diretion, and this severely limits the possibilities. In fat, I havebeen unable to pak those �fteen piees into any simple symmetrial shape; my best e�ortso far is the \oboe" shown in Figure 14.

Figure 14. The �fteen one-sided unwelded tetrastiks.19

Figure 15. Do all 25 one-sided tetrastiks�t in this shape?I also tried unsuessfully to pak all 25 of the one-sided tetrastiks into the Aztediamond pattern of Figure 15; but I see no way to prove that a solution is impossible. Anexhaustive searh seems out of the question at the present time.Appliations to queens. Now we an return to the problem that led Hitotumatu andNoshita to introdue daning links in the �rst plae, namely the N queens problem, be-ause that problem is atually a speial ase of the generalized over problem in theprevious setion. For example, the 4 queens problem is just the task of overing eightprimary olumns (R0;R1;R2;R3;F0;F1;F2;F3) orresponding to ranks and �les, whileusing at most one element in eah of the seondary olumns (A0;A1;A2;A3;A4;A5;A6;B0;B1;B2;B3;B4;B5;B6) orresponding to diagonals, given the sixteen rowsR0 F0 A0 B3R0 F1 A1 B4R0 F2 A2 B5R0 F3 A3 B6R1 F0 A1 B2R1 F1 A2 B3R1 F2 A3 B4R1 F3 A4 B5R2 F0 A2 B1R2 F1 A3 B2R2 F2 A4 B3R2 F3 A5 B4R3 F0 A3 B0R3 F1 A4 B1R3 F2 A5 B2R3 F3 A6 B3 .In general, the rows of the 0-1 matrix for the N queens problem areRi Fj A(i+ j) B(N � 1� i+ j)for 0 � i; j < N . (Here Ri and Fj represent ranks and �les of a hessboard; Ak and B`represent diagonals and reverse diagonals. The seondary olumns A0;A(2N�2);B0, andB(2N � 2) eah arise in only one row of the matrix so they an be omitted.)When we apply algorithm DLX to this generalized over problem, it behaves quitedi�erently from the traditional algorithms for the N queens problem, beause it branhessometimes on di�erent ways to oupy a rank of the hessboard and sometimes on di�erent20

ways to oupy a �le. Furthermore, we gain eÆieny by paying attention to the order inwhih primary olumns of the over problem are onsidered when those olumns all havethe same S value (the same branhing fator): It is better to plae queens near the middleof the board �rst, beause entral positions rule out more possibilities for later plaements.Consider, for example, the eight queens problem. Figure 16(a) shows an empty board,with 8 possible ways to oupy eah rank and eah �le. Suppose we deide to plae a queenin R4 and F7, as shown in Figure 16(b). Then there are �ve ways to over F4; after hoosingR5 and F4, Figure 16(), there are four ways to over R3, and so on. At eah stage wehoose the most onstrained rank or �le, using the \organ pipe ordering"R4 F4 R3 F3 R5 F5 R2 F2 R6 F6 R1 F1 R7 F7 R0 F0to break ties. Plaing a queen in R2 and F3 after Figure 16(d) makes it impossible toover F2, so baktraking will our even though only four queens have been tentativelyplaed. (a)

R0 8

F0

8R1 8

F1

8
R2 8

F2

8
R3 8

F3

8
R4 8

F4

8
R5 8

F5

8

R6 8F6

8

R7 8F7

8

(b)

R0 6

F0

7R1 6

F1

7
R2 6

F2

7
R3 6

F3

6
R4

F4

5
R5 6

F5

5

R6 6F6

5

R7 6F7
q

� � �����
� � � � � � �

�������()

R0 5

F0

5R1 5

F1

5
R2 4

F2

4
R3 4

F3

4
R4

F4
R5

F5

4

R6 4F6

4

R7 4F7
qq� � �����

� � � � � � �
�������

� � � � �������� � �
�� �

(d)

