module cli.replay
#
Short summary#
module mlprodict.cli.replay
Command line about validation of prediction runtime.
Functions#
function |
truncated documentation |
---|---|
The command rerun a benchmark if models were stored by command line vaidate_runtime. |
Documentation#
Command line about validation of prediction runtime.
- mlprodict.cli.replay.benchmark_replay(folder, runtime='python', time_kwargs=None, skip_long_test=True, time_kwargs_fact=None, time_limit=4, out=None, verbose=1, fLOG=<built-in function print>)#
The command rerun a benchmark if models were stored by command line vaidate_runtime.
- Parameters:
folder – where to find pickled files
runtime – runtimes, comma separated list
verbose – integer from 0 (None) to 2 (full verbose)
out – output raw results into this file (excel format)
time_kwargs – a dictionary which defines the number of rows and the parameter number and repeat when benchmarking a model, the value must follow json format
skip_long_test – skips tests for high values of N if they seem too long
time_kwargs_fact – to multiply number and repeat in time_kwargs depending on the model (see
_multiply_time_kwargs
)time_limit – to stop benchmarking after this limit of time
fLOG – logging function
Replays a benchmark of stored converted models by validate_runtime
The command rerun a benchmark if models were stored by command line vaidate_runtime.
Example:
python -m mlprodict benchmark_replay --folder dumped --out bench_results.xlsx
Parameter
--time_kwargs
may be used to reduce or increase bencharmak precisions. The following value tells the function to run a benchmarks with datasets of 1 or 10 number, to repeat a given number of time number predictions in one row. The total time is divided by. Parameter
--time_kwargs_fact
may be used to increase these number for some specific models.'lin'
multiplies by 10 number when the model is linear.-t "{\"1\":{\"number\":10,\"repeat\":10},\"10\":{\"number\":5,\"repeat\":5}}"
<<<
python -m mlprodict benchmark_replay --help
>>>
usage: benchmark_replay [-h] [-f FOLDER] [-r RUNTIME] [-t TIME_KWARGS] [-s SKIP_LONG_TEST] [-ti TIME_KWARGS_FACT] [-tim TIME_LIMIT] [--out OUT] [-v VERBOSE] The command rerun a benchmark if models were stored by command line `vaidate_runtime`. optional arguments: -h, --help show this help message and exit -f FOLDER, --folder FOLDER where to find pickled files (default: None) -r RUNTIME, --runtime RUNTIME runtimes, comma separated list (default: python) -t TIME_KWARGS, --time_kwargs TIME_KWARGS a dictionary which defines the number of rows and the parameter *number* and *repeat* when benchmarking a model, the value must follow `json` format (default: ) -s SKIP_LONG_TEST, --skip_long_test SKIP_LONG_TEST skips tests for high values of N if they seem too long (default: True) -ti TIME_KWARGS_FACT, --time_kwargs_fact TIME_KWARGS_FACT to multiply number and repeat in *time_kwargs* depending on the model (see :func:`_multiply_time_kwargs <mlprodict.onnxrt.validat e.validate_helper._multiply_time_kwargs>`) (default: ) -tim TIME_LIMIT, --time_limit TIME_LIMIT to stop benchmarking after this limit of time (default: 4) --out OUT output raw results into this file (excel format) (default: ) -v VERBOSE, --verbose VERBOSE integer from 0 (None) to 2 (full verbose) (default: 1)