module onnxrt.ops_cpu.op_lstm#

Inheritance diagram of mlprodict.onnxrt.ops_cpu.op_lstm

Short summary#

module mlprodict.onnxrt.ops_cpu.op_lstm

Runtime operator.

source on GitHub

Classes#

class

truncated documentation

CommonLSTM

LSTM

LSTM ==== Computes an one-layer LSTM. This operator is usually supported via some custom implementation such as CuDNN. …

Properties#

property

truncated documentation

args_default

Returns the list of arguments as well as the list of parameters with the default values (close to the signature). …

args_default

Returns the list of arguments as well as the list of parameters with the default values (close to the signature). …

args_default_modified

Returns the list of modified parameters.

args_default_modified

Returns the list of modified parameters.

args_mandatory

Returns the list of optional arguments.

args_mandatory

Returns the list of optional arguments.

args_optional

Returns the list of optional arguments.

args_optional

Returns the list of optional arguments.

atts_value

Returns all parameters in a dictionary.

atts_value

Returns all parameters in a dictionary.

Methods#

method

truncated documentation

__init__

__init__

_run

_run

_step

_step

f

f

g

g

h

h

Documentation#

Runtime operator.

source on GitHub

class mlprodict.onnxrt.ops_cpu.op_lstm.CommonLSTM(onnx_node, expected_attributes=None, desc=None, **options)#

Bases: OpRun

__init__(onnx_node, expected_attributes=None, desc=None, **options)#
_run(X, W, R, B=None, sequence_lens=None, initial_h=None, initial_c=None, P=None, attributes=None, verbose=0, fLOG=None)#

Should be overwritten.

source on GitHub

_step(X, R, B, W, H_0, C_0, P)#
class mlprodict.onnxrt.ops_cpu.op_lstm.LSTM(onnx_node, desc=None, **options)#

Bases: CommonLSTM

Computes an one-layer LSTM. This operator is usually supported via some custom implementation such as CuDNN.

Notations:

X - input tensor

i - input gate

o - output gate

f - forget gate

c - cell gate

t - time step (t-1 means previous time step)

W[iofc] - W parameter weight matrix for input, output, forget, and cell gates

R[iofc] - R recurrence weight matrix for input, output, forget, and cell gates

Wb[iofc] - W bias vectors for input, output, forget, and cell gates

Rb[iofc] - R bias vectors for input, output, forget, and cell gates

P[iof] - P peephole weight vector for input, output, and forget gates

WB[iofc] - W parameter weight matrix for backward input, output, forget, and cell gates

RB[iofc] - R recurrence weight matrix for backward input, output, forget, and cell gates

WBb[iofc] - W bias vectors for backward input, output, forget, and cell gates

RBb[iofc] - R bias vectors for backward input, output, forget, and cell gates

PB[iof] - P peephole weight vector for backward input, output, and forget gates

H - Hidden state

num_directions - 2 if direction == bidirectional else 1

Activation functions:

Relu(x) - max(0, x)

Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})

Sigmoid(x) - 1/(1 + e^{-x})

(NOTE: Below are optional)

Affine(x) - alpha*x + beta

LeakyRelu(x) - x if x >= 0 else alpha * x

ThresholdedRelu(x) - x if x >= alpha else 0

ScaledTanh(x) - alpha*Tanh(beta*x)

HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)

Elu(x) - x if x >= 0 else alpha*(e^x - 1)

Softsign(x) - x/(1 + |x|)

Softplus(x) - log(1 + e^x)

Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):

  • it = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)

  • ft = f(Xt*(Wf^T) + Ht-1*(Rf^T) + Pf (.) Ct-1 + Wbf + Rbf)

  • ct = g(Xt*(Wc^T) + Ht-1*(Rc^T) + Wbc + Rbc)

  • Ct = ft (.) Ct-1 + it (.) ct

  • ot = f(Xt*(Wo^T) + Ht-1*(Ro^T) + Po (.) Ct + Wbo + Rbo)

  • Ht = ot (.) h(Ct)

This operator has optional inputs/outputs. See ONNX for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument’s name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.