R0 3

F0

4R1 3

F1

3
R2 3

F2

2
R3

F3

2
R4

F4
R5

F5R6 3F6

3

R7 2F7
qq q

� � �����
� � � � � � �

�������
� � � � �������� � �

�� �
� � �

�
��� � �

��

Figure 16. Solving the 8 queens problem by treating ranks and �les symmetrially.21

The order in whih header nodes are linked together at the start of algorithm DLX anhave a signi�ant e�et on the running time. For example, experiments on the 16 queensproblem show that the searh tree has 312,512,659 nodes and requires 5,801,583,789 up-dates, if the ordering R0 R1 : : : R15 F0 F1 : : : F15 is used, while the organ-pipe orderingR8 F8 R7 F7 R9 F9 : : : R0 F0 requires only about 54% as many updates. On the otherhand, the order in whih individual elements of a row or olumn are linked together hasno e�et on the algorithm's total running time.Here are some statistis observed when algorithm DLX solved small ases of theN queens problem using organ-pipe order, without reduing the number of solutions bytaking symmetries of the board into aount:N Solutions Nodes Updates R-Nodes R-Updates1 1 2 3 2 32 0 3 19 3 193 0 4 56 6 704 2 13 183 15 2075 10 46 572 50 6266 4 93 1,497 115 1,7657 40 334 5,066 376 5,5168 92 1,049 16,680 1,223 18,8499 352 3,440 54,818 4,640 71,74610 724 11,578 198,264 16,471 269,60511 2,680 45,393 783,140 67,706 1,123,57212 14,200 211,716 3,594,752 312,729 5,173,07113 73,712 1,046,319 17,463,157 1,589,968 26,071,14814 365,596 5,474,542 91,497,926 8,497,727 139,174,30715 2,279,184 31,214,675 513,013,152 49,404,260 800,756,88816 14,772,512 193,032,021 3,134,588,055 308,130,093 4,952,973,20117 95,815,104 1,242,589,512 20,010,116,070 2,015,702,907 32,248,234,86618 666,090,624 8,567,992,237 141,356,060,389 13,955,353,609 221,993,811,321Here \R-nodes" and \R-Updates" refer to the results when we onsider only R0, R1, : : : ,R(N � 1) to be primary olumns that need to be overed; olumns Fj are seondary. Inthis ase the algorithm redues to the usual proedure in whih branhing ours only onranks of the hessboard. The advantage of mixing rows with olumns beomes evident asN inreases, but I'm not sure whether the ratio of R-Updates to Updates will be unboundedor approah a limit as N goes to in�nity.I should point out that speial methods are known for ounting the number of solutionsto the N queens problem without atually generating the queen plaements [33℄.Conluding remarks. Algorithm DLX, whih uses daning links to implement the \nat-ural" algorithm for exat over problems, is an e�etive way to enumerate all solutionsto suh problems. On small ases it is nearly as fast as algorithms that have been tunedto solve partiular lasses of problems, like pentomino paking or the N queens problem,where geometri struture an be exploited. On large ases it appears to run even faster22

than those speial-purpose algorithms, beause of its ordering heuristi. And as omputersget faster and faster, we are of ourse takling larger and larger ases all the time.In this paper I have used the exat over problem to illustrate the versatility of daninglinks, but I ould have hosen many other baktrak appliations in whih the same ideasapply. For example, the approah works niely with the Waltz �ltering algorithm [36℄;perhaps this fat has subliminally inuened my hoie of names. I reently used daninglinks together with a ditionary of about 600 ommon three-letter words of English to �ndword squares suh as A T EW I NL E D B E DO A RW R Y O H MR U EB E T P E AU R NB A Y T W OI O NT E Ein whih eah row, olumn, and diagonal is a word; about 60 million updates produedall solutions. I believe that a terpsihorean tehnique is signi�antly better than thealternative of opying the urrent state at every level, as onsidered in the pioneeringpaper by Haralik and Elliott on onstraint satisfation problems [19℄. Certainly the useof (1) and (2) is simple, useful, and fun.\What a dane / do they do / Lordy, I am tellin' you!" [2℄Aknowledgments. I wish to thank Sol Golomb, Rihard Guy, and Gene Freuder for thehelp they generously gave me as I was preparing this paper. Maggie MLoughlin did anexellent job of translating my srawled manusript into a well-organized TEX doument.And I profoundly thank Tomas Rokiki, who provided the new omputer on whih I didmost of the experiments, and on whih I hope to keep links daning merrily for many years.Historial notes. (1) Although the IAS omputer was popularly known in Prinetonas the \MANIAC," that title properly belonged only to a similar but di�erent series ofomputers built at Los Alamos. (See [27℄.) (2) George Jelliss [23℄ disovered that thegreat puzzle masters H. D. Benjamin and T. R. Dawson experimented with the oneptof polystiks already in 1946{1948. However, they apparently did not publish any of theirwork. (3) My names for the tetrastiks are slightly di�erent from those originally proposedby Barwell [3℄: I prefer to use the letters J; R; and U for the piees he alled U, J, and C,respetively.Program notes. The implementation of algorithm DLX that I used when preparingthis paper is �le dane.w on webpage http://www-s-faulty.stanford.edu/~knuth/programs.html. See also the related �les polyominoes.w, polyiamonds.w, polystiks.w,and queens.w.
23

