Ctrl+K
jupytalk jupytalk

jupytalk

Site Navigation

  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • API
  • FAQ
  • Examples
  • Notebooks Gallery
  • Blog Gallery
  • Resources for notebooks
  • Teachings
  • History

Site Navigation

  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • API
  • FAQ
  • Examples
  • Notebooks Gallery
  • Blog Gallery
  • Resources for notebooks
  • Teachings
  • History

Links

  • Blog
  • Index
  • Module
  • API

Contents

  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • API
  • FAQ
  • Examples
  • Notebooks Gallery
  • Blog Gallery
  • Resources for notebooks
  • Teachings
  • History

Information

  • FAQ
  • Glossary
  • README
  • Changes
  • License

Previous topic

Examples

Next topic

Big Data, Azure, Machine Learning, Python

Show Source

Notebooks Gallery#

Notebooks Coverage

  • 2016

  • 2017

  • 2018

  • 2019

  • 2020

  • 2021

2016#

centrale#

_images/centrale_201606.thumb.png

Big Data, Azure, Machine Learning, Python

Présentation à Centrale Paris - Juin 2016.

_images/azure_pig.thumb.png

HDInsight, PIG

Short examples on how to connect to a cluster from a notebook and submit a job (Azure + PIG).

_images/centrale_201606_sysrec.thumb.png

Recommandations sur le web

Quelques pistes sur le fonctionnement des moteurs de recommandations sur le web.

ensae#

_images/kaggle_review_2016.thumb.png

Revue de compétitions Kaggle (2016)

Les gagnants des compétitions Kaggle décrivent parfois leurs solutions sur le blog de Kaggle No Free Hunch. Il y a toujours de bonnes idées à glaner.

pydata#

_images/10_plotting_libraries.thumb.png

10 plotting libraries

Review of plotting libraries.

_images/im_biopython.thumb.png

biopython

The Biopython Project is an international association of developers of freely available Python tools for computational molecular biology.

_images/js_bokeh.thumb.png

bokeh

bokeh is one if the most mature and complete library using javascript.

_images/pyjs_bqplot.thumb.png

bqplot

This library is well integrated with Jupyter and will probably stick for a long time. It mixes Python and Javascript. One drawback: you need to run the notebook everytime to get the graph, they don’t stay because Jupyter server is sending them, they don’t appear in the output.

_images/pyjs_brython.thumb.png

brython, brythonmagic

brython is an implementation of Python in javascript, byrthonmagic makes it available from a notebook.

_images/im_cartopy.thumb.png

cartopy

cartopy aims at drawing maps based on matplotlib. It superimposes a geographical coordinate system on the top of matplotlib’s one. It is usually used with modules such as pyproj to handle shapefiles also with shapely or geopandas, fiona, descartes.

_images/big_datashader.thumb.png

datashader

datashader plots huge volume of data.

_images/im_ete3.thumb.png

ete3

ete3 draws nice trees.

_images/gui_geoplotlib.thumb.png

geoplotlib

geoplotlib implements its own GUI to visualize maps.

_images/im_lifelines.thumb.png

lifelines

lifelines implements methods and algorithm for life insurance. As many dedicated module, it contains custom graphs built on the top of matplotlib for this module.

_images/js_lightning_python.thumb.png

lightning-python

lightning-python is a wrapper for the javascript library lightning.

_images/im_matplotlib.thumb.png

matplotlib

matplotlib is the most used to plot. It is the reference.

_images/im_missingno.thumb.png

missingno

missingno represents missing values in dataframe.

_images/im_mpl_scatter_density.thumb.png

mpl-scatter-density

mpl-scatter-density speeds up density graph. matplotlib is very slow when it comes to draw millions of points. datashader is one alternative but was meant for zooming/dezooming. This package provides a simple functionality. The example comes the documentation.

_images/js_mpld3.thumb.png

mpld3

mpld3 is taking matplotlib graphs and converts them into javascript. the support was stopped in Summer 2017. This notebook should be failing at some point is not checked anymore on regular basis.

_images/im_networkx.thumb.png

networkx

networkx draws networks. It does not work too well on big graphs (< 1000 vertices).

_images/js_plotly.thumb.png

plotly

plotly became open source - it was not at the beginning -, it proposes a large gallery of javascript graphs. plotly also offers to host dashboards built with plotly.