Attributes

  • activation_alpha: Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (f, g, h) in LSTM. Default values are the same as of corresponding ONNX operators.For example with LeakyRelu, the default alpha is 0.01. default value cannot be automatically retrieved (FLOATS)

  • activation_beta: Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (f, g, h) in LSTM. Default values are the same as of corresponding ONNX operators. default value cannot be automatically retrieved (FLOATS)

  • activations: A list of 3 (or 6 if bidirectional) activation functions for input, output, forget, cell, and hidden. The activation functions must be one of the activation functions specified above. Optional: See the equations for default if not specified. default value cannot be automatically retrieved (STRINGS)

  • clip: Cell clip threshold. Clipping bounds the elements of a tensor in the range of [-threshold, +threshold] and is applied to the input of activations. No clip if not specified. default value cannot be automatically retrieved (FLOAT)

  • direction: Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward (default), reverse, or bidirectional. Default value is namedirectionsforwardtypeSTRING (STRING)

  • hidden_size: Number of neurons in the hidden layer default value cannot be automatically retrieved (INT)

  • input_forget: Couple the input and forget gates if 1. Default value is nameinputforgeti0typeINT (INT)

  • layout: The shape format of inputs X, initial_h, initial_c and outputs Y, Y_h, Y_c. If 0, the following shapes are expected: X.shape = [seq_length, batch_size, input_size], Y.shape = [seq_length, num_directions, batch_size, hidden_size], initial_h.shape = Y_h.shape = initial_c.shape = Y_c.shape = [num_directions, batch_size, hidden_size]. If 1, the following shapes are expected: X.shape = [batch_size, seq_length, input_size], Y.shape = [batch_size, seq_length, num_directions, hidden_size], initial_h.shape = Y_h.shape = initial_c.shape = Y_c.shape = [batch_size, num_directions, hidden_size]. Default value is namelayouti0typeINT (INT)

Inputs

Between 3 and 8 inputs.

  • X (heterogeneous)T: The input sequences packed (and potentially padded) into one 3-D tensor with the shape of [seq_length, batch_size, input_size].

  • W (heterogeneous)T: The weight tensor for the gates. Concatenation of W[iofc] and WB[iofc] (if bidirectional) along dimension 0. The tensor has shape [num_directions, 4*hidden_size, input_size].

  • R (heterogeneous)T: The recurrence weight tensor. Concatenation of R[iofc] and RB[iofc] (if bidirectional) along dimension 0. This tensor has shape [num_directions, 4*hidden_size, hidden_size].

  • B (optional, heterogeneous)T: The bias tensor for input gate. Concatenation of [Wb[iofc], Rb[iofc]], and [WBb[iofc], RBb[iofc]] (if bidirectional) along dimension 0. This tensor has shape [num_directions, 8*hidden_size]. Optional: If not specified - assumed to be 0.

  • sequence_lens (optional, heterogeneous)T1: Optional tensor specifying lengths of the sequences in a batch. If not specified - assumed all sequences in the batch to have length seq_length. It has shape [batch_size].

  • initial_h (optional, heterogeneous)T: Optional initial value of the hidden. If not specified - assumed to be 0. It has shape [num_directions, batch_size, hidden_size].

  • initial_c (optional, heterogeneous)T: Optional initial value of the cell. If not specified - assumed to be 0. It has shape [num_directions, batch_size, hidden_size].

  • P (optional, heterogeneous)T: The weight tensor for peepholes. Concatenation of P[iof] and PB[iof] (if bidirectional) along dimension 0. It has shape [num_directions, 3*hidde_size]. Optional: If not specified - assumed to be 0.

Outputs

Between 0 and 3 outputs.

  • Y (optional, heterogeneous)T: A tensor that concats all the intermediate output values of the hidden. It has shape [seq_length, num_directions, batch_size, hidden_size].

  • Y_h (optional, heterogeneous)T: The last output value of the hidden. It has shape [num_directions, batch_size, hidden_size].

  • Y_c (optional, heterogeneous)T: The last output value of the cell. It has shape [num_directions, batch_size, hidden_size].

Type Constraints

  • T tensor(float16), tensor(float), tensor(double): Constrain input and output types to float tensors.

  • T1 tensor(int32): Constrain seq_lens to integer tensor.

Version

Onnx name: LSTM

This version of the operator has been available since version 14.

Runtime implementation: LSTM

__init__(onnx_node, desc=None, **options)#