Referenes[1℄ 845 Combinations Puzzles: 845 Interestingly Combinations (Taiwan: R.O.C. Patent66009). [There is no indiation of the author or manufaturer. This puzzle, whihis available from www.puzzletts.om, atually has only 83 solutions. It arries aChinese title, \Dr. Dragon's Intelligene Pro�t System."℄[2℄ Harry Barris, Mississippi Mud (New York: Shapiro, Bernstein & Co., 1927).[3℄ Brian R. Barwell, \Polystiks," Journal of Rereational Mathematis 22 (1990), 165{175.[4℄ Elwyn R. Berlekamp, John H. Conway, and Rihard K. Guy, Winning Ways for YourMathematial Plays 2 (London: Aademi Press, 1982).[5℄ Max Blak, Critial Thinking (Englewood Cli�s, New Jersey: Prentie{Hall, 1946).[Does anybody know of an earlier referene for the problem of the \mutilated hess-board"?℄[6℄ Ole-Johan Dahl, Edsger W. Dijkstra, and C. A. R. Hoare, Strutured Programming(London: Aademi Press, 1972).[7℄ N. G. de Bruijn, personal ommuniation (9 September 1999): \: : : it was almost my�rst ativity in programming that I got all 2339 solutions of the 6� 10 pentomino onan IBM1620 in Marh 1963 in 18 hours. It had to ope with the limited memory ofthat mahine, and there was not the slightest possibility to store the full matrix : : :But I ould speed the matter up by having a very long program, and that one wasgenerated by means of another program."[8℄ N. G. de Bruijn, \Programmeren van de pentomino puzzle," Eulides 47 (1971/72),90{104.[9℄ Henry Ernest Dudeney, \74.|The broken hessboard," in The Canterbury Puzzles,(London: William Heinemann, 1907), 90{92, 174{175.[10℄ John G. Flether, \A program to solve the pentomino problem by the reursive useof maros," Communiations of the ACM 8 (1965), 621{623.[11℄ Robert W. Floyd, \Nondeterministi algorithms," Journal of the ACM 14 (1967),636{644.[12℄ Martin Gardner, \Mathematial games: More about omplex dominoes, plus theanswers to last month's puzzles," Sienti� Amerian 197, 6 (Deember 1957), 126{140.[13℄ Mihael R. Garey and David S. Johnson, Computers and Intratability (San Franiso:Freeman, 1979).[14℄ Solomon W. Golomb, \Chekerboards and polyominoes," Amerian MathematialMonthly 61 (1954), 675{682.[15℄ Solomon W. Golomb, Polyominoes, seond edition (Prineton, New Jersey: PrinetonUniversity Press, 1994).[16℄ Solomon W. Golomb and Leonard D. Baumart, \Baktrak programming," Journalof the ACM 12 (1965), 516{524. 24