_images/im_plotnine.thumb.png

plotnine

plotnine is an extension of ggplot. The language makes it to compose the data with the layout. I replicate the example from the gallery Two Variable Bar Plot.

_images/js_pydy_mass_spring_damper.thumb.png

pydy

pydy simulates physical systems.

_images/js_pyecharts.thumb.png

pyecharts

pyecharts a wrapper for a new library echarts made by Baidu.

_images/js_pygal.thumb.png

pygal

pygal is one if the most mature and complete library using javascript.

_images/js_pythreejs.thumb.png

pythreejs

pythreejs allows 3D interactive graphs in a notebook.

_images/im_reportlab.thumb.png

reportlab

reportlab is the best option if you want to draw graph directly in PDF. Otherwise, code is usually longer with this module compare to matpotlib for example.

_images/im_scikit_plot.thumb.png

scikit-plot

scikit-plot is an extension of matplotlib for datascientist. Proposed graphs are a frequent need when playing with data.

_images/im_seaborn.thumb.png

seaborn

seaborn is an extension of matplotlib for statisticians. Graphs are really nice and famous among statisticians. However, it is difficult to draw a graph with weighted observations.

_images/jsonly_treant.thumb.png

treant-js

treant-js is a javascript library to plot diagram and trees. The goal is to wrap it as a library for python.

_images/js_vega.thumb.png

vega

vega is an extension for the notebook which relies on Vega.

_images/pyjsc_vispy.thumb.png

vispy

vispy builds graph demanding heavy computation. It does not work well from a notebook.

2017#

ensae#

_images/2017_1a_ensae_nocture.thumb.png

ENSAE 1A : nocturne

Le data scientiste est devenu populaire.

_images/kaggle_review_2017.thumb.png

Revue de compétitions Kaggle (2017)

Les gagnants des compétitions Kaggle décrivent parfois leurs solutions sur le blog de Kaggle No Free Hunch. Il y a toujours de bonnes idées à glaner.

meshs#

_images/automation_finance_trading.thumb.png

Les algorithmes, outils de décision automatique.

L’exemple du trading algorithmique.

2018#

msexp#

_images/onnx_deploy.thumb.png

Deploy machine learned models with ONNX

Xavier Dupré - Senior Data Scientist at Microsoft - Computer Science Teacher at ENSAE

pyparis#

_images/onnx_deploy_pyparis.thumb.png

Deploy machine learned models with ONNX

Xavier Dupré - Senior Data Scientist at Microsoft - Computer Science Teacher at ENSAE

2019#

ensae_api#

_images/sklearn_api.thumb.png

API de sciki-learn et modèles customisés

scikit-learn est devenu le module incontournable quand il s’agit de machine learning. Cela tient en partie à son API épurée qui permet à quiconque d’implémenter ses propres modèles tout permettant à scikit-learn de les manipuler comme s’il s’agissait des siens.

sklearn#

_images/onnx_sklearn_custom.thumb.png

Convert custom transformer into ONNX

The notebook explains how to create a converter for a custom transformer following scikit-learn API.

_images/onnx_sklearn_consortium.thumb.png

ONNX, scikit-learn, persistence, deployment

The notebook explains what ONNX is and how it can be used combined with sklearn-onnx and onnxruntime. ONNX is a serialization format for machine learning models.

2020#

ensae#

_images/introcode.thumb.png

Leçon de code

La programmation est devenue un outil essentiel du datascientist mais pas seulement. Beaucoup d’outils pointus sont open source mais uniquement accessibles à ceux qui savent programmer. Après la mise au point d’un modèle statistique, économique, il se pose souvent la question de la mise à jour fréquente des résultats, c’est à dire leur automatisation via la programmation.

2021#

actuaires#

_images/introprogpy.thumb.png

Datascience et programmation

Des années 1970 à la datascience d’aujourd’hui.

previous

Examples

next

Big Data, Azure, Machine Learning, Python

On this page
  • 2016
    • centrale
    • ensae
    • pydata
  • 2017
    • ensae
    • meshs
  • 2018
    • msexp
    • pyparis
  • 2019
    • ensae_api
    • sklearn
  • 2020
    • ensae
  • 2021
    • actuaires
Show Source