[17℄ Rihard K. Guy, \Some mathematial rereations," Nabla (Bulletin of the MalayanMathematial Soiety) 7 (1960), 97{106, 144{153.[18℄ Rihard K. Guy, \O'Beirne's Hexiamond," in The Mathemagiian and Pied Puzzler,edited by Elwyn Berlekamp and Tom Rodgers (Natik, Massahusetts: A. K. Peters,1999), 85{96.[19℄ Robert M. Haralik and Gordon L. Elliott, \Inreasing tree searh eÆieny for on-straint satisfation problems," Arti�ial Intelligene 14 (1980), 263{313.[20℄ Jenifer Haselgrove, \Paking a square with Y-pentominoes," Journal of RereationalMathematis 7 (1974), 229.[21℄ C. B. and Jenifer Haselgrove, \A omputer program for pentominoes," Eureka 23, 2(Cambridge, England: The Arhimedeans, Otober 1960), 16{18.[22℄ Hirosi Hitotumatu and Kohei Noshita, \A tehnique for implementing baktrak al-gorithms and its appliation," Information Proessing Letters 8 (1979), 174{175.[23℄ George P. Jelliss, \Unwelded polystiks," Journal of Rereational Mathematis 29(1998), 140{142.[24℄ Donald E. Knuth, \Estimating the eÆieny of baktrak programs," Mathematis ofComputation 29 (1975), 121{136.[25℄ Donald E. Knuth, TEX: The Program (Reading, Massahusetts: Addison{Wesley,1986).[26℄ Jean Meeus, \Some polyomino and polyamond problems," Journal of RereationalMathematis 6 (1973), 215{220.[27℄ N. Metropolis and J. Worlton, \A trilogy of errors in the history of omputing,"Annals of the History of Computing 2 (1980), 49{59.[28℄ T. H. O'Beirne, \Puzzles and Paradoxes 43: Pell's equation in two popular problems,"New Sientist 12 (1961), 260{261.[29℄ T. H. O'Beirne, \Puzzles and Paradoxes 44: Pentominoes and hexiamonds," NewSientist 12 (1961), 316{317. [\So far as I know, hexiamond has not yet been putthrough the mill on a omputer; but this ould doubtless be done."℄[30℄ T. H. O'Beirne, \Puzzles and Paradoxes 45: Some hexiamond solutions: and anintrodution to a set of 25 remarkable points," New Sientist 12 (1961), 379{380.[31℄ Mar Paulhus,\Hexiamond Homepage," http://www.math.ualgary.a/~paulhusm/hexiamond1.[32℄ J. E. Reeve and J. A. Tyrell, \Maestro puzzles," The Mathematial Gazette 45 (1961),97{99.[33℄ Igor Rivin, Ilan Vardi, and Paul Zimmermann, \The n-queens problem," AmerianMathematial Monthly 101 (1994), 629{639.[34℄ Dana S. Sott,\Programming a ombinatorial puzzle," Tehnial Report No. 1 (Prine-ton, New Jersey: Prineton University Department of Eletrial Engineering, 10 June1958), ii + 14 + 5 pages. [From page 10: \: : : the main problem in the program wasto handle several lists of indies that were ontinually being modi�ed."℄25

[35℄ P. J. Torbijn, \Polyiamonds," Journal of Rereational Mathematis 2 (1969), 216{227.[36℄ David Waltz, \Understanding line drawings of senes with shadows," in The Psy-hology of Computer Vision, edited by P. Winston (New York: MGraw{Hill, 1975),19{91.[37℄ Bernhard Wiezorke and Jaques Haubrih, \Dr. Dragon's polyons," Cubism For Fun33 (February 1994), 6{7.Addendum. During November, 1999, Alfred Wassermann of Universit�at Bayreuth su-eeded in overing the Azte diamond of Figure 15 with one-sided tetrastiks, using aluster of workstations running algorithm DLX. The 107 possible solutions, whih arequite beautiful, have been posted at http://did.mat.uni-bayreuth.de/wassermann/.He subsequently enumerated the 10,440,433 solutions to the 9 � 10 one-sided pentominoproblem; many of these turn out to be more symmetri than the one in Figure 10.

26

